1
|
Vaglio-Garro A, Kozlov AV, Smirnova YD, Weidinger A. Pathological Interplay between Inflammation and Mitochondria Aggravates Glutamate Toxicity. Int J Mol Sci 2024; 25:2276. [PMID: 38396952 PMCID: PMC10889519 DOI: 10.3390/ijms25042276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial dysfunction and glutamate toxicity are associated with neural disorders, including brain trauma. A review of the literature suggests that toxic and transmission actions of neuronal glutamate are spatially and functionally separated. The transmission pathway utilizes synaptic GluN2A receptors, rapidly released pool of glutamate, evoked release of glutamate mediated by Synaptotagmin 1 and the amount of extracellular glutamate regulated by astrocytes. The toxic pathway utilizes extrasynaptic GluN2B receptors and a cytoplasmic pool of glutamate, which results from the spontaneous release of glutamate mediated by Synaptotagmin 7 and the neuronal 2-oxoglutarate dehydrogenase complex (OGDHC), a tricarboxylic acid (TCA) cycle enzyme. Additionally, the inhibition of OGDHC observed upon neuro-inflammation is due to an excessive release of reactive oxygen/nitrogen species by immune cells. The loss of OGDHC inhibits uptake of glutamate by mitochondria, thus facilitating its extracellular accumulation and stimulating toxic glutamate pathway without affecting transmission. High levels of extracellular glutamate lead to dysregulation of intracellular redox homeostasis and cause ferroptosis, excitotoxicity, and mitochondrial dysfunction. The latter affects the transmission pathway demanding high-energy supply and leading to cell death. Mitochondria aggravate glutamate toxicity due to impairments in the TCA cycle and become a victim of glutamate toxicity, which disrupts oxidative phosphorylation. Thus, therapies targeting the TCA cycle in neurological disorders may be more efficient than attempting to preserve mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Annette Vaglio-Garro
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andrey V. Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Yuliya D. Smirnova
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
2
|
Ballon Romero SS, Fuh LJ, Hung SY, Lee YC, Huang YC, Chien SY, Chen YH. Electroacupuncture exerts prolonged analgesic and neuroprotective effects in a persistent dental pain model induced by multiple dental pulp injuries: GABAergic interneurons-astrocytes interaction. Front Immunol 2023; 14:1213710. [PMID: 37954604 PMCID: PMC10639134 DOI: 10.3389/fimmu.2023.1213710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Pain within the trigeminal system, particularly dental pain, is poorly understood. This study aimed to determine whether single or multiple dental pulp injuries induce persistent pain, its association with trigeminal central nociceptive pathways and whether electroacupuncture (EA) provides prolonged analgesic and neuroprotective effects in a persistent dental pain model. Models of single dental pulp injury (SDPI) and multiple dental pulp injuries (MDPI) were used to induce trigeminal neuropathic pain. The signs of dental pain-related behavior were assessed using the mechanical head withdrawal threshold (HWT). Immunofluorescence and western blot protocols were used to monitor astrocyte activation, changes in apoptosis-related proteins, and GABAergic interneuron plasticity. SDPI mice exhibited an initial marked decrease in HWT from days one to 14, followed by progressive recovery from days 21 to 42. From days 49 to 70, the HWT increased and returned to the control values. In contrast, MDPI mice showed a persistent decrease in HWT from days one to 70. MDPI increased glial fibrillary acidic protein (GFAP) and decreased glutamine synthetase (GS) and glutamate transporter-1 (GLT1) expression in the Vi/Vc transition zone of the brainstem on day 70, whereas no changes in astrocytic markers were observed on day 70 after SDPI. Increased expression of cleaved cysteine-aspartic protease-3 (cleaved caspase-3) and Bcl-2-associated X protein (Bax), along with decreased B-cell lymphoma/leukemia 2 (Bcl-2), were observed at day 70 after MDPI but not after SDPI. The downregulation of glutamic acid decarboxylase (GAD65) expression was observed on day 70 only after MDPI. The effects of MDPI-induced lower HWT from days one to 70 were attenuated by 12 sessions of EA treatment (days one to 21 after MDPI). Changes in astrocytic GFAP, GS, and GLT-1, along with cleaved caspase-3, Bax, Bcl-2, and GAD65 expression observed 70 days after MDPI, were reversed by EA treatment. The results suggest that persistent dental pain in mice was induced by MDPI but not by SDPI. This effect was associated with trigeminal GABAergic interneuron plasticity along with morphological and functional changes in astrocytes. EA exerts prolonged analgesic and neuroprotective effects that might be associated with the modulation of neuron-glia crosstalk mechanisms.
Collapse
Affiliation(s)
| | - Lih-Jyh Fuh
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Shih-Ya Hung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Division of Surgery, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chen Lee
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Department of Acupuncture, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chuen Huang
- Department of Medical Research, China Medical University Hospital, School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Szu-Yu Chien
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
3
|
Santos-Cruz LF, Sigrist-Flores SC, Castañeda-Partida L, Heres-Pulido ME, Dueñas-García IE, Piedra-Ibarra E, Ponciano-Gómez A, Jiménez-Flores R, Campos-Aguilar M. Effects of Fructose and Palmitic Acid on Gene Expression in Drosophila melanogaster Larvae: Implications for Neurodegenerative Diseases. Int J Mol Sci 2023; 24:10279. [PMID: 37373426 DOI: 10.3390/ijms241210279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
One of the largest health problems worldwide is the development of chronic noncommunicable diseases due to the consumption of hypercaloric diets. Among the most common alterations are cardiovascular diseases, and a high correlation between overnutrition and neurodegenerative diseases has also been found. The urgency in the study of specific damage to tissues such as the brain and intestine led us to use Drosophila melanogaster to study the metabolic effects caused by the consumption of fructose and palmitic acid in specific tissues. Thus, third instar larvae (96 ± 4 h) of the wild Canton-S strain of D. melanogaster were used to perform transcriptomic profiling in brain and midgut tissues to test for the potential metabolic effects of a diet supplemented with fructose and palmitic acid. Our data infer that this diet can alter the biosynthesis of proteins at the mRNA level that participate in the synthesis of amino acids, as well as fundamental enzymes for the dopaminergic and GABAergic systems in the midgut and brain. These also demonstrated alterations in the tissues of flies that may help explain the development of various reported human diseases associated with the consumption of fructose and palmitic acid in humans. These studies will not only help to better understand the mechanisms by which the consumption of these alimentary products is related to the development of neuronal diseases but may also contribute to the prevention of these conditions.
Collapse
Affiliation(s)
- Luis Felipe Santos-Cruz
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Santiago Cristobal Sigrist-Flores
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Laura Castañeda-Partida
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - María Eugenia Heres-Pulido
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Irma Elena Dueñas-García
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Elías Piedra-Ibarra
- Fisiología Vegetal (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Alberto Ponciano-Gómez
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Rafael Jiménez-Flores
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Myriam Campos-Aguilar
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| |
Collapse
|
4
|
Hwang Y, Park JH, Kim HC, Shin EJ. GABA B receptor activation alters astrocyte phenotype changes induced by trimethyltin via ERK signaling in the dentate gyrus of mice. Life Sci 2023; 319:121529. [PMID: 36841471 DOI: 10.1016/j.lfs.2023.121529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
AIMS We examined the effect of γ-aminobutyric acid (GABA)B receptor activation on astrocyte phenotype changes induced by trimethyltin (TMT) in the dentate gyrus of mice. MAIN METHODS Male C57BL/6N mice received TMT (2.6 mg/kg, i.p.), and the expression of GABAB receptors was evaluated in the hippocampus. The GABAB receptor agonist baclofen (2.5, 5, or 10 mg/kg, i.p. × 5 at 12-h intervals) was administered 3-5 days after TMT treatment, and the expression of Iba-1, GFAP, and astrocyte phenotype markers was evaluated 6 days after TMT. SL327 (30 mg/kg, i.p.), an extracellular signal-related kinase (ERK) inhibitor, was administered 1 h after each baclofen treatment. KEY FINDINGS TMT insult significantly induced the astroglial expression of GABAB receptors in the dentate molecular layer. Baclofen significantly promoted the expression of S100A10, EMP1, and CD109, but not that of C3, GGTA1, and MX1 induced by TMT. In addition, baclofen significantly increased the TMT-induced expression of p-ERK in the dentate molecular layer. Interestingly, p-ERK was more colocalized with S100A10 than with C3 after TMT insult, and a significant positive correlation was found between the expression of p-ERK and S100A10. Consistently, SL327 reversed the effect of baclofen on astrocyte phenotype changes. Baclofen also enhanced the TMT-induced astroglial expression of glial cell-derived neurotrophic factor (GDNF), an anti-inflammatory astrocytes-to-microglia mediator, and consequently attenuated Iba-1 expression and delayed apoptotic neuronal death. SIGNIFICANCE Our results suggest that GABAB receptor activation increases S100A10-positive anti-inflammatory astrocytes and astroglial GDNF expression via ERK signaling after TMT excitotoxicity in the dentate molecular layer of mice.
Collapse
Affiliation(s)
- Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jung Hoon Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
5
|
Cuellar-Santoyo AO, Ruiz-Rodríguez VM, Mares-Barbosa TB, Patrón-Soberano A, Howe AG, Portales-Pérez DP, Miquelajáuregui Graf A, Estrada-Sánchez AM. Revealing the contribution of astrocytes to glutamatergic neuronal transmission. Front Cell Neurosci 2023; 16:1037641. [PMID: 36744061 PMCID: PMC9893894 DOI: 10.3389/fncel.2022.1037641] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Research on glutamatergic neurotransmission has focused mainly on the function of presynaptic and postsynaptic neurons, leaving astrocytes with a secondary role only to ensure successful neurotransmission. However, recent evidence indicates that astrocytes contribute actively and even regulate neuronal transmission at different levels. This review establishes a framework by comparing glutamatergic components between neurons and astrocytes to examine how astrocytes modulate or otherwise influence neuronal transmission. We have included the most recent findings about the role of astrocytes in neurotransmission, allowing us to understand the complex network of neuron-astrocyte interactions. However, despite the knowledge of synaptic modulation by astrocytes, their contribution to specific physiological and pathological conditions remains to be elucidated. A full understanding of the astrocyte's role in neuronal processing could open fruitful new frontiers in the development of therapeutic applications.
Collapse
Affiliation(s)
- Ares Orlando Cuellar-Santoyo
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Victor Manuel Ruiz-Rodríguez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Teresa Belem Mares-Barbosa
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Araceli Patrón-Soberano
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Andrew G. Howe
- Intelligent Systems Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Diana Patricia Portales-Pérez
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | | | - Ana María Estrada-Sánchez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| |
Collapse
|
6
|
Critical Involvement of Glial Cells in Manganese Neurotoxicity. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1596185. [PMID: 34660781 PMCID: PMC8514895 DOI: 10.1155/2021/1596185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022]
Abstract
Over the years, most of the research concerning manganese exposure was restricted to the toxicity of neuronal cells. Manganese is an essential trace element that in high doses exerts neurotoxic effects. However, in the last two decades, efforts have shifted toward a more comprehensive approach that takes into account the involvement of glial cells in the development of neurotoxicity as a brain insult. Glial cells provide structural, trophic, and metabolic support to neurons. Nevertheless, these cells play an active role in adult neurogenesis, regulation of synaptogenesis, and synaptic plasticity. Disturbances in glial cell function can lead to neurological disorders, including neurodegenerative diseases. This review highlights the pivotal role that glial cells have in manganese-induced neurotoxicity as well as the most sounding mechanisms involved in the development of this phenomenon.
Collapse
|
7
|
Glutamine Synthetase as a Therapeutic Target for Cancer Treatment. Int J Mol Sci 2021; 22:ijms22041701. [PMID: 33567690 PMCID: PMC7915753 DOI: 10.3390/ijms22041701] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
The significance of glutamine in cancer metabolism has been extensively studied. Cancer cells consume an excessive amount of glutamine to facilitate rapid proliferation. Thus, glutamine depletion occurs in various cancer types, especially in poorly vascularized cancers. This makes glutamine synthetase (GS), the only enzyme responsible for de novo synthesizing glutamine, essential in cancer metabolism. In cancer, GS exhibits pro-tumoral features by synthesizing glutamine, supporting nucleotide synthesis. Furthermore, GS is highly expressed in the tumor microenvironment (TME) and provides glutamine to cancer cells, allowing cancer cells to maintain sufficient glutamine level for glutamine catabolism. Glutamine catabolism, the opposite reaction of glutamine synthesis by GS, is well known for supporting cancer cell proliferation via contributing biosynthesis of various essential molecules and energy production. Either glutamine anabolism or catabolism has a critical function in cancer metabolism depending on the complex nature and microenvironment of cancers. In this review, we focus on the role of GS in a variety of cancer types and microenvironments and highlight the mechanism of GS at the transcriptional and post-translational levels. Lastly, we discuss the therapeutic implications of targeting GS in cancer.
Collapse
|
8
|
Balouch B, Funnell JL, Ziemba AM, Puhl DL, Lin K, Gottipati MK, Gilbert RJ. Conventional immunomarkers stain a fraction of astrocytes in vitro: A comparison of rat cortical and spinal cord astrocytes in naïve and stimulated cultures. J Neurosci Res 2020; 99:806-826. [PMID: 33295039 DOI: 10.1002/jnr.24759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/14/2020] [Indexed: 11/05/2022]
Abstract
Astrocytes are responsible for a wide variety of essential functions throughout the central nervous system. The protein markers glial fibrillary acidic protein (GFAP), glutamate aspartate transporter (GLAST), glutamate transporter-1 (GLT-1), glutamine synthetase (GS), 10-formyltetrahydrofolate dehydrogenase (ALDH1L1), and the transcription factor SOX9 are routinely used to label astrocytes in primary rodent cultures. However, GLAST, GLT-1, GS, and SOX9 are also produced by microglia and oligodendrocytes and GFAP, GLAST, GLT-1, and GS production levels are affected by astrocyte phenotypic changes associated with reactive astrogliosis. No group has performed a comprehensive immunocytochemical evaluation to quantify the percentage of cells labeled by these markers in vitro, nor compared changes in staining between cortex- and spinal cord-derived cells in naïve and stimulated cultures. Here, we quantified the percentage of cells positively stained for these six markers in astrocyte, microglia, and oligodendrocyte cultures isolated from neonatal rat cortices and spinal cords. Additionally, we incubated the astrocytes with transforming growth factor (TGF)-β1 or TGF-β3 to determine if the labeling of these markers is altered by these stimuli. We found that only SOX9 in cortical cultures and ALDH1L1 in spinal cord cultures labeled more than 75% of the cells in naïve and stimulated astrocyte cultures and stained less than 5% of the cells in microglia and oligodendrocyte cultures. Furthermore, significantly more cortical than spinal cord astrocytes stained for GFAP, GLAST, and ALDH1L1 in naïve cultures, whereas significantly more spinal cord than cortical astrocytes stained for GLAST and GS in TGF-β1-treated cultures. These findings are important as variability in marker staining may lead to misinterpretation of the astrocyte response in cocultures, migration assays, or engineered disease models.
Collapse
Affiliation(s)
- Bailey Balouch
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jessica L Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Alexis M Ziemba
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Neuroscience Program, Smith College, Northampton, MA, USA
| | - Devan L Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Kathy Lin
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Manoj K Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
9
|
Macrophage Stimulated by Low Ambient Temperature Hasten Tumor Growth via Glutamine Production. Biomedicines 2020; 8:biomedicines8100381. [PMID: 32993179 PMCID: PMC7600495 DOI: 10.3390/biomedicines8100381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 12/25/2022] Open
Abstract
Ambient temperature can regulate the immune response and affect tumor growth. Although thermoneutral caging reduces tumor growth via immune activation, little attention has been paid to the tumorigenic effect of low temperature. In the present study, tumor growth was higher at low ambient temperature (4 °C for 8 h/d) than at the standard housing temperature (22 °C) in allograft models. Low temperature-stimulated tumor growth in mice was reduced by monocyte depletion using clodronate liposomes. Proliferation was considerably greater in cancer cells treated with 33 °C-cultured RAW264.7 cell-conditioned media (33CM) than in cells treated with 37 °C-cultured RAW264.7 cell-conditioned media (37CM). Additionally, glutamine levels were markedly higher in 33CM-treated cells than in 37CM-treated cells. We further confirmed that the addition of glutamine into 37CM enhanced its effects on cancer cell proliferation and glutamine uptake inhibition ameliorated the accelerated proliferation induced by 33CM. Consistently, the inhibition of glutamine uptake in the allograft model exposed to low temperature, effectively reduced tumor volume and weight. Collectively, these data suggest that the secretion and utilization of glutamine by macrophages and cancer cells, respectively, are key regulators of low temperature-enhanced cancer progression in the tumor microenvironment.
Collapse
|
10
|
A spatial similarity of stereochemical environments formed by amino acid residues defines a common epitope of two non-homologous proteins. Sci Rep 2019; 9:14818. [PMID: 31616018 PMCID: PMC6794283 DOI: 10.1038/s41598-019-51350-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/19/2019] [Indexed: 01/02/2023] Open
Abstract
It is critical for development of high-quality antibodies in research and diagnostics to predict accurately their cross-reactivities with "off-target" molecules, which potentially induce false results. Herein, we report a good example of such a cross-reactivity for an off-target due to a stereochemical environment of epitopes, which does not simply depend on amino acid sequences. We found that significant subpopulation of a polyclonal peptide antibody against Bcnt (Bucentaur) (anti-BCNT-C antibody) cross-reacted with a completely different protein, glutamine synthetase (GS), and identified four amino acids, GYFE, in its C-terminal region as the core amino acids for the cross-reaction. Consistent with this finding, the anti-BCNT-C antibody strongly recognized endogenously and exogenously expressed GS in tissues and cultured cells by Western blotting and immunohistochemistry. Furthermore, we elucidated that the cross-reaction is caused by a spatial similarity between the stereochemical environments formed by amino acid residues, including the GYFE of GS and the GYIE of Bcnt, rather than by their primary sequences. These results suggest it is critical to comprehensively analyze antibody interactions with target molecules including off-targets with special attention to the physicochemical environments of epitope-paratope interfaces to decrease the risk of false interpretations of results using antibodies in science and clinical applications.
Collapse
|
11
|
Huyghe D, Denninger AR, Voss CM, Frank P, Gao N, Brandon N, Waagepetersen HS, Ferguson AD, Pangalos M, Doig P, Moss SJ. Phosphorylation of Glutamine Synthetase on Threonine 301 Contributes to Its Inactivation During Epilepsy. Front Mol Neurosci 2019; 12:120. [PMID: 31178690 PMCID: PMC6536897 DOI: 10.3389/fnmol.2019.00120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
The astrocyte-specific enzyme glutamine synthetase (GS), which catalyzes the amidation of glutamate to glutamine, plays an essential role in supporting neurotransmission and in limiting NH4+ toxicity. Accordingly, deficits in GS activity contribute to epilepsy and neurodegeneration. Despite its central role in brain physiology, the mechanisms that regulate GS activity are poorly defined. Here, we demonstrate that GS is directly phosphorylated on threonine residue 301 (T301) within the enzyme’s active site by cAMP-dependent protein kinase (PKA). Phosphorylation of T301 leads to a dramatic decrease in glutamine synthesis. Enhanced T301 phosphorylation was evident in a mouse model of epilepsy, which may contribute to the decreased GS activity seen during this trauma. Thus, our results highlight a novel molecular mechanism that determines GS activity under both normal and pathological conditions.
Collapse
Affiliation(s)
- Deborah Huyghe
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Andrew R Denninger
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Caroline M Voss
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Frank
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ning Gao
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Nicholas Brandon
- Neuroscience, IMED Biotech Unit, AstraZeneca, Boston, MA, United States.,AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA, United States
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew D Ferguson
- Structure & Biophysics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | | | - Peter Doig
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,Department of Neuroscience, Physiology and Pharmacology, University College, London, United Kingdom
| |
Collapse
|
12
|
Transcriptional Regulation of the Glutamate/GABA/Glutamine Cycle in Adult Glia Controls Motor Activity and Seizures in Drosophila. J Neurosci 2019; 39:5269-5283. [PMID: 31064860 PMCID: PMC6607755 DOI: 10.1523/jneurosci.1833-18.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 01/23/2023] Open
Abstract
The fruitfly Drosophila melanogaster has been extensively used as a genetic model for the maintenance of nervous system's functions. Glial cells are of utmost importance in regulating the neuronal functions in the adult organism and in the progression of neurological pathologies. Through a microRNA-based screen in adult Drosophila glia, we uncovered the essential role of a major glia developmental determinant, repo, in the adult fly. Here, we report that Repo expression is continuously required in adult glia to transcriptionally regulate the highly conserved function of neurotransmitter recycling in both males and females. Transient loss of Repo dramatically shortens fly lifespan, triggers motor deficits, and increases the sensibility to seizures, partly due to the impairment of the glutamate/GABA/glutamine cycle. Our findings highlight the pivotal role of transcriptional regulation of genes involved in the glutamate/GABA/glutamine cycle in glia to control neurotransmitter levels in neurons and their behavioral output. The mechanism identified here in Drosophila exemplifies how adult functions can be modulated at the transcriptional level and suggest an active synchronized regulation of genes involved in the same pathway. The process of neurotransmitter recycling is of essential importance in human epileptic and psychiatric disorders and our findings may thus have important consequences for the understanding of the role that transcriptional regulation of neurotransmitter recycling in astrocytes has in human disease. SIGNIFICANCE STATEMENT Glial cells are an essential support to neurons in adult life and have been involved in a number of neurological disorders. What controls the maintenance and modulation of glial functions in adult life is not fully characterized. Through a miR overexpression screen in adult glia in Drosophila, we identify an essential role in adult glia of repo, which directs glial differentiation during embryonic development. Repo levels modulate, via transcriptional regulation, the ability of glial cells to support neurons in the glutamate/GABA/glutamine cycle. This leads to significant abnormalities in motor behavior as assessed through a novel automated paradigm. Our work points to the importance of transcriptional regulation in adult glia for neurotransmitter recycling, a key process in several human neurological disorders.
Collapse
|
13
|
Cao P, Zhang J, Huang Y, Fang Y, Lyu J, Shen Y. The age-related changes and differences in energy metabolism and glutamate-glutamine recycling in the d-gal-induced and naturally occurring senescent astrocytes in vitro. Exp Gerontol 2019; 118:9-18. [PMID: 30610899 DOI: 10.1016/j.exger.2018.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 01/10/2023]
Abstract
Previously, we successfully established a d-galactose (d-gal)-induced astrocyte aging model in vitro. However, whether the changes in the aged astrocytes induced by d-gal are similar to those occurred in naturally are unknown. Therefore, in current study, we simultaneously established d-gal-induced and naturally aged astrocyte aging models in vitro to explore the age-related changes and to compare the differences in these two astrocyte aging models. The Seahorse Extracellular Flux Analyzer was used to examine the mitochondrial metabolism and glycolysis activities of the young and senescent astrocytes. The results showed that the mitochondrial ATP-linked oxygen consumption rates (OCRs) were decreased markedly both in the d-gal-induced and naturally occurring senescent astrocytes. The basal glycolysis activity was increased in the naturally occurring senescent astrocytes, whereas it was decreased in the d-gal-induced senescent astrocytes. Western blot analysis showed that isocitrate dehydrogenase 3 (IDH3), succinate dehydrogenase (SDH) and malate dehydrogenase 2 (MDH2) were markedly decreased both in these two aging models, whereas the iron‑sulfur cluster assembly enzyme (ISCU) was up-regulated in the naturally occurring senescent astrocytes but was down-regulated in the d-gal-induced senescent astrocytes. The expression levels of glial glutamate transporter-1 (GLT-1), glutamine synthetase (GS) and γ-aminobutyric acid type B receptor subunit 2 (GABABR2) were also markedly decreased in these two aging models. In addition, the PI3K/AKT signaling pathway was to be inactivated both in the d-gal-induced and naturally occurring senescent astrocytes. These results indicate that the age-related changes in d-gal-induced senescent astrocytes are not fully consistent with those in naturally occurring senescent astrocytes, and it may be not suitable to use d-gal-induced senescent astrocytes to replace the naturally occurring senescent astrocytes to explore the aging mechanisms under some circumstances.
Collapse
Affiliation(s)
- Pei Cao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jingjing Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yuyan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yujia Fang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jianxin Lyu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China; Zhejiang Provincial People's Hospital, Affliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Yao Shen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
14
|
Estradiol modulates the efficacy of synaptic inhibition by decreasing the dwell time of GABA A receptors at inhibitory synapses. Proc Natl Acad Sci U S A 2017; 114:11763-11768. [PMID: 29078280 PMCID: PMC5676881 DOI: 10.1073/pnas.1705075114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Estrogen plays a critical role in many physiological processes and exerts profound effects on behavior by regulating neuronal excitability. While estrogen has been established to exert effects on dendritic morphology and excitatory neurotransmission its role in regulating neuronal inhibition is poorly understood. Fast synaptic inhibition in the adult brain is mediated by specialized populations of γ-c aA receptors (GABAARs) that are selectively enriched at synapses, a process dependent upon their interaction with the inhibitory scaffold protein gephyrin. Here we have assessed the role that estradiol (E2) plays in regulating the dynamics of GABAARs and stability of inhibitory synapses. Treatment of cultured cortical neurons with E2 reduced the accumulation of GABAARs and gephyrin at inhibitory synapses. However, E2 exposure did not modify the expression of either the total or the plasma membrane GABAARs or gephyrin. Mechanistically, single-particle tracking revealed that E2 treatment selectively reduced the dwell time and thereby decreased the confinement of GABAARs at inhibitory synapses. Consistent with our cell biology measurements, we observed a significant reduction in amplitude of inhibitory synaptic currents in both cultured neurons and hippocampal slices exposed to E2, while their frequency was unaffected. Collectively, our results suggest that acute exposure of neurons to E2 leads to destabilization of GABAARs and gephyrin at inhibitory synapses, leading to reductions in the efficacy of GABAergic inhibition via a postsynaptic mechanism.
Collapse
|
15
|
Sheilabi MA, Battacharyya D, Caetano L, Thom M, Reuber M, Duncan JS, Princivalle AP. Quantitative expression and localization of GABA B receptor protein subunits in hippocampi from patients with refractory temporal lobe epilepsy. Neuropharmacology 2017; 136:117-128. [PMID: 28782512 DOI: 10.1016/j.neuropharm.2017.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/03/2023]
Abstract
This study investigates GABAB protein expression and mRNA levels in three types of specimens. Two types of specimens from patients with temporal lobe epilepsy (TLE), secondary to hippocampal sclerosis, sclerotic hippocampal samples (TLE-HS), and tissue from the structurally preserved non-spiking ipsilateral superior temporal gyrus (TLE-STG) removed from the same patient during epilepsy surgery; and third specimen is hippocampal tissue from individuals with no history of epilepsy (post-mortem controls, PMC). mRNA expression of GABAB subunits was quantified in TLE-HS, TLE-STG and PMC specimens by qRT-PCR. Qualitative and quantitative Western blot (WB) and immunohistochemistry techniques were employed to quantify and localize GABAB proteins subunits. qRT-PCR data demonstrated an overall decrease of both GABAB1 isoforms in TLE-HS compared to TLE-STG. These results were mirrored by the WB findings. GABAB2 mRNA and protein were significantly reduced in TLE-HS samples compared to TLE-STG; however they appeared to be upregulated in TLE-HS compared to the PMC samples. Immunohistochemistry (IHC) showed that GABAB proteins were widely distributed in PMC and TLE-HS hippocampal sections with regional differences in the intensity of the signal. The higher expression of mature GABAB protein in TLE-HS than PMC is in agreement with previous studies. However, these findings could be due to post-mortem changes in PMC specimens. The TLE-STG samples examined here represent a better 'control' tissue compared to TLE-HS samples characterised by lower than expected GABAB expression. This interpretation provides a better explanation for previous functional studies suggesting reduced inhibition in TLE-HS tissue due to attenuated GABAB currents. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Mariam A Sheilabi
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | - Dev Battacharyya
- Neurosurgery, Sheffield Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK
| | - Laura Caetano
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | - Maria Thom
- Department of Neuropathology, Institute of Neurology, UCL, Queen Square, London, UK
| | - Markus Reuber
- Academic Neurology Unit, University of Sheffield, Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, UCL, Queen Square, London, UK
| | - Alessandra P Princivalle
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK; Division of Neuroscience, Department of Pharmacology, Medical School, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|