1
|
Schneider-Poetsch T, Dang Y, Iwasaki W, Arata M, Shichino Y, Al Mourabit A, Moriou C, Romo D, Liu JO, Ito T, Iwasaki S, Yoshida M. Girolline is a sequence context-selective modulator of eIF5A activity. Nat Commun 2025; 16:223. [PMID: 39794322 DOI: 10.1038/s41467-024-54838-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/21/2024] [Indexed: 01/13/2025] Open
Abstract
Natural products have a long history of providing probes into protein biosynthesis, with many of these compounds serving as therapeutics. The marine natural product girolline has been described as an inhibitor of protein synthesis. Its precise mechanism of action, however, has remained unknown. The data we present here suggests that girolline is a sequence-selective modulator of translation factor eIF5A. Girolline interferes with ribosome-eIF5A interaction and induces ribosome stalling where translational progress is impeded, including on AAA-encoded lysine. Our data furthermore indicate that eIF5A plays a physiological role in ribosome-associated quality control and in maintaining the efficiency of translational progress. Girolline helped to deepen our understanding of the interplay between protein production and quality control in a physiological setting and offers a potent chemical tool to selectively modulate gene expression.
Collapse
Affiliation(s)
- Tilman Schneider-Poetsch
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wakana Iwasaki
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Mayumi Arata
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Ali Al Mourabit
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Celine Moriou
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Daniel Romo
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, Waco, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
- Office of University Professors, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Luke GA, Ross LS, Lo YT, Wu HC, Ryan MD. Picornavirus Evolution: Genomes Encoding Multiple 2A NPGP Sequences-Biomedical and Biotechnological Utility. Viruses 2024; 16:1587. [PMID: 39459920 PMCID: PMC11512398 DOI: 10.3390/v16101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Alignment of picornavirus proteinase/polymerase sequences reveals this family evolved into five 'supergroups'. Interestingly, the nature of the 2A region of the picornavirus polyprotein is highly correlated with this phylogeny. Viruses within supergroup 4, the Paavivirinae, have complex 2A regions with many viruses encoding multiple 2ANPGP sequences. In vitro transcription/translation analyses of a synthetic polyprotein comprising green fluorescent protein (GFP) linked to β-glucuronidase (GUS) via individual 2ANPGPs showed two main phenotypes: highly active 2ANPGP sequences-similar to foot-and-mouth disease virus 2ANPGP-and, surprisingly, a novel phenotype of some 2ANPGP sequences which apparently terminate translation at the C-terminus of 2ANPGP without detectable re-initiation of downstream sequences (GUS). Probing databases with the short sequences between 2ANPGPs did not reveal any potential 'accessory' functions. The novel, highly active, 2A-like sequences we identified substantially expand the toolbox for biomedical/biotechnological co-expression applications.
Collapse
Affiliation(s)
- Garry A. Luke
- School of Biology, University of St. Andrews, Biomolecular Sciences Research Complex, North Haugh, St. Andrews KY16 9ST, UK; (G.A.L.); (L.S.R.)
| | - Lauren S. Ross
- School of Biology, University of St. Andrews, Biomolecular Sciences Research Complex, North Haugh, St. Andrews KY16 9ST, UK; (G.A.L.); (L.S.R.)
| | - Yi-Ting Lo
- International College, National Pingtung University of Science and Technology, 1, Shuefu Rd., Neipu, Pingtung 91201, Taiwan; (Y.-T.L.); (H.-C.W.)
| | - Hsing-Chieh Wu
- International College, National Pingtung University of Science and Technology, 1, Shuefu Rd., Neipu, Pingtung 91201, Taiwan; (Y.-T.L.); (H.-C.W.)
| | - Martin D. Ryan
- School of Biology, University of St. Andrews, Biomolecular Sciences Research Complex, North Haugh, St. Andrews KY16 9ST, UK; (G.A.L.); (L.S.R.)
| |
Collapse
|
3
|
Taguchi H, Niwa T. Reconstituted Cell-free Translation Systems for Exploring Protein Folding and Aggregation. J Mol Biol 2024; 436:168726. [PMID: 39074633 DOI: 10.1016/j.jmb.2024.168726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Protein folding is crucial for achieving functional three-dimensional structures. However, the process is often hampered by aggregate formation, necessitating the presence of chaperones and quality control systems within the cell to maintain protein homeostasis. Despite a long history of folding studies involving the denaturation and subsequent refolding of translation-completed purified proteins, numerous facets of cotranslational folding, wherein nascent polypeptides are synthesized by ribosomes and folded during translation, remain unexplored. Cell-free protein synthesis (CFPS) systems are invaluable tools for studying cotranslational folding, offering a platform not only for elucidating mechanisms but also for large-scale analyses to identify aggregation-prone proteins. This review provides an overview of the extensive use of CFPS in folding studies to date. In particular, we discuss a comprehensive aggregation formation assay of thousands of Escherichia coli proteins conducted under chaperone-free conditions using a reconstituted translation system, along with its derived studies.
Collapse
Affiliation(s)
- Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-19, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-19, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
4
|
Furukawa H, Nagashio Y, Tsutsumi K, Matsubara N, Kato R, Tomikawa C, Takai K. Recombinant expression and purification of phenylalanyl-tRNA synthetase from wheat: a long-lasting poly(U)-dependent poly(Phe) synthesis system. Prep Biochem Biotechnol 2024; 54:1088-1097. [PMID: 38441081 DOI: 10.1080/10826068.2024.2324077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Synthetic genes for the two subunits of phenylalanyl-tRNA synthetase (PheRS) from wheat were expressed in Escherichia coli. When each gene was induced individually, the α subunit with a cleavable 6 × His tag at the amino terminus was largely soluble, while the β subunit was almost completely insoluble. When the two subunits were co-expressed, a soluble fraction containing the two subunits were obtained. This was purified by a standard method in which the tag was cleaved off with a specific protease after affinity purification. As the sample contained slightly more PheRSα than PheRSβ, we further resolved the sample by gel filtration to obtain the fraction that showed the size of the conventional α2β2 tetrameric complex and contains an almost equal amount of the two subunits. The final yield was 0.6 mg per 1 liter of the culture medium, and the specific activity was 28 nmol min-1 mg-1, which was higher than that of a fraction purified from wheat germ. This recombinant PheRS was used, along with purified samples of the elongation factors and the ribosomes from wheat germ, for a poly(U)-dependent poly(Phe) synthesis reaction. The reaction was dependent on the added components and lasted for more than several hours.
Collapse
Affiliation(s)
- Haruyuki Furukawa
- Department of Materials Sciences and Biotechnology and Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Yuto Nagashio
- Department of Materials Sciences and Biotechnology and Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Kensuke Tsutsumi
- Department of Materials Sciences and Biotechnology and Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Naofumi Matsubara
- Department of Materials Sciences and Biotechnology and Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Ryohei Kato
- Department of Materials Sciences and Biotechnology and Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Chie Tomikawa
- Department of Materials Sciences and Biotechnology and Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Kazuyuki Takai
- Department of Materials Sciences and Biotechnology and Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
5
|
Tanaka M, Yokoyama T, Saito H, Nishimoto M, Tsuda K, Sotta N, Shigematsu H, Shirouzu M, Iwasaki S, Ito T, Fujiwara T. Boric acid intercepts 80S ribosome migration from AUG-stop by stabilizing eRF1. Nat Chem Biol 2024; 20:605-614. [PMID: 38267667 DOI: 10.1038/s41589-023-01513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 11/24/2023] [Indexed: 01/26/2024]
Abstract
In response to environmental changes, cells flexibly and rapidly alter gene expression through translational controls. In plants, the translation of NIP5;1, a boric acid diffusion facilitator, is downregulated in response to an excess amount of boric acid in the environment through upstream open reading frames (uORFs) that consist of only AUG and stop codons. However, the molecular details of how this minimum uORF controls translation of the downstream main ORF in a boric acid-dependent manner have remained unclear. Here, by combining ribosome profiling, translation complex profile sequencing, structural analysis with cryo-electron microscopy and biochemical assays, we show that the 80S ribosome assembled at AUG-stop migrates into the subsequent RNA segment, followed by downstream translation initiation, and that boric acid impedes this process by the stable confinement of eukaryotic release factor 1 on the 80S ribosome on AUG-stop. Our results provide molecular insight into translation regulation by a minimum and environment-responsive uORF.
Collapse
Affiliation(s)
- Mayuki Tanaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeshi Yokoyama
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hironori Saito
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Madoka Nishimoto
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Kengo Tsuda
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Naoyuki Sotta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hideki Shigematsu
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Sayo, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Shintaro Iwasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
- RIKEN Cluster for Pioneering Research, Wako, Japan.
| | - Takuhiro Ito
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan.
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Ito H, Machida K, Hasumi M, Ueyama M, Nagai Y, Imataka H, Taguchi H. Reconstitution of C9orf72 GGGGCC repeat-associated non-AUG translation with purified human translation factors. Sci Rep 2023; 13:22826. [PMID: 38129650 PMCID: PMC10739749 DOI: 10.1038/s41598-023-50188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Nucleotide repeat expansion of GGGGCC (G4C2) in the non-coding region of C9orf72 is the most common genetic cause underlying amyotrophic lateral sclerosis and frontotemporal dementia. Transcripts harboring this repeat expansion undergo the translation of dipeptide repeats via a non-canonical process known as repeat-associated non-AUG (RAN) translation. In order to ascertain the essential components required for RAN translation, we successfully recapitulated G4C2-RAN translation using an in vitro reconstituted translation system comprising human factors, namely the human PURE system. Our findings conclusively demonstrate that the presence of fundamental translation factors is sufficient to mediate the elongation from the G4C2 repeat. Furthermore, the initiation mechanism proceeded in a 5' cap-dependent manner, independent of eIF2A or eIF2D. In contrast to cell lysate-mediated RAN translation, where longer G4C2 repeats enhanced translation, we discovered that the expansion of the G4C2 repeats inhibited translation elongation using the human PURE system. These results suggest that the repeat RNA itself functions as a repressor of RAN translation. Taken together, our utilization of a reconstituted RAN translation system employing minimal factors represents a distinctive and potent approach for elucidating the intricacies underlying RAN translation mechanism.
Collapse
Grants
- JPMJFS2112 Japan Science and Technology Agency
- JP26116002 Ministry of Education, Culture, Sports, Science and Technology
- JP18H03984 Ministry of Education, Culture, Sports, Science and Technology
- JP21H04763 Ministry of Education, Culture, Sports, Science and Technology
- JP20H05925 Ministry of Education, Culture, Sports, Science and Technology
- 2019-25 Mitsubishi Foundation
- 2019 Uehara Memorial Foundation
Collapse
Affiliation(s)
- Hayato Ito
- School of Life Science and Technology, Tokyo Institute of Technology, S2-19, Nagatsuta 4259, Midori-ku, Yokohama, 226-8501, Japan
| | - Kodai Machida
- Graduate School of Engineering, University of Hyogo, Shosha, 2167, Himeji, Hyogo, 671-2280, Japan
| | - Mayuka Hasumi
- School of Life Science and Technology, Tokyo Institute of Technology, S2-19, Nagatsuta 4259, Midori-ku, Yokohama, 226-8501, Japan
| | - Morio Ueyama
- Department of Neurology, Faculty of Medicine, Kindai University, Ohonohigashi 377-2, Osaka-Sayama, 589-8511, Japan
| | - Yoshitaka Nagai
- Department of Neurology, Faculty of Medicine, Kindai University, Ohonohigashi 377-2, Osaka-Sayama, 589-8511, Japan
| | - Hiroaki Imataka
- Graduate School of Engineering, University of Hyogo, Shosha, 2167, Himeji, Hyogo, 671-2280, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, S2-19, Nagatsuta 4259, Midori-ku, Yokohama, 226-8501, Japan.
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-19, Nagatsuta 4259, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
7
|
Ito Y, Chadani Y, Niwa T, Yamakawa A, Machida K, Imataka H, Taguchi H. Nascent peptide-induced translation discontinuation in eukaryotes impacts biased amino acid usage in proteomes. Nat Commun 2022; 13:7451. [PMID: 36460666 PMCID: PMC9718836 DOI: 10.1038/s41467-022-35156-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
Robust translation elongation of any given amino acid sequence is required to shape proteomes. Nevertheless, nascent peptides occasionally destabilize ribosomes, since consecutive negatively charged residues in bacterial nascent chains can stochastically induce discontinuation of translation, in a phenomenon termed intrinsic ribosome destabilization (IRD). Here, using budding yeast and a human factor-based reconstituted translation system, we show that IRD also occurs in eukaryotic translation. Nascent chains enriched in aspartic acid (D) or glutamic acid (E) in their N-terminal regions alter canonical ribosome dynamics, stochastically aborting translation. Although eukaryotic ribosomes are more robust to ensure uninterrupted translation, we find many endogenous D/E-rich peptidyl-tRNAs in the N-terminal regions in cells lacking a peptidyl-tRNA hydrolase, indicating that the translation of the N-terminal D/E-rich sequences poses an inherent risk of failure. Indeed, a bioinformatics analysis reveals that the N-terminal regions of ORFs lack D/E enrichment, implying that the translation defect partly restricts the overall amino acid usage in proteomes.
Collapse
Affiliation(s)
- Yosuke Ito
- grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503 Japan
| | - Yuhei Chadani
- grid.32197.3e0000 0001 2179 2105Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503 Japan
| | - Tatsuya Niwa
- grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503 Japan ,grid.32197.3e0000 0001 2179 2105Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503 Japan
| | - Ayako Yamakawa
- grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503 Japan
| | - Kodai Machida
- grid.266453.00000 0001 0724 9317Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 Japan
| | - Hiroaki Imataka
- grid.266453.00000 0001 0724 9317Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 Japan
| | - Hideki Taguchi
- grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503 Japan ,grid.32197.3e0000 0001 2179 2105Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503 Japan
| |
Collapse
|
8
|
Takai K. The uridine to pseudouridine modification at the wobble position of eukaryotic isoleucine tRNA species is unlikely to induce mistranslation. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2021; 41:137-153. [PMID: 34852733 DOI: 10.1080/15257770.2021.2011916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Replacement of a U in an RNA duplex with a pseudouridine (Ψ), in general, stabilize the duplex because of the stronger stacking interaction, even concerning the wobble pair with G. The tRNA species specific to the AUA isoleucine codon in many eukaryotes have a Ψ at the first position of the anticodon. This tRNAIle would cause mistranslation if it could recognize the AUG codon through formation of a Ψ-G base pair. Here, I propose rationales for the minimal promotive effect of the U to Ψ modification on the mistranslation of the AUG codon.
Collapse
Affiliation(s)
- Kazuyuki Takai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
9
|
Machida K, Miyawaki S, Kanzawa K, Hakushi T, Nakai T, Imataka H. An in Vitro Reconstitution System Defines the Defective Step in the Biogenesis of Mutated β-Actin Proteins. ACS Synth Biol 2021; 10:3158-3166. [PMID: 34752068 DOI: 10.1021/acssynbio.1c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vitro reconstitution of whole cellular events is one of the important goals in synthetic biology. Using a cell-free protein synthesis (CFPS) system reconstituted with human translation factors and chaperones, we reproduced the biogenesis of β-actin, synthesis, folding, and polymerization in a test tube. This system enabled us to define which step of the β-actin biogenesis was defective in genetic mutations related to diseases. Hence, the CFPS system reconstituted with human factors may be a useful tool for analyzing proteostasis in eukaryotes.
Collapse
Affiliation(s)
- Kodai Machida
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Shoma Miyawaki
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Kuru Kanzawa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Taiki Hakushi
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Tomonori Nakai
- Graduate School of Life Science, University of Hyogo, Himeji 671-2201, Japan
| | - Hiroaki Imataka
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| |
Collapse
|
10
|
Proof of Concept of the Yadokari Nature: a Capsidless Replicase-Encoding but Replication-Dependent Positive-Sense Single-Stranded RNA Virus Hosted by an Unrelated Double-Stranded RNA Virus. J Virol 2021; 95:e0046721. [PMID: 34106772 DOI: 10.1128/jvi.00467-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously proposed a new virus lifestyle or yadokari/yadonushi nature exhibited by a positive-sense single-stranded RNA (ssRNA) virus, yadokari virus 1 (YkV1), and an unrelated double-stranded RNA (dsRNA) virus, yadonushi virus 1 (YnV1) in a phytopathogenic ascomycete, Rosellinia necatrix. We have proposed that YkV1 diverts the YnV1 capsid to trans-encapsidate YkV1 RNA and RNA-dependent RNA polymerase (RdRp) and replicate in the heterocapsid. However, it remains uncertain whether YkV1 replicates using its own RdRp and whether YnV1 capsid copackages both YkV1 and YnV1 components. To address these questions, we first took advantage of the reverse genetics tools available for YkV1. Mutations in the GDD RdRp motif, one of the two identifiable functional motifs in the YkV1 polyprotein, abolished its replication competency. Mutations were also introduced in the conserved 2A-like peptide motif, hypothesized to cleave the YkV1 polyprotein cotranslationally. Interestingly, the replication proficiency of YkV1 mutants in the host fungus agreed with the cleavage activity of the 2A-like peptide tested using a baculovirus expression system. Cesium chloride equilibrium density gradient centrifugation allowed for the separation of particles, with a subset of YnV1 capsids solely packaging YkV1 dsRNA and RdRp. These results provide proof of concept that a capsidless positive-sense ssRNA [(+)ssRNA] virus is hosted by an unrelated dsRNA virus. IMPORTANCE Viruses typically encode their own capsids that encase their genomes. However, a capsidless positive-sense single-stranded RNA [(+)ssRNA] virus, YkV1, depends on an unrelated double-stranded RNA (dsRNA) virus, YnV1, for encapsidation and replication. We previously showed that YkV1 highjacks the capsid of YnV1 for trans-encapsidation of its own RNA and RdRp. YkV1 was hypothesized to divert the heterocapsid as the replication site, as is commonly observed for dsRNA viruses. Herein, mutational analyses showed that the RdRp and 2A-like domains of the YkV1 polyprotein are important for its replication. The active RdRp must be cleaved by a 2A-like peptide from the C-proximal protein. Cesium chloride equilibrium density gradient centrifugation allowed for the separation of particles, with YnV1 capsids solely packaging YkV1 dsRNA and RdRp. This study provides proof of concept of a virus neo-lifestyle where a (+)ssRNA virus snatches capsids from an unrelated dsRNA virus to replicate with its own RdRp, thereby mimicking the typical dsRNA virus lifestyle.
Collapse
|
11
|
In Vitro Reconstitution of Yeast Translation System Capable of Synthesizing Long Polypeptide and Recapitulating Programmed Ribosome Stalling. Methods Protoc 2021; 4:mps4030045. [PMID: 34287320 PMCID: PMC8293373 DOI: 10.3390/mps4030045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/27/2022] Open
Abstract
The rates of translation elongation or termination in eukaryotes are modulated through cooperative molecular interactions involving mRNA, the ribosome, aminoacyl- and nascent polypeptidyl-tRNAs, and translation factors. To investigate the molecular mechanisms underlying these processes, we developed an in vitro translation system from yeast, reconstituted with purified translation elongation and termination factors, utilizing CrPV IGR IRES-containing mRNA, which functions in the absence of initiation factors. The system is capable of synthesizing not only short oligopeptides but also long reporter proteins such as nanoluciferase. By setting appropriate translation reaction conditions, such as the Mg2+/polyamine concentration, the arrest of translation elongation by known ribosome-stalling sequences (e.g., polyproline and CGA codon repeats) is properly recapitulated in this system. We describe protocols for the preparation of the system components, manipulation of the system, and detection of the translation products. We also mention critical parameters for setting up the translation reaction conditions. This reconstituted translation system not only facilitates biochemical analyses of translation but is also useful for various applications, such as structural and functional studies with the aim of designing drugs that act on eukaryotic ribosomes, and the development of systems for producing novel functional proteins by incorporating unnatural amino acids by eukaryotic ribosomes.
Collapse
|
12
|
Ataluren and aminoglycosides stimulate read-through of nonsense codons by orthogonal mechanisms. Proc Natl Acad Sci U S A 2021; 118:2020599118. [PMID: 33414181 PMCID: PMC7812769 DOI: 10.1073/pnas.2020599118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nonsense mutations giving rise to premature stop codons (PSCs) cause many diseases, creating the need to develop safe and effective translational read-through–inducing drugs (TRIDs). The current best-characterized TRIDs are ataluren and aminoglycosides. Only ataluren has been approved for clinical use, albeit in a limited context. Here, we provide rate measurements of elementary steps in a single eukaryotic translation elongation cycle, allowing us to demonstrate that ataluren and the aminoglycoside G418 employ orthogonal mechanisms in stimulating PSC read-through: ataluren by inhibiting release factor-dependent termination of protein synthesis and G418 by increasing functional near-cognate transfer RNA mispairing, which permits continuation of synthesis. We conclude that development of new TRIDs combatting PSC diseases should prioritize those directed toward inhibiting termination. During protein synthesis, nonsense mutations, resulting in premature stop codons (PSCs), produce truncated, inactive protein products. Such defective gene products give rise to many diseases, including cystic fibrosis, Duchenne muscular dystrophy (DMD), and some cancers. Small molecule nonsense suppressors, known as TRIDs (translational read-through–inducing drugs), stimulate stop codon read-through. The best characterized TRIDs are ataluren, which has been approved by the European Medicines Agency for the treatment of DMD, and G418, a structurally dissimilar aminoglycoside. Previously [1], we applied a highly purified in vitro eukaryotic translation system to demonstrate that both aminoglycosides like G418 and more hydrophobic molecules like ataluren stimulate read-through by direct interaction with the cell’s protein synthesis machinery. Our results suggested that they might do so by different mechanisms. Here, we pursue this suggestion through a more-detailed investigation of ataluren and G418 effects on read-through. We find that ataluren stimulation of read-through derives exclusively from its ability to inhibit release factor activity. In contrast, G418 increases functional near-cognate tRNA mispairing with a PSC, resulting from binding to its tight site on the ribosome, with little if any effect on release factor activity. The low toxicity of ataluren suggests that development of new TRIDs exclusively directed toward inhibiting termination should be a priority in combatting PSC diseases. Our results also provide rate measurements of some of the elementary steps during the eukaryotic translation elongation cycle, allowing us to determine how these rates are modified when cognate tRNA is replaced by near-cognate tRNA ± TRIDs.
Collapse
|
13
|
Hirayama C, Machida K, Noi K, Murakawa T, Okumura M, Ogura T, Imataka H, Inaba K. Distinct roles and actions of protein disulfide isomerase family enzymes in catalysis of nascent-chain disulfide bond formation. iScience 2021; 24:102296. [PMID: 33855279 PMCID: PMC8024706 DOI: 10.1016/j.isci.2021.102296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/13/2021] [Accepted: 03/05/2021] [Indexed: 12/04/2022] Open
Abstract
The mammalian endoplasmic reticulum (ER) harbors more than 20 members of the protein disulfide isomerase (PDI) family that act to maintain proteostasis. Herein, we developed an in vitro system for directly monitoring PDI- or ERp46-catalyzed disulfide bond formation in ribosome-associated nascent chains of human serum albumin. The results indicated that ERp46 more efficiently introduced disulfide bonds into nascent chains with a short segment exposed outside the ribosome exit site than PDI. Single-molecule analysis by high-speed atomic force microscopy further revealed that PDI binds nascent chains persistently, forming a stable face-to-face homodimer, whereas ERp46 binds for a shorter time in monomeric form, indicating their different mechanisms for substrate recognition and disulfide bond introduction. Thus, ERp46 serves as a more potent disulfide introducer especially during the early stages of translation, whereas PDI can catalyze disulfide formation when longer nascent chains emerge out from ribosome. We developed an in vitro system for monitoring nascent-chain disulfide formation High-speed AFM visualized PDI and ERp46 molecules acting on nascent chains PDI persistently holds nascent chains via dimerization for disulfide introduction ERp46 rapidly introduces disulfide bonds to nascent chains via short-time binding
Collapse
Affiliation(s)
- Chihiro Hirayama
- Institute of Multidisciplinary Research for Advanced Materials, Katahira 2-1-1, Aoba-ku, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kodai Machida
- Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan
| | - Kentaro Noi
- Institute for NanoScience Design, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Tadayoshi Murakawa
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
| | - Masaki Okumura
- Institute of Multidisciplinary Research for Advanced Materials, Katahira 2-1-1, Aoba-ku, Tohoku University, Sendai, Miyagi 980-8577, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Teru Ogura
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan.,Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 862-0973, Japan
| | - Hiroaki Imataka
- Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Katahira 2-1-1, Aoba-ku, Tohoku University, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
14
|
Abe T, Nagai R, Imataka H, Takeuchi-Tomita N. Reconstitution of yeast translation elongation and termination in vitro utilizing CrPV IRES-containing mRNA. J Biochem 2021; 167:441-450. [PMID: 32053165 DOI: 10.1093/jb/mvaa021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/24/2020] [Indexed: 11/13/2022] Open
Abstract
We developed an in vitro translation system from yeast, reconstituted with purified translation elongation and termination factors and programmed by CrPV IGR IRES-containing mRNA, which functions in the absence of initiation factors. The system is capable of synthesizing the active reporter protein, nanoLuciferase, with a molecular weight of 19 kDa. The protein synthesis by the system is appropriately regulated by controlling its composition, including translation factors, amino acids and antibiotics. We found that a high eEF1A concentration relative to the ribosome concentration is critically required for efficient IRES-mediated translation initiation, to ensure its dominance over IRES-independent random internal translation initiation.
Collapse
Affiliation(s)
- Taisho Abe
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Riku Nagai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Hiroaki Imataka
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Nono Takeuchi-Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| |
Collapse
|
15
|
Oguro A, Shigeta T, Machida K, Suzuki T, Iwamoto T, Matsufuji S, Imataka H. Translation efficiency affects the sequence-independent +1 ribosomal frameshifting by polyamines. J Biochem 2020; 168:139-149. [PMID: 32181810 DOI: 10.1093/jb/mvaa032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/26/2020] [Indexed: 11/12/2022] Open
Abstract
Antizyme (AZ) interacts with ornithine decarboxylase, which catalyzes the first step of polyamine biosynthesis and recruits it to the proteasome for degradation. Synthesizing the functional AZ protein requires transition of the reading frame at the termination codon. This programmed +1 ribosomal frameshifting is induced by polyamines, but the molecular mechanism is still unknown. In this study, we explored the mechanism of polyamine-dependent +1 frameshifting using a human cell-free translation system. Unexpectedly, spermidine induced +1 frameshifting in the mutants replacing the termination codon at the shift site with a sense codon. Truncation experiments showed that +1 frameshifting occurred promiscuously in various positions of the AZ sequence. The probability of this sequence-independent +1 frameshifting increased in proportion to the length of the open reading frame. Furthermore, the +1 frameshifting was induced in some sequences other than the AZ gene in a polyamine-dependent manner. These findings suggest that polyamines have the potential to shift the reading frame in the +1 direction in any sequence. Finally, we showed that the probability of the sequence-independent +1 frameshifting by polyamines is likely inversely correlated with translation efficiency. Based on these results, we propose a model of the molecular mechanism for AZ +1 frameshifting.
Collapse
Affiliation(s)
- Akihiro Oguro
- Department of Molecular Biology, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-Ku, Tokyo 105-8461, Japan
| | - Tomoaki Shigeta
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Japan
| | - Kodai Machida
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Japan
| | - Tomoaki Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Japan
| | - Takeo Iwamoto
- Core Research Facilities for Basic Science (Molecular Cell Biology), The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-Ku, Tokyo 105-8461, Japan
| | - Senya Matsufuji
- Department of Molecular Biology, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-Ku, Tokyo 105-8461, Japan
| | - Hiroaki Imataka
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Japan
| |
Collapse
|
16
|
Yokoyama T, Machida K, Iwasaki W, Shigeta T, Nishimoto M, Takahashi M, Sakamoto A, Yonemochi M, Harada Y, Shigematsu H, Shirouzu M, Tadakuma H, Imataka H, Ito T. HCV IRES Captures an Actively Translating 80S Ribosome. Mol Cell 2019; 74:1205-1214.e8. [PMID: 31080011 DOI: 10.1016/j.molcel.2019.04.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/20/2019] [Accepted: 04/15/2019] [Indexed: 01/06/2023]
Abstract
Translation initiation of hepatitis C virus (HCV) genomic RNA is induced by an internal ribosome entry site (IRES). Our cryoelectron microscopy (cryo-EM) analysis revealed that the HCV IRES binds to the solvent side of the 40S platform of the cap-dependently translating 80S ribosome. Furthermore, we obtained the cryo-EM structures of the HCV IRES capturing the 40S subunit of the IRES-dependently translating 80S ribosome. In the elucidated structures, the HCV IRES "body," consisting of domain III except for subdomain IIIb, binds to the 40S subunit, while the "long arm," consisting of domain II, remains flexible and does not impede the ongoing translation. Biochemical experiments revealed that the cap-dependently translating ribosome becomes a better substrate for the HCV IRES than the free ribosome. Therefore, the HCV IRES is likely to efficiently induce the translation initiation of its downstream mRNA with the captured translating ribosome as soon as the ongoing translation terminates.
Collapse
MESH Headings
- Binding Sites
- Cryoelectron Microscopy
- Eukaryotic Initiation Factors/chemistry
- Eukaryotic Initiation Factors/genetics
- Eukaryotic Initiation Factors/metabolism
- HEK293 Cells
- Hepacivirus/genetics
- Hepacivirus/metabolism
- Host-Pathogen Interactions
- Humans
- Internal Ribosome Entry Sites
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Large, Eukaryotic/ultrastructure
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/ultrastructure
Collapse
Affiliation(s)
- Takeshi Yokoyama
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kodai Machida
- Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan
| | - Wakana Iwasaki
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tomoaki Shigeta
- Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan
| | - Madoka Nishimoto
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mari Takahashi
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ayako Sakamoto
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mayumi Yonemochi
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yoshie Harada
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideki Shigematsu
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan; Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Sayo-gun, Hyogo 679-5148, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hisashi Tadakuma
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Hiroaki Imataka
- Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan.
| | - Takuhiro Ito
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
17
|
Dynamic interaction of poly(A)-binding protein with the ribosome. Sci Rep 2018; 8:17435. [PMID: 30487538 PMCID: PMC6261967 DOI: 10.1038/s41598-018-35753-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/09/2018] [Indexed: 01/15/2023] Open
Abstract
Eukaryotic mRNA has a cap structure and a poly(A) tail at the 5′ and 3′ ends, respectively. The cap structure is recognized by eIF (eukaryotic translation initiation factor) 4 F, while the poly(A) tail is bound by poly(A)-binding protein (PABP). PABP has four RNA recognition motifs (RRM1–4), and RRM1-2 binds both the poly(A) tail and eIF4G component of eIF4F, resulting in enhancement of translation. Here, we show that PABP interacts with the 40S and 60S ribosomal subunits dynamically via RRM2-3 or RRM3-4. Using a reconstituted protein expression system, we demonstrate that wild-type PABP activates translation in a dose-dependent manner, while a PABP mutant that binds poly(A) RNA and eIF4G, but not the ribosome, fails to do so. From these results, functional significance of the interaction of PABP with the ribosome is discussed.
Collapse
|
18
|
Arthur LL, Djuranovic S. PolyA tracks, polybasic peptides, poly-translational hurdles. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1486. [PMID: 29869837 PMCID: PMC6281860 DOI: 10.1002/wrna.1486] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/26/2022]
Abstract
The abundance of messenger RNA (mRNA) is one of the major determinants of protein synthesis. As such, factors that influence mRNA stability often contribute to gene regulation. Polyadenylation of the 3' end of mRNA transcripts, the poly(A) tail, has long been recognized as one of these regulatory elements given its influence on translation efficiency and mRNA stability. Unwanted translation of the poly(A) tail signals to the cell an aberrant polyadenylation event or the lack of stop codons, which makes this sequence an important element in translation fidelity and mRNA surveillance response. Consequently, investigations into the effects of the poly(A) tail lead to the discoveries that poly-lysine as well as other polybasic peptide sequences and, to a much greater extent, polyA mRNA sequences within the open reading frame influence mRNA stability and translational efficiency. Conservation and evolutionary selection of codon usage in polyA track sequences across multiple organisms suggests a biological significance for coding polyA tracks in the regulation of gene expression. Here, we discuss the cellular responses and consequences of coding polyA track translation and synthesis of polybasic peptides. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Laura L Arthur
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
19
|
Luke GA, Ryan MD. "Therapeutic applications of the 'NPGP' family of viral 2As". Rev Med Virol 2018; 28:e2001. [PMID: 30094875 DOI: 10.1002/rmv.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
Oligopeptide "2A" and "2A-like" sequences ("2As"; 18-25aa) are found in a range of RNA virus genomes controlling protein biogenesis through "recoding" of the host-cell translational apparatus. Insertion of multiple 2As within a single open reading frame (ORF) produces multiple proteins; hence, 2As have been used in a very wide range of biotechnological and biomedical applications. During translation, these 2A peptide sequences mediate a eukaryote-specific, self-"cleaving" event, termed "ribosome skipping" with very high efficiency. A particular advantage of using 2As is the ability to simultaneously translate a number of proteins at an equal level in all eukaryotic systems although, naturally, final steady-state levels depend upon other factors-notably protein stability. By contrast, the use of internal ribosome entry site elements for co-expression results in an unbalanced expression due to the relative inefficiency of internal initiation. For example, a 1:1 ratio is of particular importance for the biosynthesis of the heavy-chain and light-chain components of antibodies: highly valuable as therapeutic proteins. Furthermore, each component of these "artificial polyprotein" systems can be independently targeted to different sub-cellular sites. The potential of this system was vividly demonstrated by concatenating multiple gene sequences, linked via 2A sequences, into a single, long, ORF-a polycistronic construct. Here, ORFs comprising the biosynthetic pathways for violacein (five gene sequences) and β-carotene (four gene sequences) were concatenated into a single cistron such that all components were co-expressed in the yeast Pichia pastoris. In this review, we provide useful information on 2As to serve as a guide for future utilities of this co-expression technology in basic research, biotechnology, and clinical applications.
Collapse
Affiliation(s)
- Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, St Andrews, UK
| | - Martin D Ryan
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
20
|
Machida K, Kanzawa K, Shigeta T, Yamamoto Y, Tsumoto K, Imataka H. Huntingtin Polyglutamine-Dependent Protein Aggregation in Reconstituted Cells. ACS Synth Biol 2018; 7:377-383. [PMID: 29232946 DOI: 10.1021/acssynbio.7b00372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the aims of synthetic biology is bottom-up construction of reconstituted human cells for medical uses. To that end, we generated giant unilamellar vesicles (GUVs) that contained a HeLa cell extract, which comprises a cell-free protein synthesis (CFPS) system. Then we expressed Huntingtin protein fragments that contained polyglutamine (polyQ) sequences (Htt-polyQ), a hallmark of Huntington's disease. That system produced polyQ-dependent protein aggregates, as previously demonstrated in living cells. We next simplified the system by generating GUVs that contained purified human factors, which reconstituted a CFPS system. Htt-polyQ fragments expressed in these GUVs also formed protein aggregates. Moreover, an N-terminal deletion mutant, which had failed to form protein aggregates in living cells, also failed to form protein aggregates in the reconstituted GUVs. Thus, the GUV systems that encapsulated a human CFPS system could serve as reconstituted cells for studying neurological diseases.
Collapse
Affiliation(s)
- Kodai Machida
- Department
of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
- RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Kuru Kanzawa
- Department
of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Tomoaki Shigeta
- Department
of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Yuki Yamamoto
- Department
of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Kanta Tsumoto
- Division
of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu 514-8507, Japan
| | - Hiroaki Imataka
- Department
of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
- RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| |
Collapse
|
21
|
Yang X, Cheng A, Wang M, Jia R, Sun K, Pan K, Yang Q, Wu Y, Zhu D, Chen S, Liu M, Zhao XX, Chen X. Structures and Corresponding Functions of Five Types of Picornaviral 2A Proteins. Front Microbiol 2017; 8:1373. [PMID: 28785248 PMCID: PMC5519566 DOI: 10.3389/fmicb.2017.01373] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/06/2017] [Indexed: 11/27/2022] Open
Abstract
Among the few non-structural proteins encoded by the picornaviral genome, the 2A protein is particularly special, irrespective of structure or function. During the evolution of the Picornaviridae family, the 2A protein has been highly non-conserved. We believe that the 2A protein in this family can be classified into at least five distinct types according to previous studies. These five types are (A) chymotrypsin-like 2A, (B) Parechovirus-like 2A, (C) hepatitis-A-virus-like 2A, (D) Aphthovirus-like 2A, and (E) 2A sequence of the genus Cardiovirus. We carried out a phylogenetic analysis and found that there was almost no homology between each type. Subsequently, we aligned the sequences within each type and found that the functional motifs in each type are highly conserved. These different motifs perform different functions. Therefore, in this review, we introduce the structures and functions of these five types of 2As separately. Based on the structures and functions, we provide suggestions to combat picornaviruses. The complexity and diversity of the 2A protein has caused great difficulties in functional and antiviral research. In this review, researchers can find useful information on the 2A protein and thus conduct improved antiviral research.
Collapse
Affiliation(s)
- Xiaoyao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kangcheng Pan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
22
|
Cell-free analysis of polyQ-dependent protein aggregation and its inhibition by chaperone proteins. J Biotechnol 2016; 239:1-8. [PMID: 27702574 DOI: 10.1016/j.jbiotec.2016.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/23/2016] [Accepted: 09/30/2016] [Indexed: 11/21/2022]
Abstract
Protein misfolding and aggregation is one of the major causes of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. So far protein aggregation related to these diseases has been studied using animals, cultured cells or purified proteins. In this study, we show that a newly synthesized polyglutamine protein implicated in Huntington's disease forms large aggregates in HeLa cells, and successfully recapitulate the process of this aggregation using a translation-based system derived from HeLa cell extracts. When the cell-free translation system was pre-incubated with recombinant human cytosolic chaperonin CCT, or the Hsc70 chaperone system (Hsc70s: Hsc70, Hsp40, and Hsp110), aggregate formation was inhibited in a dose-dependent manner. In contrast, when these chaperone proteins were added in a post-translational manner, aggregation was not prevented. These data led us to suggest that chaperonin CCT and Hsc70s interact with nascent polyglutamine proteins co-translationally or immediately after their synthesis in a fashion that prevents intra- and intermolecular interactions of aggregation-prone polyglutamine proteins. We conclude that the in vitro approach described here can be usefully employed to analyze the mechanisms that provoke polyglutamine-driven protein aggregation and to screen for molecules to prevent it.
Collapse
|
23
|
Jan E, Mohr I, Walsh D. A Cap-to-Tail Guide to mRNA Translation Strategies in Virus-Infected Cells. Annu Rev Virol 2016; 3:283-307. [PMID: 27501262 DOI: 10.1146/annurev-virology-100114-055014] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although viruses require cellular functions to replicate, their absolute dependence upon the host translation machinery to produce polypeptides indispensable for their reproduction is most conspicuous. Despite their incredible diversity, the mRNAs produced by all viruses must engage cellular ribosomes. This has proven to be anything but a passive process and has revealed a remarkable array of tactics for rapidly subverting control over and dominating cellular regulatory pathways that influence translation initiation, elongation, and termination. Besides enforcing viral mRNA translation, these processes profoundly impact host cell-intrinsic immune defenses at the ready to deny foreign mRNA access to ribosomes and block protein synthesis. Finally, genome size constraints have driven the evolution of resourceful strategies for maximizing viral coding capacity. Here, we review the amazing strategies that work to regulate translation in virus-infected cells, highlighting both virus-specific tactics and the tremendous insight they provide into fundamental translational control mechanisms in health and disease.
Collapse
Affiliation(s)
- Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - Ian Mohr
- Department of Microbiology and New York University Cancer Institute, New York University School of Medicine, New York, NY 10016;
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611;
| |
Collapse
|
24
|
Zhang H, Ng MY, Chen Y, Cooperman BS. Kinetics of initiating polypeptide elongation in an IRES-dependent system. eLife 2016; 5. [PMID: 27253065 PMCID: PMC4963199 DOI: 10.7554/elife.13429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/01/2016] [Indexed: 11/13/2022] Open
Abstract
The intergenic IRES of Cricket Paralysis Virus (CrPV-IRES) forms a tight complex with 80S ribosomes capable of initiating the cell-free synthesis of complete proteins in the absence of initiation factors. Such synthesis raises the question of what effect the necessary IRES dissociation from the tRNA binding sites, and ultimately from all of the ribosome, has on the rates of initial peptide elongation steps as nascent peptide is formed. Here we report the first results measuring rates of reaction for the initial cycles of IRES-dependent elongation. Our results demonstrate that 1) the first two cycles of elongation proceed much more slowly than subsequent cycles, 2) these reduced rates arise from slow pseudo-translocation and translocation steps, and 3) the retarding effect of ribosome-bound IRES on protein synthesis is largely overcome following translocation of tripeptidyl-tRNA. Our results also provide a straightforward approach to detailed mechanistic characterization of many aspects of eukaryotic polypeptide elongation.
Collapse
Affiliation(s)
- Haibo Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Martin Y Ng
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Yuanwei Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
25
|
Roulston C, Luke GA, de Felipe P, Ruan L, Cope J, Nicholson J, Sukhodub A, Tilsner J, Ryan MD. '2A-Like' Signal Sequences Mediating Translational Recoding: A Novel Form of Dual Protein Targeting. Traffic 2016; 17:923-39. [PMID: 27161495 PMCID: PMC4981915 DOI: 10.1111/tra.12411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 11/28/2022]
Abstract
We report the initial characterization of an N‐terminal oligopeptide ‘2A‐like’ sequence that is able to function both as a signal sequence and as a translational recoding element. Owing to this translational recoding activity, two forms of nascent polypeptide are synthesized: (i) when 2A‐mediated translational recoding has not occurred: the nascent polypeptide is fused to the 2A‐like N‐terminal signal sequence and the fusion translation product is targeted to the exocytic pathway, and, (ii) a translation product where 2A‐mediated translational recoding has occurred: the 2A‐like signal sequence is synthesized as a separate translation product and, therefore, the nascent (downstream) polypeptide lacks the 2A‐like signal sequence and is localized to the cytoplasm. This type of dual‐functional signal sequence results, therefore, in the partitioning of the translation products between the two sub‐cellular sites and represents a newly described form of dual protein targeting.
Collapse
Affiliation(s)
- Claire Roulston
- Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Garry A Luke
- Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Pablo de Felipe
- Spanish Medicines Agency (AEMPS), Parque Empresarial "Las Mercedes", Campezo 1 - Edificio 8, 28022, Madrid, Spain
| | - Lin Ruan
- Oakland Innovation, Harston Mill, Harston, Cambridge, CB22 7GG, UK
| | - Jonathan Cope
- James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - John Nicholson
- Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Andriy Sukhodub
- Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Jens Tilsner
- Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Martin D Ryan
- Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| |
Collapse
|
26
|
Kashiwagi K, Shigeta T, Imataka H, Ito T, Yokoyama S. Expression, purification, and crystallization of Schizosaccharomyces pombe eIF2B. ACTA ACUST UNITED AC 2016; 17:33-8. [PMID: 27023709 PMCID: PMC4833825 DOI: 10.1007/s10969-016-9203-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/16/2016] [Indexed: 11/24/2022]
Abstract
Tight control of protein synthesis is necessary for cells to respond and adapt to environmental changes rapidly. Eukaryotic translation initiation factor (eIF) 2B, the guanine nucleotide exchange factor for eIF2, is a key target of translation control at the initiation step. The nucleotide exchange activity of eIF2B is inhibited by the stress-induced phosphorylation of eIF2. As a result, the level of active GTP-bound eIF2 is lowered, and protein synthesis is attenuated. eIF2B is a large multi-subunit complex composed of five different subunits, and all five of the subunits are the gene products responsible for the neurodegenerative disease, leukoencephalopathy with vanishing white matter. However, the overall structure of eIF2B has remained unresolved, due to the difficulty in preparing a sufficient amount of the eIF2B complex. To overcome this problem, we established the recombinant expression and purification method for eIF2B from the fission yeast Schizosaccharomyces pombe. All five of the eIF2B subunits were co-expressed and reconstructed into the complex in Escherichia coli cells. The complex was successfully purified with a high yield. This recombinant eIF2B complex contains each subunit in an equimolar ratio, and the size exclusion chromatography analysis suggests it forms a heterodecamer, consistent with recent reports. This eIF2B increased protein synthesis in the reconstituted in vitro human translation system. In addition, disease-linked mutations led to subunit dissociation. Furthermore, we crystallized this functional recombinant eIF2B, and the crystals diffracted to 3.0 Å resolution.
Collapse
Affiliation(s)
- Kazuhiro Kashiwagi
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Tomoaki Shigeta
- Graduate School of Engineering, University of Hyogo, Himeji, 671-2280, Japan
| | - Hiroaki Imataka
- Graduate School of Engineering, University of Hyogo, Himeji, 671-2280, Japan
| | - Takuhiro Ito
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan. .,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| | - Shigeyuki Yokoyama
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan. .,RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
27
|
Özdemir A, Machida K, Imataka H, Catling AD. Identification of the T-complex protein as a binding partner for newly synthesized cytoplasmic dynein intermediate chain 2. Biochem Biophys Res Commun 2016; 469:126-131. [DOI: 10.1016/j.bbrc.2015.11.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/19/2015] [Indexed: 11/16/2022]
|
28
|
Ho KKY, Murray VL, Liu AP. Engineering artificial cells by combining HeLa-based cell-free expression and ultrathin double emulsion template. Methods Cell Biol 2015; 128:303-18. [PMID: 25997354 DOI: 10.1016/bs.mcb.2015.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Generation of artificial cells provides the bridge needed to cover the gap between studying the complexity of biological processes in whole cells and studying these same processes in an in vitro reconstituted system. Artificial cells are defined as the encapsulation of biologically active material in a biological or synthetic membrane. Here, we describe a robust and general method to produce artificial cells for the purpose of mimicking one or more behaviors of a cell. A microfluidic double emulsion system is used to encapsulate a mammalian cell-free expression system that is able to express membrane proteins into the bilayer or soluble proteins inside the vesicles. The development of a robust platform that allows the assembly of artificial cells is valuable in understanding subcellular functions and emergent behaviors in a more cell-like environment as well as for creating novel signaling pathways to achieve specific cellular behaviors.
Collapse
Affiliation(s)
- Kenneth K Y Ho
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Victoria L Murray
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA; Biophysics Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|