1
|
Lim B, Xu J, Wierzbicki IH, Gonzalez CG, Chen Z, Gonzalez DJ, Gao X, Goodman AL. A human gut bacterium antagonizes neighboring bacteria by altering their protein-folding ability. Cell Host Microbe 2025:S1931-3128(25)00026-5. [PMID: 39909037 DOI: 10.1016/j.chom.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
Antagonistic interactions play a key role in determining microbial community dynamics. Here, we report that one of the most widespread contact-dependent effectors in human gut microbiomes, Bte1, directly targets the PpiD-YfgM periplasmic chaperone complex in related microbes. Structural, biochemical, and genetic characterization of this interaction reveals that Bte1 reverses the activity of the chaperone complex, promoting substrate aggregation and toxicity. Using Bacteroides, we show that Bte1 is active in the mammalian gut, conferring a fitness advantage to expressing strains. Recipient cells targeted by Bte1 exhibit sensitivity to membrane-compromising conditions, and human gut microbes can use this effector to exploit pathogen-induced inflammation in the gut. Further, Bte1 allelic variation in gut metagenomes provides evidence for an arms race between Bte1-encoding and immunity-encoding strains in humans. Together, these studies demonstrate that human gut microbes alter the protein-folding capacity of neighboring cells and suggest strategies for manipulating community dynamics.
Collapse
Affiliation(s)
- Bentley Lim
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Jinghua Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Igor H Wierzbicki
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, Center of Microbiome Innovation, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Carlos G Gonzalez
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, Center of Microbiome Innovation, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Zhe Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - David J Gonzalez
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, Center of Microbiome Innovation, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
2
|
Combs AN, Silhavy TJ. Periplasmic Chaperones: Outer Membrane Biogenesis and Envelope Stress. Annu Rev Microbiol 2024; 78:191-211. [PMID: 39008906 DOI: 10.1146/annurev-micro-041522-102901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Envelope biogenesis and homeostasis in gram-negative bacteria are exceptionally intricate processes that require a multitude of periplasmic chaperones to ensure cellular survival. Remarkably, these chaperones perform diverse yet specialized functions entirely in the absence of external energy such as ATP, and as such have evolved sophisticated mechanisms by which their activities are regulated. In this article, we provide an overview of the predominant periplasmic chaperones that enable efficient outer membrane biogenesis and envelope homeostasis in Escherichia coli. We also discuss stress responses that act to combat unfolded protein stress within the cell envelope, highlighting the periplasmic chaperones involved and the mechanisms by which envelope homeostasis is restored.
Collapse
Affiliation(s)
- Ashton N Combs
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA;
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA;
| |
Collapse
|
3
|
Devlin T, Fleming KG. A team of chaperones play to win in the bacterial periplasm. Trends Biochem Sci 2024; 49:667-680. [PMID: 38677921 DOI: 10.1016/j.tibs.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024]
Abstract
The survival and virulence of Gram-negative bacteria require proper biogenesis and maintenance of the outer membrane (OM), which is densely packed with β-barrel OM proteins (OMPs). Before reaching the OM, precursor unfolded OMPs (uOMPs) must cross the whole cell envelope. A network of periplasmic chaperones and proteases maintains unfolded but folding-competent conformations of these membrane proteins in the aqueous periplasm while simultaneously preventing off-pathway aggregation. These periplasmic proteins utilize different strategies, including conformational heterogeneity, oligomerization, multivalency, and kinetic partitioning, to perform and regulate their functions. Redundant and unique characteristics of the individual periplasmic players synergize to create a protein quality control team capable responding to changing environmental stresses.
Collapse
Affiliation(s)
- Taylor Devlin
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
4
|
Miyazaki R, Ai M, Tanaka N, Suzuki T, Dhomae N, Tsukazaki T, Akiyama Y, Mori H. Inner membrane YfgM–PpiD heterodimer acts as a functional unit that associates with the SecY/E/G translocon and promotes protein translocation. J Biol Chem 2022; 298:102572. [PMID: 36209828 PMCID: PMC9643414 DOI: 10.1016/j.jbc.2022.102572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
PpiD and YfgM are inner membrane proteins that are both composed of an N-terminal transmembrane segment and a C-terminal periplasmic domain. Escherichia coli YfgM and PpiD form a stable complex that interacts with the SecY/E/G (Sec) translocon, a channel that allows protein translocation across the cytoplasmic membrane. Although PpiD is known to function in protein translocation, the functional significance of PpiD–YfgM complex formation as well as the molecular mechanisms of PpiD–YfgM and PpiD/YfgM–Sec translocon interactions remain unclear. Here, we conducted genetic and biochemical studies using yfgM and ppiD mutants and demonstrated that a lack of YfgM caused partial PpiD degradation at its C-terminal region and hindered the membrane translocation of Vibrio protein export monitoring polypeptide (VemP), a Vibrio secretory protein, in both E. coli and Vibrio alginolyticus. While ppiD disruption also impaired VemP translocation, we found that the yfgM and ppiD double deletion exhibited no additive or synergistic effects. Together, these results strongly suggest that both PpiD and YfgM are required for efficient VemP translocation. Furthermore, our site-directed in vivo photocrosslinking analysis revealed that the tetratricopeptide repeat domain of YfgM and a conserved structural domain (NC domain) in PpiD interact with each other and that YfgM, like PpiD, directly interacts with the SecG translocon subunit. Crosslinking analysis also suggested that PpiD–YfgM complex formation is required for these proteins to interact with SecG. In summary, we propose that PpiD and YfgM form a functional unit that stimulates protein translocation by facilitating their proper interactions with the Sec translocon.
Collapse
Affiliation(s)
- Ryoji Miyazaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Mengting Ai
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Natsuko Tanaka
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Naoshi Dhomae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Tomoya Tsukazaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yoshinori Akiyama
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Mori
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Papadopoulos A, Busch M, Reiners J, Hachani E, Baeumers M, Berger J, Schmitt L, Jaeger KE, Kovacic F, Smits SHJ, Kedrov A. The periplasmic chaperone Skp prevents misfolding of the secretory lipase A from Pseudomonas aeruginosa. Front Mol Biosci 2022; 9:1026724. [DOI: 10.3389/fmolb.2022.1026724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a wide-spread opportunistic human pathogen and a high-risk factor for immunodeficient people and patients with cystic fibrosis. The extracellular lipase A belongs to the virulence factors of P. aeruginosa. Prior to the secretion, the lipase undergoes folding and activation by the periplasmic foldase LipH. At this stage, the enzyme is highly prone to aggregation in mild and high salt concentrations typical for the sputum of cystic fibrosis patients. Here, we demonstrate that the periplasmic chaperone Skp of P. aeruginosa efficiently prevents misfolding of the lipase A in vitro. In vivo experiments in P. aeruginosa show that the lipase secretion is nearly abolished in absence of the endogenous Skp. Small-angle X-ray scattering elucidates the trimeric architecture of P. aeruginosa Skp and identifies two primary conformations of the chaperone, a compact and a widely open. We describe two binding modes of Skp to the lipase, with affinities of 20 nM and 2 μM, which correspond to 1:1 and 1:2 stoichiometry of the lipase:Skp complex. Two Skp trimers are required to stabilize the lipase via the apolar interactions, which are not affected by elevated salt concentrations. We propose that Skp is a crucial chaperone along the lipase maturation and secretion pathway that ensures stabilization and carry-over of the client to LipH.
Collapse
|
6
|
Gao M, Nakajima An D, Skolnick J. Deep learning-driven insights into super protein complexes for outer membrane protein biogenesis in bacteria. eLife 2022; 11:82885. [PMID: 36576775 PMCID: PMC9797188 DOI: 10.7554/elife.82885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/28/2022] [Indexed: 12/29/2022] Open
Abstract
To reach their final destinations, outer membrane proteins (OMPs) of gram-negative bacteria undertake an eventful journey beginning in the cytosol. Multiple molecular machines, chaperones, proteases, and other enzymes facilitate the translocation and assembly of OMPs. These helpers usually associate, often transiently, forming large protein assemblies. They are not well understood due to experimental challenges in capturing and characterizing protein-protein interactions (PPIs), especially transient ones. Using AF2Complex, we introduce a high-throughput, deep learning pipeline to identify PPIs within the Escherichia coli cell envelope and apply it to several proteins from an OMP biogenesis pathway. Among the top confident hits obtained from screening ~1500 envelope proteins, we find not only expected interactions but also unexpected ones with profound implications. Subsequently, we predict atomic structures for these protein complexes. These structures, typically of high confidence, explain experimental observations and lead to mechanistic hypotheses for how a chaperone assists a nascent, precursor OMP emerging from a translocon, how another chaperone prevents it from aggregating and docks to a β-barrel assembly port, and how a protease performs quality control. This work presents a general strategy for investigating biological pathways by using structural insights gained from deep learning-based predictions.
Collapse
Affiliation(s)
- Mu Gao
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Davi Nakajima An
- School of Computer Science, Georgia Institute of TechnologyAtlantaUnited States
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
7
|
Czolkoss S, Safronov X, Rexroth S, Knoke LR, Aktas M, Narberhaus F. Agrobacterium tumefaciens Type IV and Type VI Secretion Systems Reside in Detergent-Resistant Membranes. Front Microbiol 2021; 12:754486. [PMID: 34899640 PMCID: PMC8656257 DOI: 10.3389/fmicb.2021.754486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cell membranes are not homogenous but compartmentalized into lateral microdomains, which are considered as biochemical reaction centers for various physiological processes in eukaryotes and prokaryotes. Due to their special lipid and protein composition, some of these microdomains are resistant to treatment with non-ionic detergents and can be purified as detergent-resistant membranes (DRMs). Here we report the proteome of DRMs from the Gram-negative phytopathogen Agrobacterium tumefaciens. Using label-free liquid chromatography-tandem mass spectrometry, we identified proteins enriched in DRMs isolated under normal and virulence-mimicking growth conditions. Prominent microdomain marker proteins such as the SPFH (stomatin/prohibitin/flotillin/HflKC) proteins HflK, HflC and Atu3772, along with the protease FtsH were highly enriched in DRMs isolated under any given condition. Moreover, proteins involved in cell envelope biogenesis, transport and secretion, as well as motility- and chemotaxis-associated proteins were overrepresented in DRMs. Most strikingly, we found virulence-associated proteins such as the VirA/VirG two-component system, and the membrane-spanning type IV and type VI secretion systems enriched in DRMs. Fluorescence microscopy of the cellular localization of both secretion systems and of marker proteins was in agreement with the results from the proteomics approach. These findings suggest that virulence traits are micro-compartmentalized into functional microdomains in A. tumefaciens.
Collapse
Affiliation(s)
- Simon Czolkoss
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Xenia Safronov
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Sascha Rexroth
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Lisa R Knoke
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Meriyem Aktas
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Franz Narberhaus
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
8
|
Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. The Dynamic SecYEG Translocon. Front Mol Biosci 2021; 8:664241. [PMID: 33937339 PMCID: PMC8082313 DOI: 10.3389/fmolb.2021.664241] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal coordination of protein transport is an essential cornerstone of the bacterial adaptation to different environmental conditions. By adjusting the protein composition of extra-cytosolic compartments, like the inner and outer membranes or the periplasmic space, protein transport mechanisms help shaping protein homeostasis in response to various metabolic cues. The universally conserved SecYEG translocon acts at the center of bacterial protein transport and mediates the translocation of newly synthesized proteins into and across the cytoplasmic membrane. The ability of the SecYEG translocon to transport an enormous variety of different substrates is in part determined by its ability to interact with multiple targeting factors, chaperones and accessory proteins. These interactions are crucial for the assisted passage of newly synthesized proteins from the cytosol into the different bacterial compartments. In this review, we summarize the current knowledge about SecYEG-mediated protein transport, primarily in the model organism Escherichia coli, and describe the dynamic interaction of the SecYEG translocon with its multiple partner proteins. We furthermore highlight how protein transport is regulated and explore recent developments in using the SecYEG translocon as an antimicrobial target.
Collapse
Affiliation(s)
- Julia Oswald
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Robert Njenga
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Genetic Evidence for SecY Translocon-Mediated Import of Two Contact-Dependent Growth Inhibition (CDI) Toxins. mBio 2021; 12:mBio.03367-20. [PMID: 33531386 PMCID: PMC7858069 DOI: 10.1128/mbio.03367-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many bacterial species interact via direct cell-to-cell contact using CDI systems, which provide a mechanism to inject toxins that inhibit bacterial growth into one another. Here, we find that two CDI toxins, one that depolarizes membranes and another that degrades RNA, exploit the universally conserved SecY translocon machinery used to export proteins for target cell entry. The C-terminal (CT) toxin domains of contact-dependent growth inhibition (CDI) CdiA proteins target Gram-negative bacteria and must breach both the outer and inner membranes of target cells to exert growth inhibitory activity. Here, we examine two CdiA-CT toxins that exploit the bacterial general protein secretion machinery after delivery into the periplasm. A Ser281Phe amino acid substitution in transmembrane segment 7 of SecY, the universally conserved channel-forming subunit of the Sec translocon, decreases the cytotoxicity of the membrane depolarizing orphan10 toxin from enterohemorrhagic Escherichia coli EC869. Target cells expressing secYS281F and lacking either PpiD or YfgM, two SecY auxiliary factors, are fully protected from CDI-mediated inhibition either by CdiA-CTo10EC869 or by CdiA-CTGN05224, the latter being an EndoU RNase CdiA toxin from Klebsiella aerogenes GN05224 that has a related cytoplasm entry domain. RNase activity of CdiA-CTGN05224 was reduced in secYS281F target cells and absent in secYS281F ΔppiD or secYS281F ΔyfgM target cells during competition co-cultures. Importantly, an allele-specific mutation in secY (secYG313W) renders ΔppiD or ΔyfgM target cells specifically resistant to CdiA-CTGN05224 but not to CdiA-CTo10EC869, further suggesting a direct interaction between SecY and the CDI toxins. Our results provide genetic evidence of a unique confluence between the primary cellular export route for unfolded polypeptides and the import pathways of two CDI toxins.
Collapse
|
10
|
Miyazaki R, Akiyama Y, Mori H. Fine interaction profiling of VemP and mechanisms responsible for its translocation-coupled arrest-cancelation. eLife 2020; 9:62623. [PMID: 33320090 PMCID: PMC7793623 DOI: 10.7554/elife.62623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
Bacterial cells utilize monitoring substrates, which undergo force-sensitive translation elongation arrest, to feedback-regulate a Sec-related gene. Vibrio alginolyticus VemP controls the expression of SecD/F that stimulates a late step of translocation by undergoing export-regulated elongation arrest. Here, we attempted at delineating the pathway of the VemP nascent-chain interaction with Sec-related factors, and identified the signal recognition particle (SRP) and PpiD (a membrane-anchored periplasmic chaperone) in addition to other translocon components and a ribosomal protein as interacting partners. Our results showed that SRP is required for the membrane-targeting of VemP, whereas PpiD acts cooperatively with SecD/F in the translocation and arrest-cancelation of VemP. We also identified the conserved Arg-85 residue of VemP as a crucial element that confers PpiD-dependence to VemP and plays an essential role in the regulated arrest-cancelation. We propose a scheme of the arrest-cancelation processes of VemP, which likely monitors late steps in the protein translocation pathway.
Collapse
Affiliation(s)
- Ryoji Miyazaki
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshinori Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Mori
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
SecY-mediated quality control prevents the translocation of non-gated porins. Sci Rep 2020; 10:16347. [PMID: 33004891 PMCID: PMC7530735 DOI: 10.1038/s41598-020-73185-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/09/2020] [Indexed: 01/24/2023] Open
Abstract
OmpC and OmpF are among the most abundant outer membrane proteins in E. coli and serve as hydrophilic channels to mediate uptake of small molecules including antibiotics. Influx selectivity is controlled by the so-called constriction zone or eyelet of the channel. Mutations in the loop domain forming the eyelet can disrupt transport selectivity and thereby interfere with bacterial viability. In this study we show that a highly conserved motif of five negatively charged amino acids in the eyelet, which is critical to regulate pore selectivity, is also required for SecY-mediated transport of OmpC and OmpF into the periplasm. Variants with a deleted or mutated motif were expressed in the cytosol and translocation was initiated. However, after signal peptide cleavage, import into the periplasm was aborted and the mutated proteins were redirected to the cytosol. Strikingly, reducing the proof-reading capacity of SecY by introducing the PrlA4 substitutions restored transport of OmpC with a mutated channel domain into the periplasm. Our study identified a SecY-mediated quality control pathway to restrict transport of outer membrane porin proteins with a deregulated channel activity into the periplasm.
Collapse
|
12
|
Jauss B, Petriman NA, Drepper F, Franz L, Sachelaru I, Welte T, Steinberg R, Warscheid B, Koch HG. Noncompetitive binding of PpiD and YidC to the SecYEG translocon expands the global view on the SecYEG interactome in Escherichia coli. J Biol Chem 2019; 294:19167-19183. [PMID: 31699901 DOI: 10.1074/jbc.ra119.010686] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
The SecYEG translocon constitutes the major protein transport channel in bacteria and transfers an enormous variety of different secretory and inner-membrane proteins. The minimal core of the SecYEG translocon consists of three inner-membrane proteins, SecY, SecE, and SecG, which, together with appropriate targeting factors, are sufficient for protein transport in vitro However, in vivo the SecYEG translocon has been shown to associate with multiple partner proteins, likely allowing the SecYEG translocon to process its diverse substrates. To obtain a global view on SecYEG plasticity in Escherichia coli, here we performed a quantitative interaction proteomic analysis, which identified several known SecYEG-interacting proteins, verified the interaction of SecYEG with quality-control proteins, and revealed several previously unknown putative SecYEG-interacting proteins. Surprisingly, we found that the chaperone complex PpiD/YfgM is the most prominent interaction partner of SecYEG. Detailed analyses of the PpiD-SecY interaction by site-directed cross-linking revealed that PpiD and the established SecY partner protein YidC use almost completely-overlapping binding sites on SecY. Both PpiD and YidC contacted the lateral gate, the plug domain, and the periplasmic cavity of SecY. However, quantitative MS and cross-linking analyses revealed that despite having almost identical binding sites, their binding to SecY is noncompetitive. This observation suggests that the SecYEG translocon forms different substrate-independent subassemblies in which SecYEG either associates with YidC or with the PpiD/YfgM complex. In summary, the results of this study indicate that the PpiD/YfgM chaperone complex is a primary interaction partner of the SecYEG translocon.
Collapse
Affiliation(s)
- Benjamin Jauss
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Narcis-Adrian Petriman
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Lisa Franz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Ilie Sachelaru
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Thomas Welte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Ruth Steinberg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
13
|
Kater L, Frieg B, Berninghausen O, Gohlke H, Beckmann R, Kedrov A. Partially inserted nascent chain unzips the lateral gate of the Sec translocon. EMBO Rep 2019; 20:e48191. [PMID: 31379073 PMCID: PMC6776908 DOI: 10.15252/embr.201948191] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022] Open
Abstract
The Sec translocon provides the lipid bilayer entry for ribosome-bound nascent chains and thus facilitates membrane protein biogenesis. Despite the appreciated role of the native environment in the translocon:ribosome assembly, structural information on the complex in the lipid membrane is scarce. Here, we present a cryo-electron microscopy-based structure of bacterial translocon SecYEG in lipid nanodiscs and elucidate an early intermediate state upon insertion of the FtsQ anchor domain. Insertion of the short nascent chain causes initial displacements within the lateral gate of the translocon, where α-helices 2b, 7, and 8 tilt within the membrane core to "unzip" the gate at the cytoplasmic side. Molecular dynamics simulations demonstrate that the conformational change is reversed in the absence of the ribosome, and suggest that the accessory α-helices of SecE subunit modulate the lateral gate conformation. Site-specific cross-linking validates that the FtsQ nascent chain passes the lateral gate upon insertion. The structure and the biochemical data suggest that the partially inserted nascent chain remains highly flexible until it acquires the transmembrane topology.
Collapse
Affiliation(s)
- Lukas Kater
- Gene Center MunichLudwig‐Maximilian‐UniversityMunichGermany
| | - Benedikt Frieg
- John von Neumann Institute for ComputingJülich Supercomputing CentreInstitute for Complex Systems ‐ Structural Biochemistry (ICS‐6)Forschungszentrum Jülich GmbHJülichGermany
| | | | - Holger Gohlke
- John von Neumann Institute for ComputingJülich Supercomputing CentreInstitute for Complex Systems ‐ Structural Biochemistry (ICS‐6)Forschungszentrum Jülich GmbHJülichGermany
- Institute for Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| | | | - Alexej Kedrov
- Gene Center MunichLudwig‐Maximilian‐UniversityMunichGermany
- Synthetic Membrane SystemsInstitute for BiochemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
14
|
Cranford-Smith T, Huber D. The way is the goal: how SecA transports proteins across the cytoplasmic membrane in bacteria. FEMS Microbiol Lett 2019; 365:4969678. [PMID: 29790985 PMCID: PMC5963308 DOI: 10.1093/femsle/fny093] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023] Open
Abstract
In bacteria, translocation of most soluble secreted proteins (and outer membrane proteins in Gram-negative bacteria) across the cytoplasmic membrane by the Sec machinery is mediated by the essential ATPase SecA. At its core, this machinery consists of SecA and the integral membrane proteins SecYEG, which form a protein conducting channel in the membrane. Proteins are recognised by the Sec machinery by virtue of an internally encoded targeting signal, which usually takes the form of an N-terminal signal sequence. In addition, substrate proteins must be maintained in an unfolded conformation in the cytoplasm, prior to translocation, in order to be competent for translocation through SecYEG. Recognition of substrate proteins occurs via SecA—either through direct recognition by SecA or through secondary recognition by a molecular chaperone that delivers proteins to SecA. Substrate proteins are then screened for the presence of a functional signal sequence by SecYEG. Proteins with functional signal sequences are translocated across the membrane in an ATP-dependent fashion. The current research investigating each of these steps is reviewed here.
Collapse
Affiliation(s)
- Tamar Cranford-Smith
- Institute for Microbiology and Infection School of Biosciences University of Birmingham Edgbaston Birmingham B15 2TT, UK
| | - Damon Huber
- Institute for Microbiology and Infection School of Biosciences University of Birmingham Edgbaston Birmingham B15 2TT, UK
| |
Collapse
|
15
|
Miyazaki R, Akiyama Y, Mori H. A photo-cross-linking approach to monitor protein dynamics in living cells. Biochim Biophys Acta Gen Subj 2019; 1864:129317. [PMID: 30851405 DOI: 10.1016/j.bbagen.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Proteins, which comprise one of the major classes of biomolecules that constitute a cell, interact with other cellular factors during both their biogenesis and functional states. Studying not only static but also transient interactions of proteins is important to understand their physiological roles and regulation mechanisms. However, only a limited number of methods are available to analyze the dynamic behaviors of proteins at the molecular level in a living cell. The site-directed in vivo photo-cross-linking approach is an elegant technique to capture protein interactions with high spatial resolution in a living cell. SCOPE OF REVIEW Here, we review the in vivo photo-cross-linking approach including its recent applications and the potential problems to be considered. We also introduce a new in vivo photo-cross-linking-based technique (PiXie) to study protein dynamics with high spatiotemporal resolution. MAJOR CONCLUSIONS In vivo photo-cross-linking enables us to capture weak/transient protein interactions with high spatial resolution, and allows for identification of interacting factors. Moreover, the PiXie approach can be used to monitor rapid folding/assembly processes of proteins in living cells. GENERAL SIGNIFICANCE In vivo photo-cross-linking is a simple method that has been used to analyze the dynamic interactions of many cellular proteins. Originally developed in Escherichia coli, this system has been extended to studies in various organisms, making it a fundamental technique for investigating dynamic protein interactions in many cellular processes. This article is part of a Special issue entitled "Novel major techniques for visualizing 'live' protein molecules" edited by Dr. Daisuke Kohda.
Collapse
Affiliation(s)
- Ryoji Miyazaki
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshinori Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroyuki Mori
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
16
|
Abstract
The biogenesis of periplasmic and outer membrane proteins (OMPs) in Escherichia coli is assisted by a variety of processes that help with their folding and transport to their final destination in the cellular envelope. Chaperones are macromolecules, usually proteins, that facilitate the folding of proteins or prevent their aggregation without becoming part of the protein's final structure. Because chaperones often bind to folding intermediates, they often (but not always) act to slow protein folding. Protein folding catalysts, on the other hand, act to accelerate specific steps in the protein folding pathway, including disulfide bond formation and peptidyl prolyl isomerization. This review is primarily concerned with E. coli and Salmonella periplasmic and cellular envelope chaperones; it also discusses periplasmic proline isomerization.
Collapse
Affiliation(s)
- Frederick Stull
- Dept of Molecular Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jean-Michel Betton
- Unité de Repliement et Modélisation des Protéines, Institut Pasteur-CNRS URA2185, 75724 Paris cedex 15, France
| | - James C A Bardwell
- Dept of Molecular Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
17
|
Knyazev DG, Kuttner R, Zimmermann M, Sobakinskaya E, Pohl P. Driving Forces of Translocation Through Bacterial Translocon SecYEG. J Membr Biol 2018; 251:329-343. [PMID: 29330604 PMCID: PMC6028853 DOI: 10.1007/s00232-017-0012-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/22/2017] [Indexed: 11/09/2022]
Abstract
This review focusses on the energetics of protein translocation via the Sec translocation machinery. First we complement structural data about SecYEG's conformational rearrangements by insight obtained from functional assays. These include measurements of SecYEG permeability that allow assessment of channel gating by ligand binding and membrane voltage. Second we will discuss the power stroke and Brownian ratcheting models of substrate translocation and the role that the two models assign to the putative driving forces: (i) ATP (SecA) and GTP (ribosome) hydrolysis, (ii) interaction with accessory proteins, (iii) membrane partitioning and folding, (iv) proton motive force (PMF), and (v) entropic contributions. Our analysis underlines how important energized membranes are for unravelling the translocation mechanism in future experiments.
Collapse
Affiliation(s)
- Denis G Knyazev
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria.
| | - Roland Kuttner
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria
| | - Mirjam Zimmermann
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria
| | | | - Peter Pohl
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria
| |
Collapse
|
18
|
Petriman NA, Jauß B, Hufnagel A, Franz L, Sachelaru I, Drepper F, Warscheid B, Koch HG. The interaction network of the YidC insertase with the SecYEG translocon, SRP and the SRP receptor FtsY. Sci Rep 2018; 8:578. [PMID: 29330529 PMCID: PMC5766551 DOI: 10.1038/s41598-017-19019-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/20/2017] [Indexed: 12/26/2022] Open
Abstract
YidC/Oxa1/Alb3 are essential proteins that operate independently or cooperatively with the Sec machinery during membrane protein insertion in bacteria, archaea and eukaryotic organelles. Although the interaction between the bacterial SecYEG translocon and YidC has been observed in multiple studies, it is still unknown which domains of YidC are in contact with the SecYEG translocon. By in vivo and in vitro site-directed and para-formaldehyde cross-linking we identified the auxiliary transmembrane domain 1 of E. coli YidC as a major contact site for SecY and SecG. Additional SecY contacts were observed for the tightly packed globular domain and the C1 loop of YidC, which reveals that the hydrophilic cavity of YidC faces the lateral gate of SecY. Surprisingly, YidC-SecYEG contacts were only observed when YidC and SecYEG were present at about stoichiometric concentrations, suggesting that the YidC-SecYEG contact in vivo is either very transient or only observed for a very small SecYEG sub-population. This is different for the YidC-SRP and YidC-FtsY interaction, which involves the C1 loop of YidC and is efficiently observed even at sub-stoichiometric concentrations of SRP/FtsY. In summary, our data provide a first detailed view on how YidC interacts with the SecYEG translocon and the SRP-targeting machinery.
Collapse
Affiliation(s)
- Narcis-Adrian Petriman
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Benjamin Jauß
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Antonia Hufnagel
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Lisa Franz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Ilie Sachelaru
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Friedel Drepper
- Institute of Biology II, Biochemistry - Functional Proteomics, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry - Functional Proteomics, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
19
|
Crane JM, Randall LL. The Sec System: Protein Export in Escherichia coli. EcoSal Plus 2017; 7:10.1128/ecosalplus.ESP-0002-2017. [PMID: 29165233 PMCID: PMC5807066 DOI: 10.1128/ecosalplus.esp-0002-2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, proteins found in the periplasm or the outer membrane are exported from the cytoplasm by the general secretory, Sec, system before they acquire stably folded structure. This dynamic process involves intricate interactions among cytoplasmic and membrane proteins, both peripheral and integral, as well as lipids. In vivo, both ATP hydrolysis and proton motive force are required. Here, we review the Sec system from the inception of the field through early 2016, including biochemical, genetic, and structural data.
Collapse
Affiliation(s)
- Jennine M Crane
- Department of Biochemistry, University of Missouri, Columbia, MO 65201
| | - Linda L Randall
- Department of Biochemistry, University of Missouri, Columbia, MO 65201
| |
Collapse
|
20
|
Fürst M, Zhou Y, Merfort J, Müller M. Involvement of PpiD in Sec-dependent protein translocation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:273-280. [PMID: 29097228 DOI: 10.1016/j.bbamcr.2017.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
The periplasmic space in between the inner and outer membrane of Gram-negative bacteria contains numerous chaperones that are involved in the biogenesis and rescue of extra-cytosolic proteins. In contrast to most of those periplasmic chaperones, PpiD is anchored by an N-terminal transmembrane domain within the inner membrane of Escherichia coli. There it is located in close proximity to the SecY subunit of the SecYEG translocon, which is the primary transporter for secretory and membrane proteins. By site-specific cross-linking we now found the periplasmic domain of PpiD also in close vicinity to the SecG subunit of the Sec translocon and we provide the first direct evidence for a functional cooperation between PpiD and the Sec translocon. Thus we demonstrate that PpiD stimulates in a concentration-dependent manner the translocation of two different secretory proteins into proteoliposomes that had been reconstituted with sub-saturating amounts of SecYEG. In addition we found ribosome-associated nascent chains of a secretory protein stalled at SecY also being in close contact to PpiD. Collectively these results suggest that PpiD plays a role in clearing the Sec translocon of newly translocated secretory proteins thereby improving the overall translocation efficiency. Consistent with this conclusion we demonstrate that PpiD contributes to the efficient detachment of newly secreted OmpA from the inner membrane and in doing so, seems to cooperate in a hierarchical manner with other periplasmic chaperones such as SurA, DegP, and Skp.
Collapse
Affiliation(s)
- Michaela Fürst
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, D-79104 Freiburg, Germany
| | - Yufan Zhou
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, D-79104 Freiburg, Germany
| | - Jana Merfort
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany.
| |
Collapse
|
21
|
Taylor AJ, Zakai SAI, Kelly DJ. The Periplasmic Chaperone Network of Campylobacter jejuni: Evidence that SalC (Cj1289) and PpiD (Cj0694) Are Involved in Maintaining Outer Membrane Integrity. Front Microbiol 2017; 8:531. [PMID: 28400767 PMCID: PMC5368265 DOI: 10.3389/fmicb.2017.00531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/14/2017] [Indexed: 01/03/2023] Open
Abstract
The outer membrane (OM) of Gram-negative pathogenic bacteria is a key structure in host–pathogen interactions that contains a plethora of proteins, performing a range of functions including adhesion, nutrient uptake, export of effectors and interaction with innate and adaptive components of the immune system. In addition, the OM can exclude drugs and thus contribute to antimicrobial resistance. The OM of the food-borne pathogen Campylobacter jejuni contains porins, adhesins and other virulence factors that must be specifically localized to this membrane, but the protein sorting mechanisms involved are only partially understood. In particular, chaperones are required to ferry OM proteins across the periplasm after they emerge from the Sec translocation system. The SurA-related chaperone PEB4 (Cj0596) is the only protein with a proven role in OM biogenesis and integrity in C. jejuni. In this work, we have constructed a set of isogenic deletion mutants in genes encoding both known and predicted chaperones (cj0596, cj0694, cj1069, cj1228c, and cj1289) using NCTC 11168H as the parental strain. These mutants were characterized using a range of assays to determine effects on growth, agglutination, biofilm formation, membrane permeability and hydrophobicity. We focused on Cj1289 and Cj0694, which our previous work suggested possessed both chaperone and peptidyl-proyl cis/trans isomerase (PPIase) domains. Mutants in either cj1289 or cj0694 showed growth defects, increased motility, agglutination and biofilm formation and severe OM permeability defects as measured by a lysozyme accessibility assay, that were comparable to those exhibited by the isogenic peb4 mutant. 2D-gel comparisons showed a general decrease in OM proteins in these mutants. We heterologously overproduced and purified Cj0694 and obtained evidence that this protein was an active PPIase, as judged by its acceleration of the refolding rate of reduced and alkylated ribonuclease T1 and that it also possessed holdase-type chaperone activity. Cj0694 is most similar to the PpiD class of chaperones but is unusual in possessing PPIase activity. Taken together, our data show that in addition to PEB4, Cj1289 (SalC; SurA-like chaperone) and Cj0694 (PpiD) are also key proteins involved in OM biogenesis and integrity in C. jejuni.
Collapse
Affiliation(s)
- Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield Sheffield, UK
| | - Shadi A I Zakai
- Faculty of Medicine, King Abdulaziz University Jeddah, Saudi Arabia
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield Sheffield, UK
| |
Collapse
|
22
|
Abstract
The insertion and assembly of proteins into the inner membrane of bacteria are crucial for many cellular processes, including cellular respiration, signal transduction, and ion and pH homeostasis. This process requires efficient membrane targeting and insertion of proteins into the lipid bilayer in their correct orientation and proper conformation. Playing center stage in these events are the targeting components, signal recognition particle (SRP) and the SRP receptor FtsY, as well as the insertion components, the Sec translocon and the YidC insertase. Here, we will discuss new insights provided from the recent high-resolution structures of these proteins. In addition, we will review the mechanism by which a variety of proteins with different topologies are inserted into the inner membrane of Gram-negative bacteria. Finally, we report on the energetics of this process and provide information on how membrane insertion occurs in Gram-positive bacteria and Archaea. It should be noted that most of what we know about membrane protein assembly in bacteria is based on studies conducted in Escherichia coli.
Collapse
Affiliation(s)
- Andreas Kuhn
- Institute for Microbiology and Molecular Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - Ross E Dalbey
- Department of Chemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
23
|
|
24
|
Liu X, Zhang W, Zhao Z, Dai X, Yang Y, Bai Z. Protein secretion in Corynebacterium glutamicum. Crit Rev Biotechnol 2016; 37:541-551. [PMID: 27737570 DOI: 10.1080/07388551.2016.1206059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Corynebacterium glutamicum, a Gram-positive bacterium, has been widely used for the industrial production of amino acids, such as glutamate and lysine, for decades. Due to several characteristics - its ability to secrete properly folded and functional target proteins into culture broth, its low levels of endogenous extracellular proteins and its lack of detectable extracellular hydrolytic enzyme activity - C. glutamicum is also a very favorable host cell for the secretory production of heterologous proteins, important enzymes, and pharmaceutical proteins. The target proteins are secreted into the culture medium, which has attractive advantages over the manufacturing process for inclusion of body expression - the simplified downstream purification process. The secretory process of proteins is complicated and energy consuming. There are two major secretory pathways in C. glutamicum, the Sec pathway and the Tat pathway, both have specific signal peptides that mediate the secretion of the target proteins. In the present review, we critically discuss recent progress in the secretory production of heterologous proteins and examine in depth the mechanisms of the protein translocation process in C. glutamicum. Some successful case studies of actual applications of this secretory expression host are also evaluated. Finally, the existing issues and solutions in using C. glutamicum as a host of secretory proteins are specifically addressed.
Collapse
Affiliation(s)
- Xiuxia Liu
- a National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China
| | - Wei Zhang
- a National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China
| | - Zihao Zhao
- a National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China
| | - Xiaofeng Dai
- a National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China
| | - Yankun Yang
- a National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China
| | - Zhonghu Bai
- a National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , China.,b The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China
| |
Collapse
|
25
|
De Geyter J, Tsirigotaki A, Orfanoudaki G, Zorzini V, Economou A, Karamanou S. Protein folding in the cell envelope of Escherichia coli. Nat Microbiol 2016; 1:16107. [PMID: 27573113 DOI: 10.1038/nmicrobiol.2016.107] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/02/2016] [Indexed: 11/09/2022]
Abstract
While the entire proteome is synthesized on cytoplasmic ribosomes, almost half associates with, localizes in or crosses the bacterial cell envelope. In Escherichia coli a variety of mechanisms are important for taking these polypeptides into or across the plasma membrane, maintaining them in soluble form, trafficking them to their correct cell envelope locations and then folding them into the right structures. The fidelity of these processes must be maintained under various environmental conditions including during stress; if this fails, proteases are called in to degrade mislocalized or aggregated proteins. Various soluble, diffusible chaperones (acting as holdases, foldases or pilotins) and folding catalysts are also utilized to restore proteostasis. These responses can be general, dealing with multiple polypeptides, with functional overlaps and operating within redundant networks. Other chaperones are specialized factors, dealing only with a few exported proteins. Several complex machineries have evolved to deal with binding to, integration in and crossing of the outer membrane. This complex protein network is responsible for fundamental cellular processes such as cell wall biogenesis; cell division; the export, uptake and degradation of molecules; and resistance against exogenous toxic factors. The underlying processes, contributing to our fundamental understanding of proteostasis, are a treasure trove for the development of novel antibiotics, biopharmaceuticals and vaccines.
Collapse
Affiliation(s)
- Jozefien De Geyter
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Alexandra Tsirigotaki
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Georgia Orfanoudaki
- Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece
| | - Valentina Zorzini
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Anastassios Economou
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium.,Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece
| | - Spyridoula Karamanou
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| |
Collapse
|
26
|
Wang Y, Wang R, Jin F, Liu Y, Yu J, Fu X, Chang Z. A Supercomplex Spanning the Inner and Outer Membranes Mediates the Biogenesis of β-Barrel Outer Membrane Proteins in Bacteria. J Biol Chem 2016; 291:16720-9. [PMID: 27298319 DOI: 10.1074/jbc.m115.710715] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 11/06/2022] Open
Abstract
β-barrel outer membrane proteins (OMPs) are ubiquitously present in Gram-negative bacteria, mitochondria and chloroplasts, and function in a variety of biological processes. The mechanism by which the hydrophobic nascent β-barrel OMPs are transported through the hydrophilic periplasmic space in bacterial cells remains elusive. Here, mainly via unnatural amino acid-mediated in vivo photo-crosslinking studies, we revealed that the primary periplasmic chaperone SurA interacts with nascent β-barrel OMPs largely via its N-domain but with β-barrel assembly machine protein BamA mainly via its satellite P2 domain, and that the nascent β-barrel OMPs interact with SurA via their N- and C-terminal regions. Additionally, via dual in vivo photo-crosslinking, we demonstrated the formation of a ternary complex involving β-barrel OMP, SurA, and BamA in cells. More importantly, we found that a supercomplex spanning the inner and outer membranes and involving the BamA, BamB, SurA, PpiD, SecY, SecE, and SecA proteins appears to exist in living cells, as revealed by a combined analyses of sucrose-gradient ultra-centrifugation, Blue native PAGE and mass spectrometry. We propose that this supercomplex integrates the translocation, transportation, and membrane insertion events for β-barrel OMP biogenesis.
Collapse
Affiliation(s)
- Yan Wang
- From the State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences
| | - Rui Wang
- From the State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences
| | - Feng Jin
- From the State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yang Liu
- From the State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences
| | - Jiayu Yu
- From the State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences
| | - Xinmiao Fu
- From the State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Protein Science, and
| | - Zengyi Chang
- From the State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Protein Science, and
| |
Collapse
|
27
|
Chen S, Thompson KM, Francis MS. Environmental Regulation of Yersinia Pathophysiology. Front Cell Infect Microbiol 2016; 6:25. [PMID: 26973818 PMCID: PMC4773443 DOI: 10.3389/fcimb.2016.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia.
Collapse
Affiliation(s)
- Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University Washington, DC, USA
| | - Matthew S Francis
- Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden; Department of Molecular Biology, Umeå UniversityUmeå, Sweden
| |
Collapse
|
28
|
Papanastasiou M, Orfanoudaki G, Kountourakis N, Koukaki M, Sardis MF, Aivaliotis M, Tsolis KC, Karamanou S, Economou A. Rapid label-free quantitative analysis of the E. coli
BL21(DE3) inner membrane proteome. Proteomics 2015; 16:85-97. [DOI: 10.1002/pmic.201500304] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/05/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Malvina Papanastasiou
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
- Department Pathology & Laboratory Medicine, Perelman School of Medicine; University of Pennsylvania; Philadelphia USA
| | - Georgia Orfanoudaki
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
- Department of Biology; University of Crete; Iraklio Greece
| | - Nikos Kountourakis
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
| | - Marina Koukaki
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
| | - Marios Frantzeskos Sardis
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology; Katholieke Universiteit Leuven; Leuven Belgium
| | - Michalis Aivaliotis
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
| | - Konstantinos C. Tsolis
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
- Department of Biology; University of Crete; Iraklio Greece
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology; Katholieke Universiteit Leuven; Leuven Belgium
| | - Spyridoula Karamanou
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology; Katholieke Universiteit Leuven; Leuven Belgium
| | - Anastassios Economou
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
- Department of Biology; University of Crete; Iraklio Greece
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology; Katholieke Universiteit Leuven; Leuven Belgium
| |
Collapse
|
29
|
Bittner LM, Westphal K, Narberhaus F. Conditional Proteolysis of the Membrane Protein YfgM by the FtsH Protease Depends on a Novel N-terminal Degron. J Biol Chem 2015; 290:19367-78. [PMID: 26092727 DOI: 10.1074/jbc.m115.648550] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Indexed: 01/16/2023] Open
Abstract
Regulated proteolysis efficiently and rapidly adapts the bacterial proteome to changing environmental conditions. Many protease substrates contain recognition motifs, so-called degrons, that direct them to the appropriate protease. Here we describe an entirely new degron identified in the cytoplasmic N-terminal end of the membrane-anchored protein YfgM of Escherichia coli. YfgM is stable during exponential growth and degraded in stationary phase by the essential FtsH protease. The alarmone (p)ppGpp, but not the previously described YfgM interactors RcsB and PpiD, influence YfgM degradation. By scanning mutagenesis, we define individual amino acids responsible for turnover of YfgM and find that the degron does not at all comply with the known N-end rule pathway. The YfgM degron is a distinct module that facilitates FtsH-mediated degradation when fused to the N terminus of another monotopic membrane protein but not to that of a cytoplasmic protein. Several lines of evidence suggest that stress-induced degradation of YfgM relieves the response regulator RcsB and thereby permits cellular protection by the Rcs phosphorelay system. On the basis of these and other results in the literature, we propose a model for how the membrane-spanning YfgM protein serves as connector between the stress responses in the periplasm and cytoplasm.
Collapse
Affiliation(s)
| | - Kai Westphal
- From Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Franz Narberhaus
- From Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|