1
|
Schofield LC, Dialpuri JS, Murshudov GN, Agirre J. Post-translational modifications in the Protein Data Bank. Acta Crystallogr D Struct Biol 2024; 80:647-660. [PMID: 39207896 PMCID: PMC11394121 DOI: 10.1107/s2059798324007794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Proteins frequently undergo covalent modification at the post-translational level, which involves the covalent attachment of chemical groups onto amino acids. This can entail the singular or multiple addition of small groups, such as phosphorylation; long-chain modifications, such as glycosylation; small proteins, such as ubiquitination; as well as the interconversion of chemical groups, such as the formation of pyroglutamic acid. These post-translational modifications (PTMs) are essential for the normal functioning of cells, as they can alter the physicochemical properties of amino acids and therefore influence enzymatic activity, protein localization, protein-protein interactions and protein stability. Despite their inherent importance, accurately depicting PTMs in experimental studies of protein structures often poses a challenge. This review highlights the role of PTMs in protein structures, as well as the prevalence of PTMs in the Protein Data Bank, directing the reader to accurately built examples suitable for use as a modelling reference.
Collapse
Affiliation(s)
- Lucy C Schofield
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Jordan S Dialpuri
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Garib N Murshudov
- MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| |
Collapse
|
2
|
Tvaroška I. Glycosylation Modulates the Structure and Functions of Collagen: A Review. Molecules 2024; 29:1417. [PMID: 38611696 PMCID: PMC11012932 DOI: 10.3390/molecules29071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Collagens are fundamental constituents of the extracellular matrix and are the most abundant proteins in mammals. Collagens belong to the family of fibrous or fiber-forming proteins that self-assemble into fibrils that define their mechanical properties and biological functions. Up to now, 28 members of the collagen superfamily have been recognized. Collagen biosynthesis occurs in the endoplasmic reticulum, where specific post-translational modification-glycosylation-is also carried out. The glycosylation of collagens is very specific and adds β-d-galactopyranose and β-d-Glcp-(1→2)-d-Galp disaccharide through β-O-linkage to hydroxylysine. Several glycosyltransferases, namely COLGALT1, COLGALT2, LH3, and PGGHG glucosidase, were associated the with glycosylation of collagens, and recently, the crystal structure of LH3 has been solved. Although not fully understood, it is clear that the glycosylation of collagens influences collagen secretion and the alignment of collagen fibrils. A growing body of evidence also associates the glycosylation of collagen with its functions and various human diseases. Recent progress in understanding collagen glycosylation allows for the exploitation of its therapeutic potential and the discovery of new agents. This review will discuss the relevant contributions to understanding the glycosylation of collagens. Then, glycosyltransferases involved in collagen glycosylation, their structure, and catalytic mechanism will be surveyed. Furthermore, the involvement of glycosylation in collagen functions and collagen glycosylation-related diseases will be discussed.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| |
Collapse
|
3
|
Boudko SP, Konopka EH, Kim W, Taga Y, Mizuno K, Springer TA, Hudson BG, Moy TI, Lin FY. A recombinant technique for mapping functional sites of heterotrimeric collagen helices: Collagen IV CB3 fragment as a prototype for integrin binding. J Biol Chem 2023; 299:104901. [PMID: 37302550 PMCID: PMC10404678 DOI: 10.1016/j.jbc.2023.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023] Open
Abstract
Collagen superfamily of proteins is a major component of the extracellular matrix. Defects in collagens underlie the cause of nearly 40 human genetic diseases in millions of people worldwide. Pathogenesis typically involves genetic alterations of the triple helix, a hallmark structural feature that bestows exceptional mechanical resistance to tensile forces and a capacity to bind a plethora of macromolecules. Yet, there is a paramount knowledge gap in understanding the functionality of distinct sites along the triple helix. Here, we present a recombinant technique to produce triple helical fragments for functional studies. The experimental strategy utilizes the unique capacity of the NC2 heterotrimerization domain of collagen IX to drive three α-chain selection and registering the triple helix stagger. For proof of principle, we produced and characterized long triple helical fragments of collagen IV that were expressed in a mammalian system. The heterotrimeric fragments encompassed the CB3 trimeric peptide of collagen IV, which harbors the binding motifs for α1β1 and α2β1 integrins. Fragments were characterized and shown to have a stable triple helix, post-translational modifications, and high affinity and specific binding of integrins. The NC2 technique is a universal tool for the high-yield production of heterotrimeric fragments of collagens. Fragments are suitable for mapping functional sites, determining coding sequences of binding sites, elucidating pathogenicity and pathogenic mechanisms of genetic mutations, and production of fragments for protein replacement therapy.
Collapse
Affiliation(s)
- Sergei P Boudko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| | | | - Woojin Kim
- Morphic Therapeutic, Inc, Waltham, Massachusetts, USA
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Timothy A Springer
- Department of Biological Chemistry and Molecular Pharmacology, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Billy G Hudson
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Terence I Moy
- Morphic Therapeutic, Inc, Waltham, Massachusetts, USA
| | - Fu-Yang Lin
- Morphic Therapeutic, Inc, Waltham, Massachusetts, USA.
| |
Collapse
|
4
|
Sarohi V, Basak T. Perturbed post-translational modification (PTM) network atlas of collagen I during stent-induced neointima formation. J Proteomics 2023; 276:104842. [PMID: 36775122 DOI: 10.1016/j.jprot.2023.104842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/30/2022] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Myocardial infarction (MI) leading to heart failure contributes to almost 85% of deaths associated with CVDs. MI results from plaque formation in the coronary artery which leads to a lack of oxygen and nutrients in the myocardium. To date, stenting is a widely used gold-standard technique to maintain the proper blood flow through coronary circulation in the myocardium. Bare metal stents (BMS) and drug-eluting stents (DES) are majorly used in implantation. However, BMS and DES both can induce neointima formation by depositing excessive collagens in the coronary arteries leading to restenosis. Identification and quantitative analysis of site-specific post-translational modifications (PTMs) of deposited COL1A1 from neointima ECM are not known. Applying our in-house workflow, we re-analyzed a previously published mass-spectrometry data set to comprehensively map site-specific prolyl-hydroxylation, lysyl hydroxylation, and O-glycosylation sites in COL1A1 from neointima ECM. Furthermore, we quantitated the occupancy level of 9 3-hydroxyproline (3-HyP) sites, 2 hydroxylysine sites, and glycosylation microheterogeneity on 6 lysine sites of COL1A1. Although the total level of COL1A1 was decreased in DES-induced neointima, the occupancy levels of 2 3-HyP sites (P872, and P881) and 2 HyK (K435 and K768) sites of COL1A1 were significantly (p < 0.05) elevated in DES-induced neointima compared to BMS-induced neointima. We also found O-glycosylation to be significantly elevated on 3 lysine sites (K573, K339, and K and K849) of COL1A1 in DES-induced neointima compared to BMS-induced neointima. Taken together, our first comprehensive PTM analysis of COL1A1 reflected significant site-specific alterations that may play a very important role in the ECM remodeling during stent-induced neointima formation in MI patients. SIGNIFICANCE: The knowledge about site-specific post-translational modifications (PTMs) of collagen 1 deposited in the neointima ECM during the post-stenting restenosis process is absent. Here for the first time, we report the altered levels of COL1A1 PTMs during metal stent and drug-eluting stent-induced neointima formation. Our study showcases a novel ECM remodeling through site-specific collagen PTMs during stent-induced restenosis.
Collapse
Affiliation(s)
- Vivek Sarohi
- School of Biosciences and Bioengineering (SBB), Indian Institute of Technology (IIT)- Mandi, India; BioX Center, IIT-Mandi, Himachal Pradesh 175075, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering (SBB), Indian Institute of Technology (IIT)- Mandi, India; BioX Center, IIT-Mandi, Himachal Pradesh 175075, India.
| |
Collapse
|
5
|
N-Linked Glycosylation in Chinese Hamster Ovary Cells Is Critical for Insulin-like Growth Factor 1 Signaling. Int J Mol Sci 2022; 23:ijms232314952. [PMID: 36499281 PMCID: PMC9735751 DOI: 10.3390/ijms232314952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 12/03/2022] Open
Abstract
Cell surface proteins carrying N-glycans play important roles in inter- and intracellular processes including cell adhesion, development, and cellular recognition. Dysregulation of the glycosylation machinery has been implicated in various diseases, and investigation of global differential cell surface proteome effects due to the loss of N-glycosylation will provide comprehensive insights into their pathogenesis. Cell surface proteins isolated from Parent Pro-5 CHO cells (W5 cells), two CHO mutants with loss of N-glycosylation function derived from Pro-5 CHO (Lec1 and Lec4 cells), were subjected to proteome analysis via high-resolution LCMS. We identified 44 and 43 differentially expressed membrane proteins in Lec1 and Lec4 cells, respectively, as compared to W5 cells. The defective N-glycosylation mutants showed increased abundance of integrin subunits in Lec1 and Lec4 cells at the cell surface. We also found significantly reduced levels of IGF-1R (Insulin like growth factor-1 receptor); a receptor tyrosine kinase; and the GTPase activating protein IQGAP1 (IQ motif-containing GTPase activating protein), a highly conserved cytoplasmic scaffold protein) in Lec1 and Lec4 cells. In silico docking studies showed that the IQ domain of IQGAP1 interacts with the kinase domain of IGF-1R. The integrin signaling and insulin growth factor receptor signaling were also enriched according to GSEA analysis and pathway analysis of differentially expressed proteins. Significant reductions of phosphorylation of ERK1 and ERK2 in Lec1 and Lec4 cells were observed upon IGF-1R ligand (IGF-1 LR3) stimulation. IGF-1 LR3, known as Long arginine3-IGF-1, is a synthetic protein and lengthened analog of insulin-like growth factor 1. The work suggests a novel mechanism for the activation of IGF-1 dependent ERK signaling in CHO cells, wherein IQGAP1 plausibly functions as an IGF-1R-associated scaffold protein. Appropriate glycosylation by the enzymes MGAT1 and MGAT5 is thus essential for processing of cell surface receptor IGF-1R, a potential binding partner in IQGAP1 and ERK signaling, the integral components of the IGF pathway.
Collapse
|
6
|
Sarohi V, Chakraborty S, Basak T. Exploring the cardiac ECM during fibrosis: A new era with next-gen proteomics. Front Mol Biosci 2022; 9:1030226. [PMID: 36483540 PMCID: PMC9722982 DOI: 10.3389/fmolb.2022.1030226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 10/24/2023] Open
Abstract
Extracellular matrix (ECM) plays a critical role in maintaining elasticity in cardiac tissues. Elasticity is required in the heart for properly pumping blood to the whole body. Dysregulated ECM remodeling causes fibrosis in the cardiac tissues. Cardiac fibrosis leads to stiffness in the heart tissues, resulting in heart failure. During cardiac fibrosis, ECM proteins get excessively deposited in the cardiac tissues. In the ECM, cardiac fibroblast proliferates into myofibroblast upon various kinds of stimulations. Fibroblast activation (myofibroblast) contributes majorly toward cardiac fibrosis. Other than cardiac fibroblasts, cardiomyocytes, epithelial/endothelial cells, and immune system cells can also contribute to cardiac fibrosis. Alteration in the expression of the ECM core and ECM-modifier proteins causes different types of cardiac fibrosis. These different components of ECM culminated into different pathways inducing transdifferentiation of cardiac fibroblast into myofibroblast. In this review, we summarize the role of different ECM components during cardiac fibrosis progression leading to heart failure. Furthermore, we highlight the importance of applying mass-spectrometry-based proteomics to understand the key changes occurring in the ECM during fibrotic progression. Next-gen proteomics studies will broaden the potential to identify key targets to combat cardiac fibrosis in order to achieve precise medicine-development in the future.
Collapse
Affiliation(s)
- Vivek Sarohi
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| | - Sanchari Chakraborty
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| |
Collapse
|
7
|
Amiri-Dashatan N, Yekta RF, Koushki M, Arefi Oskouie A, Esfahani H, Taheri S, Kazemian E. Metabolomic study of serum in patients with invasive ductal breast carcinoma with LC-MS/MS approach. Int J Biol Markers 2022; 37:349-359. [PMID: 36168301 DOI: 10.1177/03936155221123343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Invasive ductal carcinoma (IDC) is the most common type of breast cancer so its early detection can lead to a significant decrease in mortality rate. However, prognostic factors for IDC are not adequate and we need novel markers for the treatment of different individuals. Although positron emission tomography and magnetic resonance imaging techniques are available, they are based on morphological features that do not provide any clue for molecular events accompanying cancer progression. In recent years, "omics" approaches have been extensively developed to propose novel molecular signatures of cancers as putative biomarkers, especially in biofluids. Therefore, a mass spectrometry-based metabolomics investigation was performed to find some putative metabolite markers of IDC and potential metabolites with prognostic value related to the estrogen receptor, progesterone receptor, lymphovascular invasion, and human epidermal growth factor receptor 2. METHODS An untargeted metabolomics study of IDC patients was performed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The multivariate principal component analysis by XCMS online built a model that could separate the study groups and define the significantly altered m/z parameters. The most important biological pathways were also identified by pathway enrichment analysis. RESULTS The results showed that the significantly altered metabolites in IDC serum samples mostly belonged to amino acids and lipids. The most important involved pathways included arginine and proline metabolism, glycerophospholipid metabolism, and phenylalanine, tyrosine, and tryptophan biosynthesis. CONCLUSIONS Significantly altered metabolites in IDC serum samples compared to healthy controls could lead to the development of metabolite-based potential biomarkers after confirmation with other methods and in large cohorts.
Collapse
Affiliation(s)
- Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, 48539Zanjan University of Medical Sciences, Zanjan, Iran.,Proteomics Research Center, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Farrokhi Yekta
- Proteomics Research Center, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Koushki
- Department of Clinical Biochemistry, School of Medicine, 48539Zanjan University of Medical Sciences, Zanjan, Iran
| | - Afsaneh Arefi Oskouie
- Department of Basic Sciences, Faculty of Paramedical Sciences, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Esfahani
- 113401Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Salman Taheri
- 113401Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Elham Kazemian
- Non-communicable Diseases Research Center, 391934Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
8
|
Sarohi V, Srivastava S, Basak T. Comprehensive Mapping and Dynamics of Site-Specific Prolyl-Hydroxylation, Lysyl-Hydroxylation and Lysyl O-Glycosylation of Collagens Deposited in ECM During Zebrafish Heart Regeneration. Front Mol Biosci 2022; 9:892763. [PMID: 35782869 PMCID: PMC9245515 DOI: 10.3389/fmolb.2022.892763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
Cardiac fibrosis-mediated heart failure (HF) is one of the major forms of end-stage cardiovascular diseases (CVDs). Cardiac fibrosis is an adaptive response of the myocardium upon any insult/injury. Excessive deposition of collagen molecules in the extracellular matrix (ECM) is the hallmark of fibrosis. This fibrotic response initially protects the myocardium from ventricular rupture. Although in mammals this fibrotic response progresses towards scar-tissue formation leading to HF, some fishes and urodeles have mastered the art of cardiac regeneration following injury-mediated fibrotic response. Zebrafish have a unique capability to regenerate the myocardium after post-amputation injury. Following post-amputation, the ECM of the zebrafish heart undergoes extensive remodeling and deposition of collagen. Being the most abundant protein of ECM, collagen plays important role in the assembly and cell-matrix interactions. However, the mechanism of ECM remodeling is not well understood. Collagen molecules undergo heavy post-translational modifications (PTMs) mainly hydroxylation of proline, lysine, and glycosylation of lysine during biosynthesis. The critical roles of these PTMs are emerging in several diseases, embryonic development, cell behavior regulation, and cell-matrix interactions. The site-specific identification of these collagen PTMs in zebrafish heart ECM is not known. As these highly modified peptides are not amenable to mass spectrometry (MS), the site-specific identification of these collagen PTMs is challenging. Here, we have implemented our in-house proteomics analytical pipeline to analyze two ECM proteomics datasets (PXD011627, PXD010092) of the zebrafish heart during regeneration (post-amputation). We report the first comprehensive site-specific collagen PTM map of zebrafish heart ECM. We have identified a total of 36 collagen chains (19 are reported for the first time here) harboring a total of 95 prolyl-3-hydroxylation, 108 hydroxylysine, 29 galactosyl-hydroxylysine, and 128 glucosylgalactosyl-hydroxylysine sites. Furthermore, we comprehensively map the three chains (COL1A1a, COL1A1b, and COL1A2) of collagen I, the most abundant protein in zebrafish heart ECM. We achieved more than 95% sequence coverage for all the three chains of collagen I. Our analysis also revealed the dynamics of prolyl-3-hydroxylation occupancy oscillations during heart regeneration at these sites. Moreover, quantitative site-specific analysis of lysine-O-glycosylation microheterogeneity during heart regeneration revealed a significant (p < 0.05) elevation of site-specific (K1017) glucosylgalactosyl-hydroxylysine on the col1a1a chain. Taken together, these site-specific PTM maps and the dynamic changes of site-specific collagen PTMs in ECM during heart regeneration will open up new avenues to decode ECM remodeling and may lay the foundation to tinker the cardiac regeneration process with new approaches.
Collapse
Affiliation(s)
- Vivek Sarohi
- School of Biosciences and Bioengineering (BSBE), Indian Institute of Technology (IIT)- Mandi, Mandi, India
- BioX Center, IIT-Mandi, Mandi, India
| | - Shriya Srivastava
- School of Biosciences and Bioengineering (BSBE), Indian Institute of Technology (IIT)- Mandi, Mandi, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering (BSBE), Indian Institute of Technology (IIT)- Mandi, Mandi, India
- BioX Center, IIT-Mandi, Mandi, India
- *Correspondence: Trayambak Basak,
| |
Collapse
|
9
|
Zhang J, Liu J, Zhang H, Wang J, Hua H, Jiang Y. The role of network-forming collagens in cancer progression. Int J Cancer 2022; 151:833-842. [PMID: 35322886 DOI: 10.1002/ijc.34004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023]
Abstract
Collagens are the main components of extracellular matrix in the tumor microenvironment. Both fibrillar and nonfibrillar collagens are involved in tumor progression. The nonfibrillar network-forming collagens such as type IV and type VIII collagens are frequently overexpressed in various types of human cancers, which promotes tumor cell proliferation, adhesion, invasion, metastasis and angiogenesis. Studies on the roles of these collagens have shed light on the mechanisms underpinning the effects of this protein family. Future research has to explicit the role of network-forming collagens with respect to cancer progression and treatment. Herein, we review the regulation of network-forming collagens expression in cancer; the roles of network-forming collagens in tumor invasion, metastasis and angiogenesis; and the clinical significance of network-forming collagens expression in cancer patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jin Zhang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jieya Liu
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfu Jiang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Integrated proteomic, phosphoproteomic, and N-glycoproteomic analyses of the longissimus thoracis of yaks. Curr Res Food Sci 2022; 5:1494-1507. [PMID: 36132491 PMCID: PMC9483648 DOI: 10.1016/j.crfs.2022.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/27/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Yaks (Bos mutus) live in the Qinghai–Tibet plateau. The quality of yak meat is unique due to its genetic and physiological characteristics. Identification of the proteome of yak muscle could help to reveal its meat-quality properties. The common proteome, phosphoproteome, and N-glycoproteome of yak longissimus thoracis (YLT) were analyzed by liquid chromatography-tandem mass spectrometry-based shotgun analysis. A total of 1812 common proteins, 1303 phosphoproteins (3918 phosphorylation sites), and 204 N-glycoproteins (285 N-glycosylation sites) were identified in YLT. The common proteins in YLT were involved mainly in myofibril structure and energy metabolism; phosphoproteins were associated primarily with myofibril organization, regulation of energy metabolism, and signaling; N-glycoproteins were engaged mainly in extracellular-matrix organization, cellular immunity, and organismal homeostasis. We reported, for the first time, the “panorama” of the YLT proteome, specifically the N-glycoproteome of YLT. Our results provide essential information for understanding post mortem physiology (rigor mortis and aging) and the quality of yak meat. A total of 2650 proteins were identified in yak longissimus thoracis. Common proteins were involved mainly in myofibril structure and energy metabolism. Phosphoproteins were associated with myofibrils, energy metabolism, and signaling. N-glycoproteins were engaged mainly in ECM organization, immunity, and homeostasis.
Collapse
|
11
|
Pastre MJ, Gois MB, Casagrande L, Pereira-Severi LS, de Lima LL, Trevizan AR, Miqueloto CA, Garcia JL, Costa SL, Nogueira-Melo GDA, Sant'Ana DDMG. Acute infection with Toxoplasma gondii oocysts preferentially activates non-neuronal cells expressing serotonin in the jejunum of rats. Life Sci 2021; 283:119872. [PMID: 34352261 DOI: 10.1016/j.lfs.2021.119872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022]
Abstract
The interaction of Toxoplasma gondii with the gastrointestinal tract of its host is highly regulated. Once ingested, the parasite crosses the epithelium without altering the permeability of the intestinal barrier. Nevertheless, many studies report alterations ranging from structural to functional damage in cells and tissues that make up the wall of the small and large intestine. Although the immune response to the parasite has been extensively studied, the role of serotonin (5-HT) in toxoplasmosis is poorly understood. Here we investigate the distribution of cells expressing 5-HT and its effects on cells and tissues of the jejunal wall of rats after 2, 3, or 7 days of T. gondii infection. KEY RESULTS: Our results show that transposition of the jejunal epithelium by T. gondii leads to ruptures in the basement membrane and activation of the immune system, as confirmed by the decrease in laminin immunostaining and the increase in the number of mast cells, respectively. CONCLUSIONS AND INFERENCES: We showed an increase in the number of enterochromaffin cells and mast cells expressing 5-HT in the jejunal wall. We also observed that the percentage of serotonergic mast cells increased in the total population. Thus, we can suggest that oral infection by T. gondii oocysts preferentially activates non-neuronal cells expressing 5-HT. Together, these results may explain both the changes in the extracellular matrix and the morphology of the enteric ganglia.
Collapse
Affiliation(s)
- Maria José Pastre
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Marcelo Biondaro Gois
- Instituto de Ciências da Saúde, Universidade Federal da Bahia and Centro de Ciências da Saúde, Universidade Federal do Recôncavo da Bahia, Santo Antônio de Jesus, BA, Brazil.
| | - Lucas Casagrande
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | | - Lainy Leiny de Lima
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Aline Rosa Trevizan
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | | - João Luís Garcia
- Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Silvia Lima Costa
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brazil
| | | | | |
Collapse
|
12
|
Guo HF, Bota-Rabassedas N, Terajima M, Leticia Rodriguez B, Gibbons DL, Chen Y, Banerjee P, Tsai CL, Tan X, Liu X, Yu J, Tokmina-Roszyk M, Stawikowska R, Fields GB, Miller MD, Wang X, Lee J, Dalby KN, Creighton CJ, Phillips GN, Tainer JA, Yamauchi M, Kurie JM. A collagen glucosyltransferase drives lung adenocarcinoma progression in mice. Commun Biol 2021; 4:482. [PMID: 33875777 PMCID: PMC8055892 DOI: 10.1038/s42003-021-01982-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cells are a major source of enzymes that modify collagen to create a stiff, fibrotic tumor stroma. High collagen lysyl hydroxylase 2 (LH2) expression promotes metastasis and is correlated with shorter survival in lung adenocarcinoma (LUAD) and other tumor types. LH2 hydroxylates lysine (Lys) residues on fibrillar collagen's amino- and carboxy-terminal telopeptides to create stable collagen cross-links. Here, we show that electrostatic interactions between the LH domain active site and collagen determine the unique telopeptidyl lysyl hydroxylase (tLH) activity of LH2. However, CRISPR/Cas-9-mediated inactivation of tLH activity does not fully recapitulate the inhibitory effect of LH2 knock out on LUAD growth and metastasis in mice, suggesting that LH2 drives LUAD progression, in part, through a tLH-independent mechanism. Protein homology modeling and biochemical studies identify an LH2 isoform (LH2b) that has previously undetected collagen galactosylhydroxylysyl glucosyltransferase (GGT) activity determined by a loop that enhances UDP-glucose-binding in the GLT active site and is encoded by alternatively spliced exon 13 A. CRISPR/Cas-9-mediated deletion of exon 13 A sharply reduces the growth and metastasis of LH2b-expressing LUADs in mice. These findings identify a previously unrecognized collagen GGT activity that drives LUAD progression.
Collapse
Affiliation(s)
- Hou-Fu Guo
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neus Bota-Rabassedas
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Masahiko Terajima
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - B Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yulong Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyam Banerjee
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiang Yu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michal Tokmina-Roszyk
- Institute for Human Health & Disease Intervention (I-HEALTH) and Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA
| | - Roma Stawikowska
- Institute for Human Health & Disease Intervention (I-HEALTH) and Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA
| | - Gregg B Fields
- Institute for Human Health & Disease Intervention (I-HEALTH) and Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA
| | | | - Xiaoyan Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juhoon Lee
- Division of Medicinal Chemistry, Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Kevin N Dalby
- Division of Medicinal Chemistry, Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Chad J Creighton
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George N Phillips
- Department of Biosciences, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Collagen hydroxylysine glycosylation: non-conventional substrates for atypical glycosyltransferase enzymes. Biochem Soc Trans 2021; 49:855-866. [PMID: 33704379 DOI: 10.1042/bst20200767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
Collagen is a major constituent of the extracellular matrix (ECM) that confers fundamental mechanical properties to tissues. To allow proper folding in triple-helices and organization in quaternary super-structures, collagen molecules require essential post-translational modifications (PTMs), including hydroxylation of proline and lysine residues, and subsequent attachment of glycan moieties (galactose and glucose) to specific hydroxylysine residues on procollagen alpha chains. The resulting galactosyl-hydroxylysine (Gal-Hyl) and less abundant glucosyl-galactosyl-hydroxylysine (Glc-Gal-Hyl) are amongst the simplest glycosylation patterns found in nature and are essential for collagen and ECM homeostasis. These collagen PTMs depend on the activity of specialized glycosyltransferase enzymes. Although their biochemical reactions have been widely studied, several key biological questions about the possible functions of these essential PTMs are still missing. In addition, the lack of three-dimensional structures of collagen glycosyltransferase enzymes hinders our understanding of the catalytic mechanisms producing this modification, as well as the impact of genetic mutations causing severe connective tissue pathologies. In this mini-review, we summarize the current knowledge on the biochemical features of the enzymes involved in the production of collagen glycosylations and the current state-of-the-art methods for the identification and characterization of this important PTM.
Collapse
|
14
|
Wu J, Cheng J, Zhang F, Luo X, Zhang Z, Chen S. Estrogen receptor α is involved in the regulation of ITGA8 methylation in estrogen receptor-positive breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:993. [PMID: 32953793 PMCID: PMC7475494 DOI: 10.21037/atm-20-5220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Integrin subunit α 8 (ITGA8) methylation has been associated with the development of several cancers, but its contribution to breast cancer remains unclear. The present study aimed to investigate the methylation status of ITGA8, and the underlying regulatory mechanisms of ITGA8 methylation in breast cancer. Methods ITGA8 expression was investigated using the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) database and the Breast Cancer Gene-Expression Miner v.4.4 (bc-GenExMiner v4.4). The association between ITGA8 expression levels and the survival rate of breast cancer patients was evaluated using The Cancer Genome Atlas (TCGA) database and Gene Expression-based Outcome for Breast Cancer Online (GOBO): Gene Set Analysis. Methylation-specific PCR (MSP) was used to detect the methylation of ITGA8. Protein level of ITGA8 was determined by Western blot analysis. Results ITGA8 was expressed at low levels in human breast cancer cells compared to non-tumorigenic breast cells and breast tissue, and was upregulated in estrogen receptor (ER)-positive tissue compared with ER-negative tissue (P<0.01). ITGA8 gene expression was negatively associated with breast tumor stage and survival rate in all breast cancer patients. However, ER-positive patients with low ITGA8 expression showed poorer distant metastasis-free survival (DMFS) and recurrence-free survival (RFS) rates than patients with high ITGA8 expression. This was not observed in the ER-negative population. Mechanistically speaking, hypermethylation of ITGA8 was discovered in ER-positive breast cancer cells. Administration of the methylation inhibitor, 5-aza-2’-deoxycytidine (5-aza-dC), significantly elevated protein expression of ITGA8 in ER-positive breast cancer cells compared to ER-negative cells. The positive association between ITGA8 status and methylation was also observed in clinical tissue specimens. When treated with 17-beta-estradiol, an antagonist of ERα, 5-aza-dC-induced upregulation of ITGA8 in ER-positive breast cancer cells was no longer observed. Conclusions Low ITGA8 expression in ER-positive breast cancer might be caused by the hypermethylation of ITGA8, a process dependent on ERα. Our findings provide an important foundation for investigations into ITGA8-targeted treatment strategies for ER-positive breast cancer.
Collapse
Affiliation(s)
- Jingxun Wu
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jianghong Cheng
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Fuxing Zhang
- Department of General Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Xianyang Luo
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, China.,Teaching Hospital of Fujian Medical University, Fuzhou, China
| | - Zhiming Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Teaching Hospital of Fujian Medical University, Fuzhou, China
| | - Shuai Chen
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, China.,Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, China.,Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
15
|
Cudic M, Fields GB. Modulation of receptor binding to collagen by glycosylated 5-hydroxylysine: Chemical biology approaches made feasible by Carpino's Fmoc group. Pept Sci (Hoboken) 2020; 112. [PMID: 33073165 DOI: 10.1002/pep2.24156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The creation of the 9-fluorenylmethoxycarbonyl (Fmoc) group by the Carpino laboratory facilitated the synthesis of peptides containing acid-sensitive groups, such as O-linked glycosides. To fully investigative collagen biochemistry, one needs to assemble peptides that possess glycosylated 5-hydroxylysine (Hyl). A convenient method for the synthesis of Fmoc-Hyl(ε-tert-butyloxycarbonyl (Boc),O-tert-butyldimethylsilyl (TBDMS)) and efficient methods for the synthesis of Fmoc-Hyl[ε-Boc,O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)] have been developed. Glycosylated Fmoc-Hyl derivatives were used to construct a series of types I-IV collagen-model triple-helical peptides (THPs) that incorporated known or proposed receptor binding sites. Glycosylation of Hyl was found to strongly down-regulate the binding of CD44 and the α3β1 integrin to collagen, while the impact on α2β1 integrin binding was more modest. Molecular modeling of integrin binding indicated that Hyl glycosylation directly impacted the association between the α3β1 integrin metal ion-dependent adhesion site (MIDAS) and the receptor binding site within type IV collagen. The Fmoc solid-phase strategy ultimately allowed for chemical biology approaches to be utilized to study tumor cell interactions with glycosylated collagen sequences and document the modulation of receptor interactions by Hyl posttranslational modification.
Collapse
Affiliation(s)
- Maré Cudic
- Institute for Human Health & Disease Intervention (I-HEALTH) and the Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 U.S.A
| | - Gregg B Fields
- Institute for Human Health & Disease Intervention (I-HEALTH) and the Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 U.S.A
| |
Collapse
|
16
|
|
17
|
Xu S, Xu H, Wang W, Li S, Li H, Li T, Zhang W, Yu X, Liu L. The role of collagen in cancer: from bench to bedside. J Transl Med 2019; 17:309. [PMID: 31521169 PMCID: PMC6744664 DOI: 10.1186/s12967-019-2058-1] [Citation(s) in RCA: 448] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Collagen is the major component of the tumor microenvironment and participates in cancer fibrosis. Collagen biosynthesis can be regulated by cancer cells through mutated genes, transcription factors, signaling pathways and receptors; furthermore, collagen can influence tumor cell behavior through integrins, discoidin domain receptors, tyrosine kinase receptors, and some signaling pathways. Exosomes and microRNAs are closely associated with collagen in cancer. Hypoxia, which is common in collagen-rich conditions, intensifies cancer progression, and other substances in the extracellular matrix, such as fibronectin, hyaluronic acid, laminin, and matrix metalloproteinases, interact with collagen to influence cancer cell activity. Macrophages, lymphocytes, and fibroblasts play a role with collagen in cancer immunity and progression. Microscopic changes in collagen content within cancer cells and matrix cells and in other molecules ultimately contribute to the mutual feedback loop that influences prognosis, recurrence, and resistance in cancer. Nanoparticles, nanoplatforms, and nanoenzymes exhibit the expected gratifying properties. The pathophysiological functions of collagen in diverse cancers illustrate the dual roles of collagen and provide promising therapeutic options that can be readily translated from bench to bedside. The emerging understanding of the structural properties and functions of collagen in cancer will guide the development of new strategies for anticancer therapy.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Huaxiang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shuo Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tianjiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
18
|
Pastre MJ, Casagrande L, Gois MB, Pereira-Severi LS, Miqueloto CA, Garcia JL, de Alcântara Nogueira-Melo G, de Mello Gonçales Sant'Ana D. Toxoplasma gondii causes increased ICAM-1 and serotonin expression in the jejunum of rats 12 h after infection. Biomed Pharmacother 2019; 114:108797. [PMID: 30951950 DOI: 10.1016/j.biopha.2019.108797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/01/2019] [Accepted: 03/17/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To analyze the remodeling dynamics of total collagen, type I and III, the expression of ICAM-1 and 5-HT in the jejunum of rats. METHODS Twenty-eight Wistar rats were randomly assigned to two experimental groups: the control group (CG, n = 7) and the infected group (receiving 5,000 sporulated T. gondii oocysts - ME49 strain, genotype II, n = 21). Seven infected rats each at 6 (G6), 12 (G12), and 24 (G24) hours post infection were sacrificed and segments of jejunum were collected for standard histological, histochemical, and immunohistochemistry processing techniques. RESULTS The infection promoted ICAM-1 and 5-HT expression, type III collagen, and total mast cell increases. However, it also caused a reduction in the area occupied by type I collagen fibers, and in submucosa thickness, and caused ganglion and peri-ganglion alterations. CONCLUSION The structural damage caused by toxoplasmic infection is intense during the first 24 h post inoculation. At peak dissemination, from 12 to 24 h, there is an increase in ICAM-1 and 5-HT expression, with intense migration of mast cells to the site of infection. There was also a reduction in submucosa thickness, and an effective loss of extracellular matrix (ECM) organization, which included changes in the dynamics of type I and III total collagen deposition.
Collapse
Affiliation(s)
- Maria José Pastre
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Av. Colombo, n° 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| | - Lucas Casagrande
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Av. Colombo, n° 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| | - Marcelo Biondaro Gois
- Universidade Federal do Recôncavo da Bahia, Av. Carlos Amaral, Cajueiro, CEP 44574-490, Santo Antônio de Jesus, BA; and Universidade Federal da Bahia, Instituto de Ciências da Saúde, Av. Reitor Miguel Calmon, Vale do Canela, Salvador, BA, Brazil.
| | - Letícia Sarturi Pereira-Severi
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Av. Colombo, n° 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| | - Carlos Alberto Miqueloto
- Departamento de Biologia Geral, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, CEP: 86057-970, Londrina, Paraná, Brazil
| | - João Luís Garcia
- Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, CEP: 86057-970, Londrina, Paraná, Brazil
| | - Gessilda de Alcântara Nogueira-Melo
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Av. Colombo, n° 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| | - Débora de Mello Gonçales Sant'Ana
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Av. Colombo, n° 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| |
Collapse
|
19
|
Collagen glycosylation. Curr Opin Struct Biol 2019; 56:131-138. [PMID: 30822656 DOI: 10.1016/j.sbi.2019.01.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/04/2019] [Accepted: 01/24/2019] [Indexed: 01/17/2023]
Abstract
Despite the ubiquity of collagens in the animal kingdom, little is known about the biology of the disaccharide Glc(α1-2)Gal(β1-O) bound to hydroxylysine across collagens from sponges to mammals. The extent of collagen glycosylation varies by the types of collagen, with basement membrane collagen type IV being more glycosylated than fibrillar collagens. Beyond true collagens, proteins including collagen domains such as the complement protein 1Q and the hormone adiponectin also feature glycosylated hydroxylysine. Collagen glycosylation is initiated in the endoplasmic reticulum by the galactosyltransferases COLGALT1 and COLGALT2. Mutations in the COLGALT1 gene cause cerebral small vessel abnormality and porencephaly, which are common in collagen type IV deficiency. Beyond the strongly conserved Glc(α1-2)Gal(β1-O) glycan, additional forms of collagen glycosylation have been described in the deep-sea worm Riftia pachyptila and in the giant virus Mimivirus, thereby suggesting that further forms of collagen glycosylation are likely to be identified in the future.
Collapse
|
20
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
21
|
Marsico G, Russo L, Quondamatteo F, Pandit A. Glycosylation and Integrin Regulation in Cancer. Trends Cancer 2018; 4:537-552. [PMID: 30064662 DOI: 10.1016/j.trecan.2018.05.009] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Integrins are transmembrane receptors that coordinate extracellular matrix (ECM)-cell and cell-cell interactions, signal transmission, gene expression, and cell function. The aberration of integrin function is one of the well-recognized mechanisms of cancer. The activity of integrins is strongly influenced by glycans through glycosylation events and the establishment of glycan-mediated interactions. Glycans represent a class of ubiquitous biomolecules that display an extraordinary complexity and diversity in both structure and function. Widely expressed both in the ECM and on the cell surface, they play a crucial role in mediating cell proliferation, survival, and metastasis during cancer. The purpose of this review is to provide an overview of how both glycosylation of integrins and integrin interaction with the cancer glyco-microenvironment can regulate cancer progression.
Collapse
Affiliation(s)
- Grazia Marsico
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Laura Russo
- Dipartimento di Biotecnologie e Bioscienze, Università degli studi di Milano-Bicocca, Milan, Italy
| | - Fabio Quondamatteo
- Anatomy Facility, School of Life Science, University of Glasgow, Glasgow, Scotland
| | - Abhay Pandit
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
22
|
Singh C, Shyanti RK, Singh V, Kale RK, Mishra JPN, Singh RP. Integrin expression and glycosylation patterns regulate cell-matrix adhesion and alter with breast cancer progression. Biochem Biophys Res Commun 2018; 499:374-380. [PMID: 29577899 DOI: 10.1016/j.bbrc.2018.03.169] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/14/2022]
Abstract
Integrins are the major cell adhesion glycoproteins involved in cell-extracellular matrix (ECM) interaction and metastasis. Further, glycosylation on integrin is necessary for its proper folding and functionality. Herein, differential expression of integrins viz., αvβ3 and αvβ6 was examined in MDA-MB-231, MDA-MB-468 and MCF-10A cells, which signify three different stages of breast cancer development from highly metastatic to non-tumorigenic stage. The expression of αvβ3 and αvβ6 integrins at mRNA and protein levels was observed in all three cell lines and the results displayed a distinct pattern of expression. Highly metastatic cells showed enhanced expression of αvβ3 than moderate metastatic and non-tumorigenic cells. The scenario was reversed in case of αvβ6 integrin, which was strongly expressed in moderate metastatic and non-tumorigenic cells. N-glycosylation of αvβ3 and αvβ6 integrins is required for the attachment of cells to ECM proteins like fibronectin. The cell adhesion properties were found to be different in these cancer cells with respect to the type of integrins expressed. The results testify that αvβ3 integrin in highly metastatic cells, αvβ6 integrin in both moderate metastatic and non-tumorigenic cells play an important role in cell adhesion. The investigation typify that N-glycosylation on integrins is also necessary for cell-ECM interaction. Further, glycosylation inhibition by Swainsonine is found to be more detrimental to invasive property of moderate metastatic cells. Conclusively, types of integrins expressed as well as their N-glycosylation pattern alter during the course of breast cancer progression.
Collapse
Affiliation(s)
- Chandrajeet Singh
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Ritis K Shyanti
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Virendra Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Raosaheb K Kale
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jai P N Mishra
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Rana P Singh
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India; School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
23
|
Chioran A, Duncan S, Catalano A, Brown TJ, Ringuette MJ. Collagen IV trafficking: The inside-out and beyond story. Dev Biol 2017; 431:124-133. [PMID: 28982537 DOI: 10.1016/j.ydbio.2017.09.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/20/2022]
Abstract
Collagen IV networks endow basement membranes (BMs) with remarkable tensile strength and function as morphoregulatory substrata for diverse tissue-specific developmental events. A complex repertoire of intracellular and extracellular molecular interactions are required for collagen IV secretion and supramolecular assembly into BMs. These include intracellular chaperones such as Heat shock protein 47 (Hsp47) and the chaperone-binding trafficking protein Transport and Golgi organization protein 1 (Tango1). Mutations in these proteins lead to compromised collagen IV protomer stability and secretion, leading to defective BM assembly and function. In addition to intracellular chaperones, a role for extracellular chaperones orchestrating the transport, supramolecular assembly, and architecture of collagen IV in BM is emerging. We present evidence derived from evolutionarily distant model organisms that supports an extracellular collagen IV chaperone-like activity for the matricellular protein SPARC (Secreted Protein, Acidic, Rich in Cysteine). Loss of SPARC disrupts BM homeostasis and compromises tissue biomechanics and physiological function. Thus, the combined contributions of intracellular and extracellular collagen IV-associated chaperones and chaperone-like proteins are critical to ensure proper secretion and stereotypic assembly of collagen IV networks in BMs.
Collapse
Affiliation(s)
- Alexa Chioran
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5
| | - Sebastian Duncan
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5
| | | | - Theodore J Brown
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON, Canada
| | - Maurice J Ringuette
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5.
| |
Collapse
|
24
|
Gjaltema RAF, Bank RA. Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Crit Rev Biochem Mol Biol 2016; 52:74-95. [PMID: 28006962 DOI: 10.1080/10409238.2016.1269716] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Collagen is a macromolecule that has versatile roles in physiology, ranging from structural support to mediating cell signaling. Formation of mature collagen fibrils out of procollagen α-chains requires a variety of enzymes and chaperones in a complex process spanning both intracellular and extracellular post-translational modifications. These processes include modifications of amino acids, folding of procollagen α-chains into a triple-helical configuration and subsequent stabilization, facilitation of transportation out of the cell, cleavage of propeptides, aggregation, cross-link formation, and finally the formation of mature fibrils. Disruption of any of the proteins involved in these biosynthesis steps potentially result in a variety of connective tissue diseases because of a destabilized extracellular matrix. In this review, we give a revised overview of the enzymes and chaperones currently known to be relevant to the conversion of lysine and proline into hydroxyproline and hydroxylysine, respectively, and the O-glycosylation of hydroxylysine and give insights into the consequences when these steps are disrupted.
Collapse
Affiliation(s)
- Rutger A F Gjaltema
- a MATRIX Research Group, Department of Pathology and Medical Biology , University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| | - Ruud A Bank
- a MATRIX Research Group, Department of Pathology and Medical Biology , University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| |
Collapse
|
25
|
Baumann S, Hennet T. Collagen Accumulation in Osteosarcoma Cells lacking GLT25D1 Collagen Galactosyltransferase. J Biol Chem 2016; 291:18514-24. [PMID: 27402836 DOI: 10.1074/jbc.m116.723379] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Indexed: 01/22/2023] Open
Abstract
Collagen is post-translationally modified by prolyl and lysyl hydroxylation and subsequently by glycosylation of hydroxylysine. Despite the widespread occurrence of the glycan structure Glc(α1-2)Gal linked to hydroxylysine in animals, the functional significance of collagen glycosylation remains elusive. To address the role of glycosylation in collagen expression, folding, and secretion, we used the CRISPR/Cas9 system to inactivate the collagen galactosyltransferase GLT25D1 and GLT25D2 genes in osteosarcoma cells. Loss of GLT25D1 led to increased expression and intracellular accumulation of collagen type I, whereas loss of GLT25D2 had no effect on collagen secretion. Inactivation of the GLT25D1 gene resulted in a compensatory induction of GLT25D2 expression. Loss of GLT25D1 decreased collagen glycosylation by up to 60% but did not alter collagen folding and thermal stability. Whereas cells harboring individually inactivated GLT25D1 and GLT25D2 genes could be recovered and maintained in culture, cell clones with simultaneously inactive GLT25D1 and GLT25D2 genes could be not grown and studied, suggesting that a complete loss of collagen glycosylation impairs osteosarcoma cell proliferation and viability.
Collapse
Affiliation(s)
- Stephan Baumann
- From the Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Thierry Hennet
- From the Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
26
|
de Melo CAV, Alves AN, Terena SML, Fernandes KPS, Nunes FD, da Silva DDFT, Bussadori SK, Deana AM, Mesquita-Ferrari RA. Light-emitting diode therapy increases collagen deposition during the repair process of skeletal muscle. Lasers Med Sci 2016; 31:531-8. [PMID: 26873500 DOI: 10.1007/s10103-016-1888-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/19/2016] [Indexed: 01/08/2023]
Abstract
This study analyzed the effects of light-emitting diode (LED) therapy on the morphology of muscle tissue as well as collagen remodeling and matrix metalloproteinase 2 (MMP-2) activity in the skeletal muscle of rats following acute injury. Wistar rats were divided into four groups: (1) control, (2) sham, (3) untreated cryoinjury, and (4) cryoinjury treated with LED. Cryoinjury was induced by two applications of a metal probe cooled in liquid nitrogen directly onto the belly of the tibialis anterior muscle. For treatment, the LED equipment (wavelength 850 nm, output power 30 mW, and total energy 3.2 J) was used daily. The study periods were 1, 3, and 7 days after cryoinjury. Morphological aspects were evaluated through hematoxylin-eosin staining. The amount of collagen fibers was evaluated using Picro Sirius Red staining under polarized light. The gelatinase activity of MMP-2 was evaluated using zymography. The results showed significant reductions in inflammatory infiltrate after 3 days and an increased number of immature muscle fibers after 7 days. Furthermore, treatment induced a reduction in the gelatinolytic activity of MMP-2 after 1, 3, and 7 days in comparison to the untreated injury groups and increased the collagen deposition after 3 and 7 days in the treated groups. LED therapy at 850 nm induced a significant reduction in inflammation, decreased MMP-2 activity, and increased the amount of immature muscle and collagen fibers during the muscle repair process following acute injury.
Collapse
Affiliation(s)
- Claudia Aparecida Viana de Melo
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235/249, Liberdade, CEP 01504-001, São Paulo, SP, Brazil
| | - Agnelo Neves Alves
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235/249, Liberdade, CEP 01504-001, São Paulo, SP, Brazil
| | - Stella Maris Lins Terena
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Kristianne Porta Santos Fernandes
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235/249, Liberdade, CEP 01504-001, São Paulo, SP, Brazil
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Fábio Daumas Nunes
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | | | - Sandra Kalil Bussadori
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235/249, Liberdade, CEP 01504-001, São Paulo, SP, Brazil
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Alessandro Melo Deana
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235/249, Liberdade, CEP 01504-001, São Paulo, SP, Brazil.
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil.
| |
Collapse
|
27
|
Abstract
Collagens mediate essential hemostasis by maintaining the integrity and stability of the vascular wall. Imbalanced turnover of collagens by uncontrolled formation and/or degradation may result in pathologic conditions such as fibrosis. Thickening of the vessel wall because of accumulation of collagens may lead to arterial occlusion or thrombosis. Thinning of the wall because of collagen degradation or deficiency may lead to rupture of the vessel wall or aneurysm. Preventing excessive hemorrhage or thrombosis relies on collagen-mediated actions. Von Willebrand factor, integrins and glycoprotein VI, as well as clotting factors, can bind collagen to restore normal hemostasis after trauma. This review outlines the essential roles of collagens in mediating hemostasis, with a focus on collagens types I, III, IV, VI, XV, and XVIII.
Collapse
Affiliation(s)
| | - N G Kjeld
- Nordic Bioscience A/S, Herlev, Denmark
| | | |
Collapse
|
28
|
Basak T, Vega-Montoto L, Zimmerman LJ, Tabb DL, Hudson BG, Vanacore RM. Comprehensive Characterization of Glycosylation and Hydroxylation of Basement Membrane Collagen IV by High-Resolution Mass Spectrometry. J Proteome Res 2015; 15:245-58. [PMID: 26593852 DOI: 10.1021/acs.jproteome.5b00767] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Collagen IV is the main structural protein that provides a scaffold for assembly of basement membrane proteins. Posttranslational modifications such as hydroxylation of proline and lysine and glycosylation of lysine are essential for the functioning of collagen IV triple-helical molecules. These modifications are highly abundant posing a difficult challenge for in-depth characterization of collagen IV using conventional proteomics approaches. Herein, we implemented an integrated pipeline combining high-resolution mass spectrometry with different fragmentation techniques and an optimized bioinformatics workflow to study posttranslational modifications in mouse collagen IV. We achieved 82% sequence coverage for the α1 chain, mapping 39 glycosylated hydroxylysine, 148 4-hydroxyproline, and seven 3-hydroxyproline residues. Further, we employed our pipeline to map the modifications on human collagen IV and achieved 85% sequence coverage for the α1 chain, mapping 35 glycosylated hydroxylysine, 163 4-hydroxyproline, and 14 3-hydroxyproline residues. Although lysine glycosylation heterogeneity was observed in both mouse and human, 21 conserved sites were identified. Likewise, five 3-hydroxyproline residues were conserved between mouse and human, suggesting that these modification sites are important for collagen IV function. Collectively, these are the first comprehensive maps of hydroxylation and glycosylation sites in collagen IV, which lay the foundation for dissecting the key role of these modifications in health and disease.
Collapse
Affiliation(s)
- Trayambak Basak
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Lorenzo Vega-Montoto
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Lisa J Zimmerman
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - David L Tabb
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Billy G Hudson
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Roberto M Vanacore
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| |
Collapse
|
29
|
Mao M, Alavi MV, Labelle-Dumais C, Gould DB. Type IV Collagens and Basement Membrane Diseases. CURRENT TOPICS IN MEMBRANES 2015; 76:61-116. [DOI: 10.1016/bs.ctm.2015.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|