1
|
Liu RY, Zhang Y, Smolen P, Cleary LJ, Byrne JH. Defective synaptic plasticity in a model of Coffin-Lowry syndrome is rescued by simultaneously targeting PKA and MAPK pathways. Learn Mem 2022; 29:435-446. [PMID: 36446603 PMCID: PMC9749851 DOI: 10.1101/lm.053625.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022]
Abstract
Empirical and computational methods were combined to examine whether individual or dual-drug treatments can restore the deficit in long-term synaptic facilitation (LTF) of the Aplysia sensorimotor synapse observed in a cellular model of Coffin-Lowry syndrome (CLS). The model was produced by pharmacological inhibition of p90 ribosomal S6 kinase (RSK) activity. In this model, coapplication of an activator of the mitogen-activated protein kinase (MAPK) isoform ERK and an activator of protein kinase A (PKA) resulted in enhanced phosphorylation of RSK and enhanced LTF to a greater extent than either drug alone and also greater than their additive effects, which is termed synergism. The extent of synergism appeared to depend on another MAPK isoform, p38 MAPK. Inhibition of p38 MAPK facilitated serotonin (5-HT)-induced RSK phosphorylation, indicating that p38 MAPK inhibits activation of RSK. Inhibition of p38 MAPK combined with activation of PKA synergistically activated both ERK and RSK. Our results suggest that cellular models of disorders that affect synaptic plasticity and learning, such as CLS, may constitute a useful strategy to identify candidate drug combinations, and that combining computational models with empirical tests of model predictions can help explain synergism of drug combinations.
Collapse
Affiliation(s)
- Rong-Yu Liu
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Yili Zhang
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Leonard J Cleary
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
2
|
Park SW, Jun YW, Choi HE, Lee JA, Jang DJ. Deciphering the molecular mechanisms underlying the plasma membrane targeting of PRMT8. BMB Rep 2020. [PMID: 30670150 PMCID: PMC6827574 DOI: 10.5483/bmbrep.2019.52.10.272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arginine methylation plays crucial roles in many cellular functions including signal transduction, RNA transcription, and regulation of gene expression. Protein arginine methyltransferase 8 (PRMT8), a unique brain-specific protein, is localized to the plasma membrane. However, the detailed molecular mechanisms underlying PRMT8 plasma membrane targeting remain unclear. Here, we demonstrate that the N-terminal 20 amino acids of PRMT8 are sufficient for plasma membrane localization and that oligomerization enhances membrane localization. The basic amino acids, combined with myristoylation within the N-terminal 20 amino acids of PRMT8, are critical for plasma membrane targeting. We also found that substituting Gly-2 with Ala [PRMT8(G2A)] or Cys-9 with Ser [PRMT8(C9S)] induces the formation of punctate structures in the cytosol or patch-like plasma membrane localization, respectively. Impairment of PRMT8 oligomerization/dimerization by Cterminal deletion induces PRMT8 mis-localization to the mitochondria, prevents the formation of punctate structures by PRMT8(G2A), and inhibits PRMT8(C9S) patch-like plasma membrane localization. Overall, these results suggest that oligomerization/dimerization plays several roles in inducing the efficient and specific plasma membrane localization of PRMT8. [BMB Reports 2019; 52(10): 601-606].
Collapse
Affiliation(s)
- Sang-Won Park
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| | - Yong-Woo Jun
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| | - Ha-Eun Choi
- Department of Biological Science and Biotechnology, College of Life Science and Nano Technology, Hannam University, Daejeon 34054, Korea
| | - Jin-A Lee
- Department of Biological Science and Biotechnology, College of Life Science and Nano Technology, Hannam University, Daejeon 34054, Korea
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| |
Collapse
|
3
|
Park SW, Jeon P, Jun YW, Park JH, Lee SH, Lee S, Lee JA, Jang DJ. Monitoring LC3- or GABARAP-positive autophagic membranes using modified RavZ-based probes. Sci Rep 2019; 9:16593. [PMID: 31719622 PMCID: PMC6851389 DOI: 10.1038/s41598-019-53372-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/25/2019] [Indexed: 11/27/2022] Open
Abstract
Xenophagy is a selective lysosomal degradation pathway for invading pathogens in host cells. However, invading bacteria also develop survival mechanisms to inhibit host autophagy. RavZ is a protein secreted by Legionella that irreversibly delipidates mammalian autophagy-related protein 8 (mATG8) on autophagic membranes in host cells via efficient autophagic membrane targeting. In this study, we leveraged the autophagic membrane-targeting mechanism of RavZ and generated a new autophagosome probe by replacing the catalytic domain of RavZ with GFP. This probe is efficiently localized to mATG8-positive autophagic membranes via a synergistic combination between mATG8 protein-binding mediated by the LC3-interacting region (LIR) motifs and phosphoinositide-3-phosphate (PI3P) binding mediated by the membrane-targeting (MT) domain. Furthermore, the membrane association activity of this new probe with an MT domain was more efficient than that of probes with a hydrophobic domain that were previously used in LIR-based autophagosome sensors. Finally, by substituting the LIR motifs of RavZ with selective LIR motifs from Fyco1 or ULK2, we developed new probes for detecting LC3A/B- or GABARAP subfamily-positive autophagic membranes, respectively. We propose that these new RavZ-based sensors will be useful for monitoring and studying the function of mATG8-positive autophagic membranes in different cellular contexts for autophagy research.
Collapse
Affiliation(s)
- Sang-Won Park
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, 2559, Gyeongsang-daero, Sangju-si, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Pureum Jeon
- Department of Biological Science and Biotechnology, College of Life Science and Nano Technology, Hannam University, 1646, Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Yong-Woo Jun
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, 2559, Gyeongsang-daero, Sangju-si, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Ju-Hui Park
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, 2559, Gyeongsang-daero, Sangju-si, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Seung-Hwan Lee
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, 2559, Gyeongsang-daero, Sangju-si, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Sangkyu Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Jin-A Lee
- Department of Biological Science and Biotechnology, College of Life Science and Nano Technology, Hannam University, 1646, Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, 2559, Gyeongsang-daero, Sangju-si, Gyeongsangbuk-do, 37224, Republic of Korea.
| |
Collapse
|
4
|
Jun YW, Lee JA, Jang DJ. Novel GFP-fused protein probes for detecting phosphatidylinositol-4-phosphate in the plasma membrane. Anim Cells Syst (Seoul) 2019; 23:164-169. [PMID: 31231579 PMCID: PMC6567041 DOI: 10.1080/19768354.2019.1599424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022] Open
Abstract
Phosphatidylinositol-4-phosphate (PI4P) plays a crucial role in cellular functions, including protein trafficking, and is mainly located in the cytoplasmic surface of intracellular membranes, which include the trans-Golgi network (TGN) and the plasma membrane. However, many PI4P-binding domains of membrane-associated proteins are localized only to the TGN because of the requirement of a second binding protein such as ADP-ribosylation factor 1 (ARF1) in order to be stably localized to the specific membrane. In this study, we developed new probes that were capable of detecting PI4P at the plasma membrane using the known TGN-targeting PI4P-binding domains. The PI4P-specific binding pleckstrin homology (PH) domain of various proteins including CERT, OSBP, OSH1, and FAPP1 was combined with the N-terminal moderately hydrophobic domain of the short-form of Aplysia phosphodiesterase 4 (S(N30)), which aids in plasma membrane association but cannot alone facilitate this association. As a result, we found that the addition of S(N30) to the N-terminus of the GFP-fused PH domain of OSBP (S(N30)-GFP-OSBP-PH), OSH1 (S(N30)-GFP-OSH1-PH), or FAPP1 (S(N30)-GFP-FAPP1-PH) could induce plasma membrane localization, as well as retain TGN localization. The plasma membrane localization of S(N30)-GFP-FAPP1-PH is mediated by PI4P binding only, whereas those of S(N30)-GFP-OSBP-PH and S(N30)-GFP-OSH1-PH are mediated by either PI4P or PI(4,5)P2 binding. Taken together, we developed new probes that detect PI4P at the plasma membrane using a combination of a moderately hydrophobic domain with the known TGN-targeting PI4P-specific binding PH domain.
Collapse
Affiliation(s)
- Yong-Woo Jun
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju-si, Republic of Korea
| | - Jin-A Lee
- Department of Biological Science and Biotechnology, College of Life Science and Nano Technology, Hannam University, Daejeon, Republic of Korea
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju-si, Republic of Korea
| |
Collapse
|
5
|
Jun YW, Lee JA, Kaang BK, Jang DJ. PI4KII activity-dependent Golgi complex targeting of Aplysia phosphodiesterase 4 long-form mutant. Anim Cells Syst (Seoul) 2017. [DOI: 10.1080/19768354.2017.1371073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yong-Woo Jun
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju-si, Republic of Korea
| | - Jin-A Lee
- Department of Biotechnology and Biological Science, College of Life Science and Nanotechnology, Hannam University, Daejeon, Republic of Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju-si, Republic of Korea
| |
Collapse
|
6
|
Lee YK, Jun YW, Choi HE, Huh YH, Kaang BK, Jang DJ, Lee JA. Development of LC3/GABARAP sensors containing a LIR and a hydrophobic domain to monitor autophagy. EMBO J 2017; 36:1100-1116. [PMID: 28320742 DOI: 10.15252/embj.201696315] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 01/07/2023] Open
Abstract
Macroautophagy allows for bulk degradation of cytosolic components in lysosomes. Overexpression of GFP/RFP-LC3/GABARAP is commonly used to monitor autophagosomes, a hallmark of autophagy, despite artifacts related to their overexpression. Here, we developed new sensors that detect endogenous LC3/GABARAP proteins at the autophagosome using an LC3-interacting region (LIR) and a short hydrophobic domain (HyD). Among HyD-LIR-GFP sensors harboring LIR motifs of 34 known LC3-binding proteins, HyD-LIR(TP)-GFP using the LIR motif from TP53INP2 allowed detection of all LC3/GABARAPs-positive autophagosomes. However, HyD-LIR(TP)-GFP preferentially localized to GABARAP/GABARAPL1-positive autophagosomes in a LIR-dependent manner. In contrast, HyD-LIR(Fy)-GFP using the LIR motif from FYCO1 specifically detected LC3A/B-positive autophagosomes. HyD-LIR(TP)-GFP and HyD-LIR(Fy)-GFP efficiently localized to autophagosomes in the presence of endogenous LC3/GABARAP levels and without affecting autophagic flux. Both sensors also efficiently localized to MitoTracker-positive damaged mitochondria upon mitophagy induction. HyD-LIR(TP)-GFP allowed live-imaging of dynamic autophagosomes upon autophagy induction. These novel autophagosome sensors can thus be widely used in autophagy research.
Collapse
Affiliation(s)
- You-Kyung Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Yong-Woo Jun
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju, Korea
| | - Ha-Eun Choi
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Daejeon, Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju, Korea
| | - Jin-A Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| |
Collapse
|
7
|
Jang DJ, Jun YW, Shim J, Sim SE, Lee JA, Lim CS, Kaang BK. Activation of Aplysia ARF6 induces neurite outgrowth and is sequestered by the overexpression of the PH domain of Aplysia Sec7 proteins. Neurobiol Learn Mem 2017; 138:31-38. [DOI: 10.1016/j.nlm.2016.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
|
8
|
Jun YW, Lee YK, Lee JA, Kaang BK, Jang DJ. Distinct regulations of ARF1 by two Aplysia Sec7 isoforms. Anim Cells Syst (Seoul) 2017; 21:10-16. [PMID: 30460046 DOI: 10.1080/19768354.2016.1276025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022] Open
Abstract
Sec7 protein is a guanine nucleotide exchange factor in the ADP-ribosylation factor (ARF) family of small GTP-binding proteins. Aplysia Sec7 proteins (ApSec7s) play many roles in neurite outgrowth and synaptic facilitation in Aplysia neurons. However, the binding property of Aplysia ARF1 by ApSec7 isoforms has not been examined. In this study, we found that the cloned Aplysia ARF1 (ApARF1) protein only localized to the Golgi complex when it was expressed alone in HEK293T cells; however, if ApARF1 was co-expressed with plasma membrane-targeted ApSec7, it localized to both the plasma membrane and the Golgi complex via association with the Sec7 domain of ApSec7. Moreover, in HEK293T cells expressing both ApARF1 and another Sec7 isoform, ApSec7(VPKIS), the pleckstrin homology domain of ApSec7(VPKIS) associated with ApARF1, resulting in its localization to the Golgi complex. Overall, we propose a model in which ApSec7(VPKIS) activates ApARF1 in the Golgi complex, while ApSec7 recruits ApARF1 to the plasma membrane where it activates ApARF1/6 downstream signaling.
Collapse
Affiliation(s)
- Yong-Woo Jun
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, Republic of Korea
| | - Yu-Kyung Lee
- Department of Biotechnology and Biological Science, College of Life Science and Nanotechnology, Hannam University, Daejeon, Yuseong-gu, Republic of Korea
| | - Jin-A Lee
- Department of Biotechnology and Biological Science, College of Life Science and Nanotechnology, Hannam University, Daejeon, Yuseong-gu, Republic of Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Gwanak-gu, Republic of Korea
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
9
|
Jun YW, Lee SH, Shim J, Lee JA, Lim CS, Kaang BK, Jang DJ. Dual roles of the N-terminal coiled-coil domain of anAplysiasec7 protein: homodimer formation and nuclear export. J Neurochem 2016; 139:1102-1112. [DOI: 10.1111/jnc.13875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/13/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Yong-Woo Jun
- Department of Ecological Science; College of Ecology and Environment; Kyungpook National University; Sangju-si Gyeongsangbuk-do Korea
| | - Seung-Hee Lee
- Department of Biological Sciences; Korea Institute of Science and Technology (KAIST); Daejeon Korea
| | - Jaehoon Shim
- Department of Biological Sciences; College of Natural Sciences; Seoul National University; Gwanak-gu Seoul Korea
| | - Jin-A Lee
- Department of Biotechnology and Biological Science; College of Life Science and Nano Technology; Hannam University; Yuseong-daero; Yuseong-gu Daejeon Korea
| | - Chae-Seok Lim
- Department of Biological Sciences; College of Natural Sciences; Seoul National University; Gwanak-gu Seoul Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences; College of Natural Sciences; Seoul National University; Gwanak-gu Seoul Korea
| | - Deok-Jin Jang
- Department of Ecological Science; College of Ecology and Environment; Kyungpook National University; Sangju-si Gyeongsangbuk-do Korea
| |
Collapse
|
10
|
Jang DJ, Lee JA. The roles of phosphoinositides in mammalian autophagy. Arch Pharm Res 2016; 39:1129-36. [PMID: 27350551 DOI: 10.1007/s12272-016-0777-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/14/2016] [Indexed: 01/01/2023]
Abstract
Autophagy is an evolutionarily conserved cellular process for lysosomal degradation, which is involved in various physiological processes within cells. Its dysfunction is associated with many human diseases, such as cancer, liver diseases, heart diseases, and infectious diseases, including neurodegenerative diseases. Autophagy involves the formation of a double-membrane bound autophagosome and the degradation of cytosolic components via its fusion and maturation with the lysosome. One of the most important steps in the process of autophagy is membrane biogenesis during autophagosome formation/maturation from different membrane sources within cells. However, there is limited knowledge regarding: (1) how the core autophagy machinery is recruited to the initial site to initiate the formation of the isolation membrane and (2) how the autophagosome matures into the functional autolysosome. Lipid supply for nucleation/elongation of the autophagosome has been proposed as one possible mechanism. Accumulating evidence suggests the important role of phosphoinositides as phospholipids, which represent key membrane-localized signals in the regulation of fundamental cellular processes, in autophagosome formation and maturation. This review focuses on how phosphoinositides influence autophagy induction or autophagosome biogenesis/maturation, because the way they are altered by autophagy might contribute to the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Deok-Jin Jang
- Department of Applied Biology, College of Ecology and Environment, Kyungpook National University, Sangju, Republic of Korea
| | - Jin-A Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Ko HG, Kim JI, Sim SE, Kim T, Yoo J, Choi SL, Baek SH, Yu WJ, Yoon JB, Sacktor TC, Kaang BK. The role of nuclear PKMζ in memory maintenance. Neurobiol Learn Mem 2016; 135:50-56. [PMID: 27321162 DOI: 10.1016/j.nlm.2016.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
Recently, protein kinase M ζ (PKMζ) has emerged as an important player for maintaining memory. It has been reported that PKMζ regulates the trafficking of GluA2 in postsynaptic membranes to maintain memory. However, there has been no study on PKMζ outside the synaptic region regarding memory maintenance. Here, we found that PKMζ is transported to the nucleus in a neural activity-dependent manner. Moreover, we found that PKMζ phosphorylates CREB-binding protein (CBP) at serine residues and that PKMζ inhibition reduces the acetylation of histone H2B and H3. Finally, we showed that the amnesic effect of PKMζ inhibition can be rescued by enhancing histone acetylation level. These results suggest the possibility that nuclear PKMζ has a crucial role in memory maintenance.
Collapse
Affiliation(s)
- Hyoung-Gon Ko
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Ji-Il Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Su-Eon Sim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - TaeHyun Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Juyoun Yoo
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sun-Lim Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sung Hee Baek
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Won-Jin Yu
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jong-Bok Yoon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Todd Charlton Sacktor
- Departments of Physiology and Pharmacology, Anesthesiology, and Neurology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Bong-Kiun Kaang
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
12
|
Jun YW, Park H, Lee YK, Kaang BK, Lee JA, Jang DJ. D-AKAP1a is a signal-anchored protein in the mitochondrial outer membrane. FEBS Lett 2016; 590:954-61. [PMID: 26950402 DOI: 10.1002/1873-3468.12123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 03/03/2016] [Indexed: 11/08/2022]
Abstract
Dual A-kinase anchoring protein 1a (D-AKAP1a, AKAP1) regulates cAMP signaling in mitochondria. However, it is not clear how D-AKAP1a is associated with mitochondria. In this study, we show that D-AKAP1a is a transmembrane protein in the mitochondrial outer membrane (MOM). We revealed that the N-terminus of D-AKAP1a is exposed to the intermembrane space of mitochondria and that its C-terminus is located on the cytoplasmic side of the MOM. Moderate hydrophobicity and the positively charged flanking residues of the transmembrane domain of D-AKAP1a were important for targeting. Taken together, D-AKAP1a can be classified as a signal-anchored protein in the MOM. Our topological study provides valuable information about the molecular and cellular mechanisms of mitochondrial targeting of AKAP1.
Collapse
Affiliation(s)
- Yong-Woo Jun
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, Korea
| | - Heeju Park
- Department of Applied Biology, College of Ecology and Environment, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, Korea
| | - You-Kyung Lee
- Department of Biological Science and Biotechnology, College of Life Science and Nano Technology, Hannam University, Yuseong-gu, Daejeon, Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Jin-A Lee
- Department of Biological Science and Biotechnology, College of Life Science and Nano Technology, Hannam University, Yuseong-gu, Daejeon, Korea
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, Korea.,Department of Applied Biology, College of Ecology and Environment, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, Korea
| |
Collapse
|
13
|
Um SM, Jun YW, Kim KH, Lee JA, Jang DJ. Analysis of molecular mechanism of cellular localization of various N-terminal mutants of Aplysia PDE4 in HEK293T cells. ANALYTICAL SCIENCE AND TECHNOLOGY 2016. [DOI: 10.5806/ast.2016.29.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Protein-protein interactions of PDE4 family members - Functions, interactions and therapeutic value. Cell Signal 2015; 28:713-8. [PMID: 26498857 DOI: 10.1016/j.cellsig.2015.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/18/2015] [Indexed: 12/16/2022]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) is ubiquitous and directs a plethora of functions in all cells. Although theoretically freely diffusible through the cell from the site of its synthesis it is not evenly distributed. It rather is shaped into gradients and these gradients are established by phospodiesterases (PDEs), the only enzymes that hydrolyse cAMP and thereby terminate cAMP signalling upstream of cAMP's effector systems. Miles D. Houslay has devoted most of his scientific life highly successfully to a particular family of PDEs, the PDE4 family. The family is encoded by four genes and gives rise to around 20 enzymes, all with different functions. M. Houslay has discovered many of these functions and realised early on that PDE4 family enzymes are attractive drug targets in a variety of human diseases, but not their catalytic activity as that is encoded in conserved domains in all family members. He postulated that targeting the intracellular location would provide the specificity that modern innovative drugs require to improve disease conditions with fewer side effects than conventional drugs. Due to the wealth of M. Houslay's work, this article can only summarize some of his discoveries and, therefore, focuses on protein-protein interactions of PDE4. The aim is to discuss functions of selected protein-protein interactions and peptide spot technology, which M. Houslay introduced into the PDE4 field for identifying interacting domains. The therapeutic potential of PDE4 interactions will also be discussed.
Collapse
|
15
|
Jang DJ, Kim HF, Sim JH, Lim CS, Kaang BK. Specific Expression of Aplysia Phosphodiesterase 4 in Bag Cells Revealed by in situ Hybridization Analysis. Exp Neurobiol 2015; 24:246-51. [PMID: 26412974 PMCID: PMC4580752 DOI: 10.5607/en.2015.24.3.246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/20/2015] [Accepted: 07/31/2015] [Indexed: 11/19/2022] Open
Abstract
Phosphodiesterases (PDEs) play a key role in the regulation of cyclic adenosine monophosphate (cAMP), which in turn mediates various cellular functions including learning and memory. We previously cloned and characterized three PDE4 isoforms (ApPDE4) from Aplysia kurodai. Using reverse transcription polymerase chain reaction (RT-PCR), we found that ApPDE4 isoforms are primarily expressed in the central nervous system. However, the detailed distribution of ApPDE4 mRNA in Aplysia individual ganglions was not evident. In this study, to determine the distribution of ApPDE4 mRNAs in Aplysia ganglions, we performed in situ hybridization (ISH) using a probe targeting ApPDE4, including the PDE catalytic domain. Interestingly, we found the strongest ISH-positive signals in the symmetrical bag cell clusters of the abdominal ganglion. The R2, R14, L7, L2 and L11 neurons in the abdominal ganglion, LP1 neuron in pleural ganglion, and metacerebral (MCC) neurons were ISH-positive. Mechanosensory neurons of the sensory cluster were also stained on the ventral aspect of the right and left pleural ganglia. Taken together, we found the detailed distribution of ApPDE4 mRNA in Aplysia ganglion and support their roles in serotonin (5-HT)-induced synaptic facilitation of Aplysia mechanosensory neurons.
Collapse
Affiliation(s)
- Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| | - Hyoung F Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Jae-Hoon Sim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Chae-Seok Lim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
16
|
Jun YW, Lee JA, Jang DJ. Development of intracellular organelle markers using modified glycolipid-binding peptides in mammalian cells. ANALYTICAL SCIENCE AND TECHNOLOGY 2015. [DOI: 10.5806/ast.2015.28.1.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Jun YW, Kim S, Kim KH, Lee JA, Lim CS, Chang I, Suh BC, Kaang BK, Jang DJ. Analysis of phosphoinositide-binding properties and subcellular localization of GFP-fusion proteins. Lipids 2015; 50:427-36. [PMID: 25688026 DOI: 10.1007/s11745-015-3994-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/01/2015] [Indexed: 11/26/2022]
Abstract
Specific protein-phosphoinositide (PI) interactions are known to play a key role in the targeting of proteins to specific cellular membranes. Investigation of these interactions would be greatly facilitated if GFP-fusion proteins expressed in mammalian cells and used for their subcellular localization could also be employed for in vitro lipid binding. In this study, we found that lysates of cells overexpressing GFP-fusion proteins could be used for in vitro protein-PI binding assays. We applied this approach to examine the PI-binding properties of Aplysia Sec7 protein (ApSec7) and its isoform ApSec7(VPKIS), in which a VPKIS sequence is inserted into the PH domain of ApSec7. EGFP-ApSec7 but not EGFP-ApSec7(VPKIS) did specifically bind to PI(3,4,5)P3 in an in vitro lipid-coated bead assay. Overexpression of EGFP-ApSec7 but not EGFP-ApSec7(VPKIS) did induce neurite outgrowth in Aplysia sensory neurons. Structure modeling analysis revealed that the inserted VPKIS caused misfolding around the PI(3,4,5)P3-binding pocket of ApSec7 and disturbed the binding of PI(3,4,5)P3 to the pleckstrin homology (PH) domain. Our data indicate that plasma membrane localization of EGFP-ApSec7 via the interaction between its PH domain and PI(3,4,5)P3 might play a key role in neurite outgrowth in Aplysia.
Collapse
Affiliation(s)
- Yong-Woo Jun
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sang-ju, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|