1
|
Mayer MD, Lange MJ. G-quadruplex formation in RNA aptamers selected for binding to HIV-1 capsid. Front Chem 2024; 12:1425515. [PMID: 39502140 PMCID: PMC11536715 DOI: 10.3389/fchem.2024.1425515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
HIV-1 capsid protein (CA) is essential for viral replication and interacts with numerous host factors to facilitate successful infection. Thus, CA is an integral target for the study of virus-host dynamics and therapeutic development. The multifaceted functions of CA stem from the ability of CA to assemble into distinct structural components that come together to form the mature capsid core. Each structural component, including monomers, pentamers, and hexamers, presents a variety of solvent-accessible surfaces. However, the structure-function relationships of these components that facilitate replication and virus-host interactions have yet to be fully elucidated. A major challenge is the genetic fragility of CA, which precludes the use of many common methods. To overcome these constraints, we identified CA-targeting aptamers with binding specificity for either the mature CA hexamer lattice alone or both the CA hexamer lattice and soluble CA hexamer. To enable utilization of these aptamers as molecular tools for the study of CA structure-function relationships in cells, understanding the higher-order structures of these aptamers is required. While our initial work on a subset of aptamers included predictive and qualitative biochemical characterizations that provided insight into aptamer secondary structures, these approaches were insufficient for determining more complex non-canonical architectures. Here, we further clarify aptamer structural motifs using focused, quantitative biophysical approaches, primarily through the use of multi-effective spectroscopic methods and thermodynamic analyses. Aptamer L15.20.1 displayed particularly strong, unambiguous indications of stable RNA G-quadruplex (rG4) formation under physiological conditions in a region of the aptamer also previously shown to be necessary for CA-aptamer interactions. Non-canonical structures, such as the rG4, have distinct chemical signatures and interfaces that may support downstream applications without the need for complex modifications or labels that may negatively affect aptamer folding. Thus, aptamer representative L15.20.1, containing a putative rG4 in a region likely required for aptamer binding to CA with probable function under cellular conditions, may be a particularly useful tool for the study of HIV-1 CA.
Collapse
Affiliation(s)
- Miles D. Mayer
- Department of Molecular Microbiology and Immunology, Columbia, MO, United States
- Department of Biochemistry, Columbia, MO, United States
| | - Margaret J. Lange
- Department of Molecular Microbiology and Immunology, Columbia, MO, United States
- Department of Biochemistry, Columbia, MO, United States
| |
Collapse
|
2
|
Evangelista BA, Kim YS, Kolpashchikov DM. FaptaSyme: A Strategy for Converting a Monomer/Oligomer-Nonselective Aptameric Sensor into an Oligomer-Selective One. Chembiochem 2018; 19:10.1002/cbic.201800017. [PMID: 29700982 PMCID: PMC6422747 DOI: 10.1002/cbic.201800017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 12/26/2022]
Abstract
Aptameric sensors can bind molecular targets and produce output signals, a phenomenon that is used in bioassays. In some cases, it is important to distinguish between monomeric and oligomeric forms of a target. Here, we propose a strategy to convert a monomer/oligomer-nonselective sensor into an oligomer-selective sensor. We designed an aptazyme that produced a high fluorescent output in the presence of oligomeric α-synuclein (a molecular marker of Parkinson's disease) but not its monomeric form. The strategy is potentially useful in the design of point-of-care tests for the diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Baggio A. Evangelista
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA
| | - Yoon-Seong Kim
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA
| | - Dmitry M. Kolpashchikov
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA,
- ITMO University, Laboratory of Solution Chemistry of Advanced Materials and Technologies, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
| |
Collapse
|
3
|
Fukasawa K, Higashimoto Y, Ando Y, Motomiya Y. Selection of DNA Aptamer That Blocks the Fibrillogenesis of a Proteolytic Amyloidogenic Fragment of β 2 m. Ther Apher Dial 2017; 22:61-66. [PMID: 28960840 DOI: 10.1111/1744-9987.12591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/22/2017] [Accepted: 06/14/2017] [Indexed: 01/10/2023]
Abstract
Dialysis-related amyloidosis (DRA) is a severe complication of hemodialysis that results in progressive destruction of bones and joints. Elevated concentrations of the β2 -microglobulin (β2 m) level in the serum of subjects on hemodialysis promote the formation of amyloid fibrils in osteoarticular tissues. β2 m lacking the N-terminal six residues of the mature protein (ΔN6β2 m) constitutes 25-30% of β2 m in ex vivo DRA amyloid. Unlike full-length wild-type β2 m, ΔN6β2 m forms amyloid fibrils at neutral pH in vitro. However, the role of ΔN6β2 m in DRA is, at present, poorly understood. In the present study, we screened novel phosphorothioate-modified aptamers directed against ΔN6β2 m using combinatorial chemistry in vitro. We identified 11 ΔN6β2 m aptamers; among the identified aptamers, clone #2, #8, and #10 aptamers had higher binding affinity to ΔN6β2 m than the others. Biolayer interferometry analysis revealed that KD values of clone #2, #8, and #10 aptamers were 56, 23, and 44 nM, respectively. Furthermore, the clone #8 aptamer inhibited fibril formation in a dose-dependent manner, as assessed by Thioflavin T fluorescence assay. Fibrils formed from ΔN6β2 m bind to Congo red, displaying changes in the absorbance spectrum of the dye characteristic of binding to amyloid fibrils, which was completely blocked by treatment with clone #8 aptamer. These results suggest the potential of ΔN6β2 m aptamers as tools for elucidating co-assembly mechanisms in amyloid formation.
Collapse
Affiliation(s)
- Kanon Fukasawa
- Department of Chemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yuichiro Higashimoto
- Department of Chemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| | | |
Collapse
|
4
|
Abstract
Aggregation of the amyloid-β (Aβ) peptide is strongly correlated with Alzheimer's disease (AD). Recent research has improved our understanding of the kinetics of amyloid fibril assembly and revealed new details regarding different stages in plaque formation. Presently, interest is turning toward studying this process in a holistic context, focusing on cellular components which interact with the Aβ peptide at various junctures during aggregation, from monomer to cross-β amyloid fibrils. However, even in isolation, a multitude of factors including protein purity, pH, salt content, and agitation affect Aβ fibril formation and deposition, often producing complicated and conflicting results. The failure of numerous inhibitors in clinical trials for AD suggests that a detailed examination of the complex interactions that occur during plaque formation, including binding of carbohydrates, lipids, nucleic acids, and metal ions, is important for understanding the diversity of manifestations of the disease. Unraveling how a variety of key macromolecular modulators interact with the Aβ peptide and change its aggregation properties may provide opportunities for developing therapies. Since no protein acts in isolation, the interplay of these diverse molecules may differentiate disease onset, progression, and severity, and thus are worth careful consideration.
Collapse
Affiliation(s)
- Katie L Stewart
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
5
|
Karamanos TK, Pashley CL, Kalverda AP, Thompson GS, Mayzel M, Orekhov VY, Radford SE. A Population Shift between Sparsely Populated Folding Intermediates Determines Amyloidogenicity. J Am Chem Soc 2016; 138:6271-80. [PMID: 27117876 PMCID: PMC4922733 DOI: 10.1021/jacs.6b02464] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The balance between protein folding and misfolding is a crucial determinant of amyloid assembly. Transient intermediates that are sparsely populated during protein folding have been identified as key players in amyloid aggregation. However, due to their ephemeral nature, structural characterization of these species remains challenging. Here, using the power of nonuniformly sampled NMR methods we investigate the folding pathway of amyloidogenic and nonamyloidogenic variants of β2-microglobulin (β2m) in atomic detail. Despite folding via common intermediate states, we show that the decreased population of the aggregation-prone ITrans state and population of a less stable, more dynamic species ablate amyloid formation by increasing the energy barrier for amyloid assembly. The results show that subtle changes in conformational dynamics can have a dramatic effect in determining whether a protein is amyloidogenic, without perturbation of the mechanism of protein folding.
Collapse
Affiliation(s)
- Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds , Leeds LS2 9JT, U.K
| | - Clare L Pashley
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds , Leeds LS2 9JT, U.K
| | - Arnout P Kalverda
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds , Leeds LS2 9JT, U.K
| | - Gary S Thompson
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds , Leeds LS2 9JT, U.K
| | - Maxim Mayzel
- The Swedish NMR Centre, University of Gothenburg , Box 465, 40530 Göteborg, Sweden
| | - Vladislav Y Orekhov
- The Swedish NMR Centre, University of Gothenburg , Box 465, 40530 Göteborg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg , Box 465, 40530 Göteborg, Sweden
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds , Leeds LS2 9JT, U.K
| |
Collapse
|
6
|
Yüce M, Ullah N, Budak H. Trends in aptamer selection methods and applications. Analyst 2016; 140:5379-99. [PMID: 26114391 DOI: 10.1039/c5an00954e] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aptamers are target specific ssDNA, RNA or peptide sequences generated by an in vitro selection and amplification method called SELEX (Systematic Evolution of Ligands by EXponential Enrichment), which involves repetitive cycles of binding, recovery and amplification steps. Aptamers have the ability to bind with a variety of targets such as drugs, proteins, heavy metals, and pathogens with high specificity and selectivity. Aptamers are similar to monoclonal antibodies regarding their binding affinities, but they offer a number of advantages over the existing antibody-based detection methods, which make the aptamers promising diagnostic and therapeutic tools for future biomedical and analytical applications. The aim of this review article is to provide an overview of the recent advancements in aptamer screening methods along with a concise description of the major application areas of aptamers including biomarker discovery, diagnostics, imaging and nanotechnology.
Collapse
Affiliation(s)
- Meral Yüce
- Sabanci University, Nanotechnology Research and Application Centre, 34956, Istanbul, Turkey.
| | | | | |
Collapse
|