1
|
Cao M, Chen P, Peng B, Cheng Y, Xie J, Hou Z, Chen H, Ye L, Li H, Wang H, Ren L, Xiong L, Geng L, Gong S. The transcription factor ELF4 alleviates inflammatory bowel disease by activating IL1RN transcription, suppressing inflammatory TH17 cell activity, and inducing macrophage M2 polarization. Front Immunol 2023; 14:1270411. [PMID: 38022496 PMCID: PMC10657822 DOI: 10.3389/fimmu.2023.1270411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic immune-mediated disorder affecting millions worldwide. Due to the complexity of its pathogenesis, the treatment options for IBD are limited. This study focuses on ELF4, a member of the ETS transcription factor family, as a target to elucidate its role in IBD and investigate its mechanism of action in alleviating IBD symptoms by activating IL1RN transcription to suppress the activity of inflammatory TH17 cells. Methods Using the GEO database, this study examined LPS-induced intestinal inflammatory genes and their regulation mechanisms. We examined the colon length of LPS-treated mice and derived the Disease Activity Index (DAI). H&E staining, ELISA, and flow cytometry were used to detect mice colon tissue damage, inflammatory factor levels in mouse serum, mouse macrophage types and inflammatory TH17 cell activity. RT-qPCR and Western blot detected ELF4, IL1RN, M1, and M2 polarization markers. In Vitro, using dual-luciferase and ChIP assays, we tested mouse bone marrow-derived macrophages (BMDMs) and mouse intestinal epithelial cells for IL1RN promoter activity and ELF4 enrichment. Results Bioinformatics showed that LPS-induced colitis animals have reduced ELF4 expression in their colon tissue. In vivo tests confirmed reduced ELF4 expression in mice with LPS-induced colitis. ELF4 overexpression reduced mouse intestinal inflammation. ELF4 activated IL1RN transcription in bioinformatics and in vitro tests. ELF4 promoted IL1RN transcription and macrophage M2 polarization to limit intestinal epithelial cell death and inflammation and reduce mouse intestinal inflammation in vitro. ELF4 also reduced the Th17/Treg ratio by increasing IL1RN transcription. Conclusion ELF4 activates IL1RN transcription, suppresses inflammatory TH17 cells, and induces macrophage M2 polarization to treat IBD.
Collapse
Affiliation(s)
- Meiwan Cao
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peiyu Chen
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Baoling Peng
- Center for Child Health and Mental Health, Shenzhen Childen’s Hospital, Shenzhen, China
| | - Yang Cheng
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jing Xie
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ziang Hou
- Department of Internal, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liping Ye
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huiwen Li
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongli Wang
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lu Ren
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liya Xiong
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Sannomiya Y, Kaseda S, Kamura M, Yamamoto H, Yamada H, Inamoto M, Kuwazuru J, Niino S, Shuto T, Suico MA, Kai H. The role of discoidin domain receptor 2 in the renal dysfunction of alport syndrome mouse model. Ren Fail 2021; 43:510-519. [PMID: 33706638 PMCID: PMC7971217 DOI: 10.1080/0886022x.2021.1896548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
Alport syndrome (AS) is a hereditary glomerular nephritis caused by mutation in one of the type IV collagen genes α3/α4/α5 that encode the heterotrimer COL4A3/4/5. Failure to form a heterotrimer due to mutation leads to the dysfunction of the glomerular basement membrane, and end-stage renal disease. Previous reports have suggested the involvement of the receptor tyrosine kinase discoidin domain receptor (DDR) 1 in the progression of AS pathology. However, due to the similarity between DDR1 and DDR2, the role of DDR2 in AS pathology is unclear. Here, we investigated the involvement of DDR2 in AS using the X-linked AS mouse model. Mice were treated subcutaneously with saline or antisense oligonucleotide (ASO; 5 mg/kg or 15 mg/kg per week) for 8 weeks. Renal function parameters and renal histology were analyzed, and the gene expressions of inflammatory cytokines were determined in renal tissues. The expression level of DDR2 was highly elevated in kidney tissues of AS mice. Knockdown of Ddr2 using Ddr2-specific ASO decreased the Ddr2 expression. However, the DDR2 ASO treatment did not improve the proteinuria or decrease the BUN level. DDR2 ASO also did not significantly ameliorate the renal injury, inflammation and fibrosis in AS mice. These results showed that Ddr2 knockdown by ASO had no notable effect on the progression of AS indicating that DDR2 may not be critically involved in AS pathology. This finding may provide useful information and further understanding of the role of DDRs in AS.
Collapse
Affiliation(s)
- Yuya Sannomiya
- Department of Molecular Medicine Graduate School of Pharmaceutical Sciences, Kumamoto, Japan
| | - Shota Kaseda
- Department of Molecular Medicine Graduate School of Pharmaceutical Sciences, Kumamoto, Japan
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program”, Kumamoto University, Kumamoto, Japan
| | - Misato Kamura
- Department of Molecular Medicine Graduate School of Pharmaceutical Sciences, Kumamoto, Japan
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program”, Kumamoto University, Kumamoto, Japan
| | | | | | | | - Jun Kuwazuru
- Department of Molecular Medicine Graduate School of Pharmaceutical Sciences, Kumamoto, Japan
| | - Saki Niino
- Department of Molecular Medicine Graduate School of Pharmaceutical Sciences, Kumamoto, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine Graduate School of Pharmaceutical Sciences, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine Graduate School of Pharmaceutical Sciences, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine Graduate School of Pharmaceutical Sciences, Kumamoto, Japan
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program”, Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
3
|
Kafita D, Daka V, Nkhoma P, Zulu M, Zulu E, Tembo R, Ngwira Z, Mwaba F, Sinkala M, Munsaka S. High ELF4 expression in human cancers is associated with worse disease outcomes and increased resistance to anticancer drugs. PLoS One 2021; 16:e0248984. [PMID: 33836003 PMCID: PMC8034723 DOI: 10.1371/journal.pone.0248984] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
The malignant phenotype of tumour cells is fuelled by changes in the expression of various transcription factors, including some of the well-studied proteins such as p53 and Myc. Despite significant progress made, little is known about several other transcription factors, including ELF4, and how they help shape the oncogenic processes in cancer cells. To this end, we performed a bioinformatics analysis to facilitate a detailed understanding of how the expression variations of ELF4 in human cancers are related to disease outcomes and the cancer cell drug responses. Here, using ELF4 mRNA expression data of 9,350 samples from the Cancer Genome Atlas pan-cancer project, we identify two groups of patient's tumours: those that expressed high ELF4 transcripts and those that expressed low ELF4 transcripts across 32 different human cancers. We uncover that patients segregated into these two groups are associated with different clinical outcomes. Further, we find that tumours that express high ELF4 mRNA levels tend to be of a higher-grade, afflict a significantly older patient population and have a significantly higher mutation burden. By analysing dose-response profiles to 397 anti-cancer drugs of 612 well-characterised human cancer cell lines, we discover that cell lines that expressed high ELF4 mRNA transcript are significantly less responsive to 129 anti-cancer drugs, and only significantly more response to three drugs: dasatinib, WH-4-023, and Ponatinib, all of which remarkably target the proto-oncogene tyrosine-protein kinase SRC and tyrosine-protein kinase ABL1. Collectively our analyses have shown that, across the 32 different human cancers, the patients afflicted with tumours that overexpress ELF4 tended to have a more aggressive disease that is also is more likely more refractory to most anti-cancer drugs, a finding upon which we could devise novel categorisation of patient tumours, treatment, and prognostic strategies.
Collapse
Affiliation(s)
- Doris Kafita
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Victor Daka
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Panji Nkhoma
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Mildred Zulu
- Department of Clinical Sciences, School of Medicine, Copperbelt University, Ndola, Zambia
| | - Ephraim Zulu
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Rabecca Tembo
- Department of Clinical Sciences, School of Medicine, Copperbelt University, Ndola, Zambia
| | - Zifa Ngwira
- Department of Clinical Sciences, School of Medicine, Copperbelt University, Ndola, Zambia
| | - Florence Mwaba
- Department of Clinical Sciences, School of Medicine, Copperbelt University, Ndola, Zambia
| | - Musalula Sinkala
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Sody Munsaka
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| |
Collapse
|
4
|
Kang Y, Wu T, He Y, He Y, Zhao D. Elf4 regulates lysosomal biogenesis and the mTOR pathway to promote clearance of Staphylococcus aureus in macrophages. FEBS Lett 2021; 595:881-891. [PMID: 33423322 DOI: 10.1002/1873-3468.14037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/10/2022]
Abstract
Staphylococcus aureus is a major cause of infectious disease. Macrophages can directly destroy most of the invading bacteria through the phagolysosomal pathway. E74-like factor 4 (Elf4) is one of the important transcription factors that controls diverse pathogens, but the role of Elf4 in macrophage-mediated S. aureus eradication is unknown. Our data show that Elf4 is induced by S. aureus in macrophages. Elevated expression of Elf4 results in decreased bacterial load and inflammatory responses during S. aureus infection in vivo and in vitro. Elf4-overexpressed macrophages have decreased mTOR activity and increased lysosomal mass. Collectively, these results suggest that S. aureus induces Elf4 expression, which enhances lysosomal function and increases the capacity of macrophages to eliminate intracellular pathogens.
Collapse
Affiliation(s)
- Yanhua Kang
- Hangzhou Key Lab of Inflammation and Immunoregulation, Department of Basic Medical Science, School of Medicine, Hangzhou Normal University, China
| | - Tingyue Wu
- Hangzhou Key Lab of Inflammation and Immunoregulation, Department of Basic Medical Science, School of Medicine, Hangzhou Normal University, China
| | - Yan He
- Hangzhou Key Lab of Inflammation and Immunoregulation, Department of Basic Medical Science, School of Medicine, Hangzhou Normal University, China
| | - Yunfan He
- Hangzhou Key Lab of Inflammation and Immunoregulation, Department of Basic Medical Science, School of Medicine, Hangzhou Normal University, China
| | - Dongjiu Zhao
- Hangzhou Key Lab of Inflammation and Immunoregulation, Department of Basic Medical Science, School of Medicine, Hangzhou Normal University, China
| |
Collapse
|
5
|
Mild electrical stimulation with heat shock attenuates renal pathology in adriamycin-induced nephrotic syndrome mouse model. Sci Rep 2020; 10:18719. [PMID: 33128027 PMCID: PMC7603347 DOI: 10.1038/s41598-020-75761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/20/2020] [Indexed: 11/08/2022] Open
Abstract
Nephrotic syndrome (NS) is a renal disorder that is characterized by massive proteinuria, hypoalbuminemia and edema. One of the main causes of NS is focal segmental glomerulosclerosis (FSGS), which has extremely poor prognosis. Although steroids and immunosuppressants are the first line of treatment, some FSGS cases are refractory, prompting the need to find new therapeutic strategies. We have previously demonstrated that an optimized combination treatment of mild electrical stimulation (MES) and heat shock (HS) has several biological benefits including the amelioration of the pathologies of the genetic renal disorder Alport syndrome. Here, we investigated the effect of MES + HS on adriamycin (ADR)-induced NS mouse model. MES + HS suppressed proteinuria and glomerulosclerosis induced by ADR. The expressions of pro-inflammatory cytokines and pro-fibrotic genes were also significantly downregulated by MES + HS. MES + HS decreased the expression level of cleaved caspase-3 and the number of TUNEL-positive cells, indicating that MES + HS exerted anti-apoptotic effect. Moreover, MES + HS activated the Akt signaling and induced the phosphorylation and inhibition of the apoptotic molecule BAD. In in vitro experiment, the Akt inhibitor abolished the MES + HS-induced Akt-BAD signaling and anti-apoptotic effect in ADR-treated cells. Collectively, our study suggested that MES + HS modulates ADR-induced pathologies and has renoprotective effect against ADR-induced NS via regulation of Akt-BAD axis.
Collapse
|
6
|
A novel condition of mild electrical stimulation exerts immunosuppression via hydrogen peroxide production that controls multiple signaling pathway. PLoS One 2020; 15:e0234867. [PMID: 32569300 PMCID: PMC7307747 DOI: 10.1371/journal.pone.0234867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022] Open
Abstract
Different modes of exogenous electrical stimulation at physiological strength has been applied to various diseases. Previously, we extensively demonstrated the usability of mild electrical stimulation (MES) with low frequency pulse current at 55 pulses per second (MES55) for several disease conditions. Here we found that MES with high frequency pulse-current (5500 pulse per second; MES5500) suppressed the overproduction of pro-inflammatory cytokines induced by phorbol myristate acetate/ionomycin in Jurkat T cells and primary splenocytes. MES5500 also suppressed the overproduction of inflammatory cytokines, improved liver damage and reduced mouse spleen enlargement in concanavalin-A-treated BALB/c mice. The molecular mechanism underlying these effects included the ability of MES5500 to induce modest amount of hydrogen peroxide and control multiple signaling pathways important for immune regulation, such as NF-κB, NFAT and NRF2. In the treatment of various inflammatory and immune-related diseases, suppression of excessive inflammatory cytokines is key, but because immunosuppressive drugs used in the clinical setting have serious side effects, development of safer methods of inhibiting cytokines is required. Our finding provides evidence that physical medicine in the form of MES5500 may be considered as a novel therapeutic tool or as adjunctive therapy for inflammatory and immune-related diseases.
Collapse
|
7
|
The DsbA-L gene is associated with respiratory function of the elderly via its adiponectin multimeric or antioxidant properties. Sci Rep 2020; 10:5973. [PMID: 32249844 PMCID: PMC7136289 DOI: 10.1038/s41598-020-62872-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 03/18/2020] [Indexed: 12/03/2022] Open
Abstract
Oxidative stress and inflammation play a key role in the age-related decline in the respiratory function. Adipokine in relation to the metabolic and inflammatory systems is attracting growing interest in the field of respiratory dysfunction. The present clinical and experimental studies investigated the role of the disulfide bond-forming oxidoreductase A-like protein (DsbA-L) gene, which has antioxidant and adiponectin multimeric (i.e. activation) properties, on the respiratory function of the elderly. We performed a retrospective longitudinal genotype-phenotype relationship analysis of 318 Japanese relatively elderly participants (mean age ± standard deviation: 67.0 ± 5.8 years) during a health screening program and an in vitro DsbA-L knock-down evaluation using 16HBE14o-cells, a commonly evaluated human airway epithelial cell line. The DsbA-L rs1917760 polymorphism was associated with a reduction in the ratio of forced expiratory volume in 1 second (FEV1)/forced vital capacity (FVC) and %FEV1 and with the elevation of the prevalence of FEV1/FVC < 70%. We also confirmed that the polymorphism was associated with a decreased respiratory function in relation to a decrease in the ratio of high-molecular-weight adiponectin/total adiponectin (as a marker of adiponectin multimerization) and an increase in the oxidized human serum albumin (as an oxidative stress marker). Furthermore, we clarified that DsbA-L knock-down induced oxidative stress and up-regulated the mucus production in human airway epithelial cells. These findings suggest that the DsbA-L gene may play a role in protecting the respiratory function of the elderly, possibly via increased systemic adiponectin functions secreted from adipocytes or through systemic and/or local pulmonary antioxidant properties.
Collapse
|
8
|
Kosti A, Du L, Shivram H, Qiao M, Burns S, Garcia JG, Pertsemlidis A, Iyer VR, Kokovay E, Penalva LOF. ELF4 Is a Target of miR-124 and Promotes Neuroblastoma Proliferation and Undifferentiated State. Mol Cancer Res 2020; 18:68-78. [PMID: 31624087 PMCID: PMC6942226 DOI: 10.1158/1541-7786.mcr-19-0187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/06/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
Abstract
13-Cis-retinoic acid (RA) is typically used in postremission maintenance therapy in patients with neuroblastoma. However, side effects and recurrence are often observed. We investigated the use of miRNAs as a strategy to replace RA as promoters of differentiation. miR-124 was identified as the top candidate in a functional screen. Genomic target analysis indicated that repression of a network of transcription factors (TF) could be mediating most of miR-124's effect in driving differentiation. To advance miR-124 mimic use in therapy and better define its mechanism of action, a high-throughput siRNA morphologic screen focusing on its TF targets was conducted and ELF4 was identified as a leading candidate for miR-124 repression. By altering its expression levels, we showed that ELF4 maintains neuroblastoma in an undifferentiated state and promotes proliferation. Moreover, ELF4 transgenic expression was able to counteract the neurogenic effect of miR-124 in neuroblastoma cells. With RNA sequencing, we established the main role of ELF4 to be regulation of cell-cycle progression, specifically through the DREAM complex. Interestingly, several cell-cycle genes activated by ELF4 are repressed by miR-124, suggesting that they might form a TF-miRNA regulatory loop. Finally, we showed that high ELF4 expression is often observed in neuroblastomas and is associated with poor survival. IMPLICATIONS: miR-124 induces neuroblastoma differentiation partially through the downregulation of TF ELF4, which drives neuroblastoma proliferation and its undifferentiated phenotype.
Collapse
Affiliation(s)
- Adam Kosti
- Department of Cell Systems and Anatomy, UT Health Science Center at San Antonio, San Antonio, Texas
- Greehey Children's Cancer Research Institute, UT Health Science Center at San Antonio, San Antonio, Texas
| | - Liqin Du
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas
| | - Haridha Shivram
- Department of Molecular Biosciences and Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, Texas
| | - Mei Qiao
- Greehey Children's Cancer Research Institute, UT Health Science Center at San Antonio, San Antonio, Texas
| | - Suzanne Burns
- Greehey Children's Cancer Research Institute, UT Health Science Center at San Antonio, San Antonio, Texas
| | - Juan Gabriel Garcia
- Department of Cell Systems and Anatomy, UT Health Science Center at San Antonio, San Antonio, Texas
| | - Alexander Pertsemlidis
- Department of Cell Systems and Anatomy, UT Health Science Center at San Antonio, San Antonio, Texas
- Greehey Children's Cancer Research Institute, UT Health Science Center at San Antonio, San Antonio, Texas
- Department of Pediatrics, UT Health Science Center at San Antonio, San Antonio, Texas
| | - Vishwanath R Iyer
- Department of Molecular Biosciences and Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, Texas
| | - Erzsebet Kokovay
- Department of Cell Systems and Anatomy, UT Health Science Center at San Antonio, San Antonio, Texas
| | - Luiz O F Penalva
- Department of Cell Systems and Anatomy, UT Health Science Center at San Antonio, San Antonio, Texas.
- Greehey Children's Cancer Research Institute, UT Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
9
|
Suico MA, Shuto T, Kai H. Roles and regulations of the ETS transcription factor ELF4/MEF. J Mol Cell Biol 2018; 9:168-177. [PMID: 27932483 PMCID: PMC5907832 DOI: 10.1093/jmcb/mjw051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Most E26 transformation-specific (ETS) transcription factors are involved in the pathogenesis and progression of cancer. This is in part due to the roles of ETS transcription factors in basic biological processes such as growth, proliferation, and differentiation, and also because of their regulatory functions that have physiological relevance in tumorigenesis, immunity, and basal cellular homoeostasis. A member of the E74-like factor (ELF) subfamily of the ETS transcription factor family—myeloid elf-1-like factor (MEF), designated as ELF4—has been shown to be critically involved in immune response and signalling, osteogenesis, adipogenesis, cancer, and stem cell quiescence. ELF4 carries out these functions as a transcriptional activator or through interactions with its partner proteins. Mutations in ELF4 cause aberrant interactions and induce downstream processes that may lead to diseased cells. Knowing how ELF4 impinges on certain cellular processes and how it is regulated in the cells can lead to a better understanding of the physiological and pathological consequences of modulated ELF4 activity.
Collapse
Affiliation(s)
- Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| |
Collapse
|
10
|
Kamei S, Fujikawa H, Nohara H, Ueno-Shuto K, Maruta K, Nakashima R, Kawakami T, Matsumoto C, Sakaguchi Y, Ono T, Suico MA, Boucher RC, Gruenert DC, Takeo T, Nakagata N, Li JD, Kai H, Shuto T. Zinc Deficiency via a Splice Switch in Zinc Importer ZIP2/SLC39A2 Causes Cystic Fibrosis-Associated MUC5AC Hypersecretion in Airway Epithelial Cells. EBioMedicine 2017; 27:304-316. [PMID: 29289532 PMCID: PMC5828551 DOI: 10.1016/j.ebiom.2017.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023] Open
Abstract
Airway mucus hyperproduction and fluid imbalance are important hallmarks of cystic fibrosis (CF), the most common life-shortening genetic disorder in Caucasians. Dysregulated expression and/or function of airway ion transporters, including cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC), have been implicated as causes of CF-associated mucus hypersecretory phenotype. However, the contributory roles of other substances and transporters in the regulation of CF airway pathogenesis remain unelucidated. Here, we identified a novel connection between CFTR/ENaC expression and the intracellular Zn2 + concentration in the regulation of MUC5AC, a major secreted mucin that is highly expressed in CF airway. CFTR-defective and ENaC-hyperactive airway epithelial cells specifically and highly expressed a unique, alternative splice isoform of the zinc importer ZIP2/SLC39A2 (ΔC-ZIP2), which lacks the C-terminal domain. Importantly, ΔC-ZIP2 levels correlated inversely with wild-type ZIP2 and intracellular Zn2 + levels. Moreover, the splice switch to ΔC-ZIP2 as well as decreased expression of other ZIPs caused zinc deficiency, which is sufficient for induction of MUC5AC; while ΔC-ZIP2 expression per se induced ENaC expression and function. Thus, our findings demonstrate that the novel splicing switch contributes to CF lung pathology via the novel interplay of CFTR, ENaC, and ZIP2 transporters. Zinc deficiency is a common feature in both CFTR-defective (CF) and ENaC-hyperactive (CF-like) airway epithelial cells. A splice switch from WT-ZIP2 to ΔC-ZIP2 as well as other ZIPs down-regulation caused zinc deficiency in CF and CF-like cells. Lower intracellular Zn2 + levels contributed to CF-associated MUC5AC hypersecretion in airway epithelial cells.
The role of zinc in the pathogenesis of CF lung disease is not well understood. We utilized human CF patient-derived cell lines and primary cells as well as murine CF model, and identified zinc deficiency as a common characteristic in CF models. Down-regulation of several zinc importers (ZIPs) in CF cells caused zinc deficiency, which is sufficient for induction of MUC5AC, a major secreted mucin that exacerbates CF pathogenesis. Especially, strong contribution of ΔC-ZIP2, a novel ZIP2 splice isoform, in the regulation of CF-associated MUC5AC hypersecretion was clearly demonstrated. The study refined the importance of zinc in airway homeostasis.
Collapse
Affiliation(s)
- Shunsuke Kamei
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Haruka Fujikawa
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hirofumi Nohara
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiko Ueno-Shuto
- Laboratory of Pharmacology, Division of Life Science, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Kasumi Maruta
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryunosuke Nakashima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taisei Kawakami
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Chizuru Matsumoto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Sakaguchi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tomomi Ono
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dieter C Gruenert
- Head and Neck Stem Cell Lab, University of California, San Francisco, 2340 Sutter St, Box 1330, N331, San Francisco, CA 94115, USA
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Jian-Dong Li
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 714 Petit Science Center, 100 Piedmont Ave SE, Atlanta GA30303, USA
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
11
|
High throughput data analyses of the immune characteristics of Microtus fortis infected with Schistosoma japonicum. Sci Rep 2017; 7:11311. [PMID: 28900150 PMCID: PMC5595801 DOI: 10.1038/s41598-017-11532-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022] Open
Abstract
Microtus fortis exhibits natural resistance against Schistosoma japonicum, and the parasite cannot grow and develop in M. fortis. Extensive research has been carried out, however, the associated mechanism remains unclear. In the present study, we analysed the combined data obtained from a cytokine chip assay, transcriptome, and metabolome. The cytokine profile from C57BL/6 and M. fortis mice was assessed before and after infection. Several cytokines increased during the second and third week post-infection. Some transcripts related to cytokine genes and associated proteins were also highly expressed (i.e., Hgf, C3, and Lbp). The liver metabolism of M. fortis following infection with S. japonicum was assessed. We identified 25 different metabolites between the uninfected and infected M. fortis, and 22 different metabolites between infected M. fortis and C57BL/6 mice. The metabolomic pathways of these differential metabolites were then analysed with MetPA, revealing that they were involved in histidine metabolism, valine, leucine, and isoleucine biosyntheses, and lysine degradation. Thus, the elevated expression of these metabolites and pathways may promote the phagocytic function of the neutrophils and natural killer cell activity following TLR activation. These results provide novel insight into the resistance mechanism of M. fortis against S. japonicum.
Collapse
|
12
|
Yokota T, Omachi K, Suico MA, Kojima H, Kamura M, Teramoto K, Kaseda S, Kuwazuru J, Shuto T, Kai H. Bromide supplementation exacerbated the renal dysfunction, injury and fibrosis in a mouse model of Alport syndrome. PLoS One 2017; 12:e0183959. [PMID: 28873450 PMCID: PMC5584969 DOI: 10.1371/journal.pone.0183959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 08/15/2017] [Indexed: 11/18/2022] Open
Abstract
A seminal study recently demonstrated that bromide (Br-) has a critical function in the assembly of type IV collagen in basement membrane (BM), and suggested that Br- supplementation has therapeutic potential for BM diseases. Because salts of bromide (KBr and NaBr) have been used as antiepileptic drugs for several decades, repositioning of Br- for BM diseases is probable. However, the effects of Br- on glomerular basement membrane (GBM) disease such as Alport syndrome (AS) and its impact on the kidney are still unknown. In this study, we administered daily for 16 weeks 75 mg/kg or 250 mg/kg (within clinical dosage) NaBr or NaCl (control) via drinking water to 6-week-old AS mice (mouse model of X-linked AS). Treatment with 75 mg/kg NaBr had no effect on AS progression. Surprisingly, compared with 250 mg/kg NaCl, 250 mg/kg NaBr exacerbated the progressive proteinuria and increased the serum creatinine and blood urea nitrogen in AS mice. Histological analysis revealed that glomerular injury, renal inflammation and fibrosis were exacerbated in mice treated with 250 mg/kg NaBr compared with NaCl. The expressions of renal injury markers (Lcn2, Lysozyme), matrix metalloproteinase (Mmp-12), pro-inflammatory cytokines (Il-6, Il-8, Tnf-α, Il-1β) and pro-fibrotic genes (Tgf-β, Col1a1, α-Sma) were also exacerbated by 250 mg/kg NaBr treatment. Notably, the exacerbating effects of Br- were not observed in wild-type mice. These findings suggest that Br- supplementation needs to be carefully evaluated for real positive health benefits and for the absence of adverse side effects especially in GBM diseases such as AS.
Collapse
Affiliation(s)
- Tsubasa Yokota
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, Japan
| | - Kohei Omachi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, Japan
- Program for Leading Graduate School “HIGO (Health Life science: Interdisciplinary and Glocal Oriented) Program”, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, Japan
| | - Haruka Kojima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, Japan
| | - Misato Kamura
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, Japan
- Program for Leading Graduate School “HIGO (Health Life science: Interdisciplinary and Glocal Oriented) Program”, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, Japan
| | - Keisuke Teramoto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, Japan
- Program for Leading Graduate School “HIGO (Health Life science: Interdisciplinary and Glocal Oriented) Program”, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, Japan
| | - Shota Kaseda
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, Japan
- Program for Leading Graduate School “HIGO (Health Life science: Interdisciplinary and Glocal Oriented) Program”, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, Japan
| | - Jun Kuwazuru
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, Japan
- Program for Leading Graduate School “HIGO (Health Life science: Interdisciplinary and Glocal Oriented) Program”, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
13
|
Yokota T, Omachi K, Suico MA, Kamura M, Kojima H, Fukuda R, Motomura K, Teramoto K, Kaseda S, Kuwazuru J, Takeo T, Nakagata N, Shuto T, Kai H. STAT3 inhibition attenuates the progressive phenotypes of Alport syndrome mouse model. Nephrol Dial Transplant 2017; 33:214-223. [DOI: 10.1093/ndt/gfx246] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/26/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Tsubasa Yokota
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Kohei Omachi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
- Program for Leading Graduate School Health Life Science: Interdisciplinary and Glocal Oriented Program, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Misato Kamura
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
- Program for Leading Graduate School Health Life Science: Interdisciplinary and Glocal Oriented Program, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Haruka Kojima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Ryosuke Fukuda
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Keishi Motomura
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Keisuke Teramoto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
- Program for Leading Graduate School Health Life Science: Interdisciplinary and Glocal Oriented Program, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Shota Kaseda
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
- Program for Leading Graduate School Health Life Science: Interdisciplinary and Glocal Oriented Program, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Jun Kuwazuru
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
- Program for Leading Graduate School Health Life Science: Interdisciplinary and Glocal Oriented Program, Kumamoto University, Kumamoto City, Kumamoto, Japan
| |
Collapse
|
14
|
Suico MA, Taura M, Kudo E, Gotoh K, Shuto T, Okada S, Kai H. The ETS Factor Myeloid Elf-1-Like Factor (MEF)/Elf4 Is Transcriptionally and Functionally Activated by Hypoxia. Biol Pharm Bull 2016; 39:641-647. [PMID: 27040637 DOI: 10.1248/bpb.b15-00796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Hypoxia-inducible factor (HIF)-1α is a transcription factor belonging to the HIF family that is activated in mammalian cells during conditions of low oxygen tension or hypoxia to induce an adaptive response and promote cell survival. Some of the genes targeted by HIF-1α are important for angiogenesis and proliferation. Here, we found that the E26 transformation-specific (ETS) transcription factor myeloid elf-1-like factor (MEF)/Elf4 is activated by HIF-1α. MEF induces genes such as human beta-defensin 2 (HβD2) and perforin (PRF1), and is known to affect the cell cycle. Treatment with hypoxia mimetic CoCl2 or low O2 incubation up-regulated MEF mRNA and protein levels in various cell lines. HIF-1α overexpression in HEK293 cells also increased MEF mRNA and protein levels. In contrast, HIF-1α knockdown by small interfering RNA (siRNA) suppressed the induction of MEF in response to hypoxia. HIF-1α binds to the hypoxia response element in the MEF promoter region (-200 bp) and activates MEF promoter under hypoxia condition. The induction of MEF by hypoxia/HIF-1α correlated with the increase of MEF target genes HβD2 and PRF1. Intriguingly, the hypoxia-induced expression of HIF-1α target gene vascular endothelial growth factor (VEGF) was enhanced by the exogenous addition of MEF. Overall, these data indicate that hypoxia or HIF-1α positively regulates MEF expression and function.
Collapse
Affiliation(s)
- Mary Ann Suico
- Department of Molecular Medicine, Faculty of Pharmaceutical Sciences, Kumamoto University
| | | | | | | | | | | | | |
Collapse
|
15
|
Mamada H, Sato T, Ota M, Sasaki H. Cell competition in mouse NIH3T3 embryonic fibroblasts controlled by Tead activity and Myc. J Cell Sci 2015; 128:790-803. [DOI: 10.1242/jcs.163675] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cell competition is a short-range communication originally observed in Drosophila. Relatively little is known about cell competition in mammals or in non-epithelial cells. Hippo signaling and its downstream transcription factor, Tead, control cell proliferation and apoptosis. Here, we established an in vitro model system that shows cell competition in mouse NIH3T3 embryo fibroblast cells. Co-culture of Tead activity-manipulated cells with normal cells caused cell competition. Cells with reduced Tead activity became losers, while cells with increased Tead activity became super-competitors. Tead directly regulated Myc RNA expression, and cells with increased Myc expression also became super-competitors. At low cell density, cell proliferation required both Tead activity and Myc. At high cell density, however, reduction of either Tead activity or Myc was compensated by an increase in the other, and this increase was sufficient to confer winner activity. Collectively, NIH3T3 cells have cell competition mechanisms similar to those regulated by Yki and Myc in Drosophila. Establishment of this in vitro model system should be useful for analyses of the mechanisms of cell competition in mammals and in fibroblasts.
Collapse
|