1
|
Mendoza M, Ballesteros A, Rendon-Correa E, Tonk R, Warren J, Snow AL, Stowell SR, Blois SM, Dveksler G. Modulation of galectin-9 mediated responses in monocytes and T-cells by pregnancy-specific glycoprotein 1. J Biol Chem 2024; 300:107638. [PMID: 39121996 PMCID: PMC11403483 DOI: 10.1016/j.jbc.2024.107638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Successful pregnancy relies on a coordinated interplay between endocrine, immune, and metabolic processes to sustain fetal growth and development. The orchestration of these processes involves multiple signaling pathways driving cell proliferation, differentiation, angiogenesis, and immune regulation necessary for a healthy pregnancy. Among the molecules supporting placental development and maternal tolerance, the families of pregnancy-specific glycoproteins and galectins are of great interest in reproductive biology. We previously found that PSG1 can bind to galectin-1 (GAL-1). Herein, we characterized the interaction between PSG1 and other members of the galectin family expressed during pregnancy, including galectin-3, -7, -9, and -13 (GAL-3, GAL-7, GAL-9, and GAL-13). We observed that PSG1 binds to GAL-1, -3, and -9, with the highest apparent affinity seen for GAL-9, and that the interaction of PSG1 with GAL-9 is carbohydrate-dependent. We further investigated the ability of PSG1 to regulate GAL-9 responses in human monocytes, a murine macrophage cell line, and T-cells, and determined whether PSG1 binds to both carbohydrate recognition domains of GAL-9. Additionally, we compared the apparent affinity of GAL-9 binding to PSG1 with other known GAL-9 ligands in these cells, Tim-3 and CD44. Lastly, we explored functional conservation between murine and human PSGs by determining that Psg23, a highly expressed member of the murine Psg family, can bind some murine galectins despite differences in amino acid composition and domain structure.
Collapse
Affiliation(s)
- Mirian Mendoza
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Angela Ballesteros
- Section on Sensory Physiology and Biophysics, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Rendon-Correa
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Rohan Tonk
- Section on Sensory Physiology and Biophysics, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - James Warren
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sean R Stowell
- Department of Pathology, Brigham and Women's Hospital, Boston Massachusetts, USA
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Glyco-HAM, a cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.
| |
Collapse
|
2
|
Kammerer R, Zimmermann W. Two waves of evolution in the rodent pregnancy-specific glycoprotein (Psg) gene family lead to structurally diverse PSGs. BMC Genomics 2023; 24:468. [PMID: 37605167 PMCID: PMC10440875 DOI: 10.1186/s12864-023-09560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND The evolution of pregnancy-specific glycoprotein (PSG) genes within the CEA gene family of primates correlates with the evolution of hemochorial placentation about 45 Myr ago. Thus, we hypothesized that hemochorial placentation with intimate contact between fetal cells and maternal immune cells favors the evolution and expansion of PSGs. With only a few exceptions, all rodents have hemochorial placentas thus the question arises whether Psgs evolved in all rodent genera. RESULTS In the analysis of 94 rodent species from 4 suborders, we identified Psg genes only in the suborder Myomorpha in three families (characteristic species in brackets), namely Muridae (mouse), Cricetidae (hamster) and Nesomyidae (giant pouched rat). All Psgs are located, as previously described for mouse and rat, in a region of the genome separated from the Cea gene family locus by several megabases, further referred to as the rodent Psg locus. In the suborders Castorimorpha (beaver), Hystricognatha (guinea pig) and Sciuromorpha (squirrel), neither Psg genes nor so called CEA-related cell adhesion molecule (Ceacam) genes were found in the Psg locus. There was even no evidence for the existence of Psgs in any other genomic region. In contrast to the Psg-harboring rodent species, which do not have activating CEACAMs, we were able to identify Ceacam genes encoding activating CEACAMs in all other rodents studied. In the Psg locus, there are genes encoding three structurally distinct CEACAM/PSGs: (i) CEACAMs composed of one N- and one A2-type domain (CEACAM9, CEACAM15), (ii) composed of two N domains (CEACAM11-CEACAM14) and (iii) composed of three to eight N domains and one A2 domain (PSGs). All of them were found to be secreted glycoproteins preferentially expressed by trophoblast cells, thus they should be considered as PSGs. CONCLUSION In rodents Psg genes evolved only recently in the suborder Myomorpha shortly upon their most recent common ancestor (MRCA) has coopted the retroviral genes syncytin-A and syncytin-B which enabled the evolution of the three-layered trophoblast. The expansion of Psgs is limited to the Psg locus most likely after a translocation of a CEA-related gene - possibly encoding an ITAM harboring CEACAM. According to the expression pattern two waves of gene amplification occurred, coding for structurally different PSGs.
Collapse
Affiliation(s)
- Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Greifswald, Germany
| | - Wolfgang Zimmermann
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, Munich, Germany
- Department of Urology, LMU Klinikum, University Munich, Munich, Germany
| |
Collapse
|
3
|
Koppisetty BK, Dash P, Saharia GK, Nayak S, Jena SK. An Evaluation of T-Regulatory Cells and Inflammatory Cytokines in Preeclampsia. Cureus 2023; 15:e43379. [PMID: 37700972 PMCID: PMC10494993 DOI: 10.7759/cureus.43379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2023] [Indexed: 09/14/2023] Open
Abstract
Background Preeclampsia (PE) is a prenatal hypertension condition with unknown aetiology which is one of the leading causes of maternal morbidity and mortality, premature delivery, and foetal and neonatal mortality. T-regulatory cells (T-regs) are the specific subsets of T-lymphocytes that play a key role in the mechanisms of maternal-foetal tolerance, contributing to an effective immunological role in protecting the allogenic foetus during pregnancy and preventing pregnancy-related complications. This study evaluated the T-regs in PE and correlated the T-regs with inflammatory markers in the pathophysiology and for early diagnosis of PE. Methods After clearance from Institutional Ethics Committee, the participants were recruited from the Department of Obstetrics and Gynaecology. Three study groups were included a) normal reproductive age group women b) normal pregnant women c) PE pregnant women. 5 ml of venous blood was collected from each participant. Biochemical and haematological parameters estimation was done in Hospital's central laboratory. T-regs (CD4, CD25, FOXP3) were assessed using a flow-cytometer, and inflammatory markers (TGF-β1, IL-6, hsCRP) were assessed by ELISA and Beckman Coulter autoanalyzer in the Department of Biochemistry, AIIMS, Bhubaneswar. Results We found that the levels of CD4+CD25+ T-regs were lower in PE than in normal pregnancy, but this difference was not statistically significant (p = 0.349). The levels of CD4+FOXP3+ T-regs in PE were significantly lower compared to both normal pregnant women (p = 0.001) and normal non-pregnant women (p = 0.001). In comparison to women with PE, the levels of TGF-β1 were significantly higher in normal non-pregnant women (p = 0.020) and were higher, although not significantly so, in normal pregnant women (p = 0.994). The levels of IL-6 in women with PE were significantly higher than in normal pregnant women (p = 0.01) and normal non-pregnant women (p = 0.048). The levels of hsCRP in women with PE were significantly higher than in normal pregnant women (p = 0.045) and were higher, but not statistically significant, compared to normal non-pregnant women (p = 0.094). Conclusion The results of the study, showing a decrease in T-regs and an increase in inflammatory markers like TGF-β1, IL-6, and hsCRP levels in PE, have potential implications for the early diagnosis and management of the condition. Incorporating assessments of CD4+FOXP3+ T-regs and inflammatory markers into screening protocols, along with regular prenatal care and monitoring, can aid in the timely detection and implementation of appropriate management strategies. By intervening early, the risks associated with PE can be reduced, optimizing both maternal and fetal health.
Collapse
Affiliation(s)
| | - Prakruti Dash
- Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Gautom K Saharia
- Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Saurav Nayak
- Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Saubhagya K Jena
- Obstetrics and Gynecology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| |
Collapse
|
4
|
Zhao F, Tallarek AC, Wang Y, Xie Y, Diemert A, Lu-Culligan A, Vijayakumar P, Kittmann E, Urbschat C, Bayo J, Arck PC, Farhadian SF, Dveksler GS, Garcia MG, Blois SM. A unique maternal and placental galectin signature upon SARS-CoV-2 infection suggests galectin-1 as a key alarmin at the maternal-fetal interface. Front Immunol 2023; 14:1196395. [PMID: 37475853 PMCID: PMC10354452 DOI: 10.3389/fimmu.2023.1196395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic imposed a risk of infection and disease in pregnant women and neonates. Successful pregnancy requires a fine-tuned regulation of the maternal immune system to accommodate the growing fetus and to protect the mother from infection. Galectins, a family of β-galactoside-binding proteins, modulate immune and inflammatory processes and have been recognized as critical factors in reproductive orchestration, including maternal immune adaptation in pregnancy. Pregnancy-specific glycoprotein 1 (PSG1) is a recently identified gal-1 ligand at the maternal-fetal interface, which may facilitate a successful pregnancy. Several studies suggest that galectins are involved in the immune response in SARS-CoV-2-infected patients. However, the galectins and PSG1 signature upon SARS-CoV-2 infection and vaccination during pregnancy remain unclear. In the present study, we examined the maternal circulating levels of galectins (gal-1, gal-3, gal-7, and gal-9) and PSG1 in pregnant women infected with SARS-CoV-2 before vaccination or uninfected women who were vaccinated against SARS-CoV-2 and correlated their expression with different pregnancy parameters. SARS-CoV-2 infection or vaccination during pregnancy provoked an increase in maternal gal-1 circulating levels. On the other hand, levels of PSG1 were only augmented upon SARS-CoV-2 infection. A healthy pregnancy is associated with a positive correlation between gal-1 concentrations and gal-3 or gal-9; however, no correlation was observed between these lectins during SARS-CoV-2 infection. Transcriptome analysis of the placenta showed that gal-1, gal-3, and several PSG and glycoenzymes responsible for the synthesis of gal-1-binding glycotopes (such as linkage-specific N-acetyl-glucosaminyltransferases (MGATs)) are upregulated in pregnant women infected with SARS-CoV-2. Collectively, our findings identify a dynamically regulated "galectin-specific signature" that accompanies the SARS-CoV-2 infection and vaccination in pregnancy, and they highlight a potentially significant role for gal-1 as a key pregnancy protective alarmin during virus infection.
Collapse
Affiliation(s)
- Fangqi Zhao
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Christin Tallarek
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yiru Wang
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yiran Xie
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Diemert
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Lu-Culligan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Pavithra Vijayakumar
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Enrico Kittmann
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Urbschat
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Juan Bayo
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Austral, Buenos Aires, Argentina
| | - Petra C. Arck
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shelli F. Farhadian
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Gabriela S. Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Mariana G. Garcia
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra M. Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Jia L, Huang X, Peng H, Jia Y, Zhang R, Wei Y, Wei M, Wang R, Li H, He Q, Wang K. Pregnancy-specific beta-1-glycoprotein 1-enriched exosomes are involved in the regulation of vascular endothelial cell function during pregnancy. Placenta 2023; 139:138-147. [PMID: 37392715 DOI: 10.1016/j.placenta.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/29/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
INTRODUCTION Pregnancy is a dynamic time period associated with significant physiological changes in the cardiovascular system. It is well known that during pregnancy, the placenta secretes a variety of molecular signals, including exosomes, into the maternal circulation to adapt to increased blood volume and maintain blood pressure at normotensive levels. METHODS In the present study, we compared the effects of exosomes derived from the peripheral blood serum of nonpregnant women (NP-Exo) and pregnant women with uncomplicated pregnancy (P-Exo) on endothelial cell function. We also analyzed the proteomic profiles of these two groups of exosomes and the molecular mechanisms underlying the effect of exosome cargoes on vascular endothelial cell function. RESULTS We found that P-Exo were positively involved in regulating the function of human umbilical vein endothelial cell (HUVEC) and promoting the release of nitric oxide (NO). Furthermore, we revealed that trophoblast-derived pregnancy-specific beta-1-glycoprotein 1 (PSG1)-enriched exosomes treatment induced the promotion of HUVEC proliferation and migration as well as the release of NO. In addition, we found that P-Exo maintained blood pressure at normal levels in mice. DISCUSSION These results suggested that PSG1-enriched exosomes derived from maternal peripheral blood regulate the function of vascular endothelial cells and play an important role in maintaining maternal blood pressure during pregnancy.
Collapse
Affiliation(s)
- Linyan Jia
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China; Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaojie Huang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China; Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Peng
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanhui Jia
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruonan Zhang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingying Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengtian Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruixue Wang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han Li
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qizhi He
- Department of Pathology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Malone K, Shearer JA, Williams JM, Moore AC, Moore T, Waeber C. Recombinant pregnancy-specific glycoprotein-1-Fc reduces functional deficit in a mouse model of permanent brain ischaemia. Brain Behav Immun Health 2022; 25:100497. [PMID: 36120102 PMCID: PMC9475273 DOI: 10.1016/j.bbih.2022.100497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background The well-characterised role of the immune system in acute ischaemic stroke has prompted the search for immunomodulatory therapies. Pregnancy-specific glycoproteins (PSGs) are a group of proteins synthesised by placental trophoblasts which show immunomodulatory properties. The aim of this study was to determine whether a proposed PSG1-based therapeutic enhanced recovery in a mouse model of brain ischaemia and to explore possible immunomodulatory effects. Methods Mice underwent permanent electrocoagulation of the left middle cerebral artery (pMCAO). They received saline (n = 20) or recombinant pregnancy-specific glycoprotein-1-alpha “fused” to the Fc domain of IgG1 (rPSG1-Fc) (100 μg) (n = 22) at 1 h post-ischaemia. At 3 and 5 days post-ischaemia, neurobehavioural recovery was assessed by the grid-walking test. At 5 days post-ischaemia, lesion size was determined by NeuN staining. Peripheral T cell populations were quantified via flow cytometry. Immunohistochemistry was used to quantify ICAM-1 expression and FoxP3+ cell infiltration in the ischaemic brain. Immunofluorescence was employed to determine microglial activation status via Iba-1 staining. Results: rPSG1-Fc significantly enhanced performance in the grid-walking test at 3 and 5 days post-ischaemia. No effect on infarct size was observed. A significant increase in circulating CD4+ FoxP3+ cells and brain-infiltrating FoxP3+ cells was noted in rPSG1-Fc-treated mice. Among CD4+ cells, rPSG1-Fc enhanced the expression of IL-10 in spleen, blood, draining lymph nodes, and non-draining lymph nodes, while downregulating IFN-γ and IL-17 in spleen and blood. A similar cytokine expression pattern was observed in CD8+ cells. rPSG1-Fc reduced activated microglia in the infarct core. Conclusion The administration of rPSG1-Fc improved functional recovery in post-ischaemic mice without impacting infarct size. Improved outcome was associated with a modulation of the cytokine-secreting phenotype of CD4+ and CD8+ T cells towards a more regulatory phenotype, as well as reduced activation of microglia. This establishes proof-of-concept of rPSG1-Fc as a potential stroke immunotherapy. rPSG1-Fc enhances functional recovery in a mouse model of permanent brain ischaemia. rPSG1-Fc increases circulating CD4+ FoxP3+ cells and brain-infiltrating FoxP3+ cells. rPSG1-Fc increases the expression of IL-10 among CD4+ cells in spleen, blood, and lymph nodes.
Collapse
|
7
|
Yang W, Bai X, Li H, Li H, Fan W, Zhang H, Liu W, Sun L. Influenza A and B Virus-Triggered Epithelial–Mesenchymal Transition Is Relevant to the Binding Ability of NA to Latent TGF-β. Front Microbiol 2022; 13:841462. [PMID: 35283846 PMCID: PMC8914340 DOI: 10.3389/fmicb.2022.841462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is an important mechanism of lung tissue repair after injury, but excessive EMT may lead to pulmonary fibrosis, respiratory failure, and even death. The EMT triggered by influenza A virus (IAV) and influenza B virus (IBV) is not well understood. We hypothesized that there was difference in EMT induced by different influenza virus strains. Here we discovered that both IAV [A/WSN/1933 (H1N1), WSN] and IBV (B/Yamagata/16/88, Yamagata) infection caused EMT in mouse lung and A549 cells, and more EMT-related genes were detected in mice and cells infected with WSN than those infected with Yamagata. Neuraminidase (NA) of IAV is able to activate latent TGF-β and the downstream TGF-β signaling pathway, which play a vital role in EMT. We observed that IAV (WSN) triggered more activated TGF-β expression and stronger TGF-β/smad2 signaling pathway than IBV (Yamagata). Most importantly, WSN NA combined more latent TGF-β than Yamagata NA in A549 cells. Collectively, these data demonstrate that both IAV and IBV induce TGF-β/smad2 signaling pathway to promote EMT, which might depend on the binding ability of NA to latent TGF-β.
Collapse
Affiliation(s)
- Wenxian Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangdong, China
| | - Xiaoyuan Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangdong, China
| | - Heqiao Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Huizi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - He Zhang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangdong, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangdong, China
- Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Lei Sun,
| |
Collapse
|
8
|
Zambuto SG, Rattila S, Dveksler G, Harley BAC. Effects of Pregnancy-Specific Glycoproteins on Trophoblast Motility in Three-Dimensional Gelatin Hydrogels. Cell Mol Bioeng 2022; 15:175-191. [PMID: 35401843 PMCID: PMC8938592 DOI: 10.1007/s12195-021-00715-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/23/2021] [Indexed: 01/29/2023] Open
Abstract
Introduction Trophoblast invasion is a complex biological process necessary for establishment of pregnancy; however, much remains unknown regarding what signaling factors coordinate the extent of invasion. Pregnancy-specific glycoproteins (PSGs) are some of the most abundant circulating trophoblastic proteins in maternal blood during human pregnancy, with maternal serum concentrations rising to as high as 200-400 μg/mL at term. Methods Here, we employ three-dimensional (3D) trophoblast motility assays consisting of trophoblast spheroids encapsulated in 3D gelatin hydrogels to quantify trophoblast outgrowth area, viability, and cytotoxicity in the presence of PSG1 and PSG9 as well as epidermal growth factor and Nodal. Results We show PSG9 reduces trophoblast motility whereas PSG1 increases motility. Further, we assess bulk nascent protein production by encapsulated spheroids to highlight the potential of this approach to assess trophoblast response (motility, remodeling) to soluble factors and extracellular matrix cues. Conclusions Such models provide an important platform to develop a deeper understanding of early pregnancy.
Collapse
Affiliation(s)
- Samantha G. Zambuto
- grid.35403.310000 0004 1936 9991Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Shemona Rattila
- grid.265436.00000 0001 0421 5525Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD 20814 USA
| | - Gabriela Dveksler
- grid.265436.00000 0001 0421 5525Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD 20814 USA
| | - Brendan A. C. Harley
- grid.35403.310000 0004 1936 9991Department Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL 61801 USA ,grid.35403.310000 0004 1936 9991Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
9
|
Effect of Pregnancy Specific β1-Glycoprotein on the Replicative Potential of Naïve T Cells and Immune Memory T Cells. Bull Exp Biol Med 2021; 172:169-174. [PMID: 34855088 DOI: 10.1007/s10517-021-05357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 10/19/2022]
Abstract
We studied the effects of pregnancy-specific β1-glycoprotein (PSG) on the replicative potential of naïve T cells (CD45RA+) and immune memory T cells (CD45R0+) in vitro by evaluating the expression of the hTERT gene in combination with the proliferative activity of cells. Human PSG was obtained by the author's patented method of immunopurification using a biospecific sorbent with subsequent removal of immunoglobulin contamination on a HiTrap Protein G HP column. We used monocultures of CD45RA+ and CD45R0+ lymphocytes isolated from peripheral blood mononuclear cells of reproductive-age women. It was found that PSG in physiological concentrations inhibited the expression of the hTERT gene mRNA in naïve T cells and immune memory T cells and simultaneously reduced the number of proliferating T cells estimated by the differential gating method. At the same time, PSG reduced CD71 expression only on naïve T cells without affecting this molecule on immune memory T cells. Thus, PSG decreased the replication potential and suppressed the proliferation of T cells and immune memory T cells, which in the context of pregnancy can contribute to the formation of immune tolerance to the semi-allogeneic embryo.
Collapse
|
10
|
Rattila S, Kleefeldt F, Ballesteros A, Beltrame JS, L Ribeiro M, Ergün S, Dveksler G. Pro-angiogenic effects of pregnancy-specific glycoproteins in endothelial and extravillous trophoblast cells. Reproduction 2021; 160:737-750. [PMID: 33065549 DOI: 10.1530/rep-20-0169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/20/2020] [Indexed: 01/23/2023]
Abstract
We previously reported that binding to heparan sulfate (HS) is required for the ability of the placentally secreted pregnancy-specific glycoprotein 1 (PSG1) to induce endothelial tubulogenesis. PSG1 is composed of four immunoglobulin-like domains but which domains of the protein bind to HS remains unknown. To analyze the interaction of PSG1 with HS, we generated several recombinant proteins, including the individual domains, chimeric proteins between two PSG1 domains, and mutants. Using flow cytometric and surface plasmon resonance studies, we determined that the B2 domain of PSG1 binds to HS and that the positively charged amino acids encompassed between amino acids 43-59 are required for this interaction. Furthermore, we showed that the B2 domain of PSG1 is required for the increase in the formation of tubes by endothelial cells (EC) including a human endometrial EC line and two extravillous trophoblast (EVT) cell lines and for the pro-angiogenic activity of PSG1 observed in an aortic ring assay. PSG1 enhanced the migration of ECs while it increased the expression of matrix metalloproteinase-2 in EVTs, indicating that the pro-angiogenic effect of PSG1 on these two cell types may be mediated by different mechanisms. Despite differences in amino acid sequence, we observed that all human PSGs bound to HS proteoglycans and confirmed that at least two other members of the family, PSG6 and PSG9, induce tube formation. These findings contribute to a better understanding of the pro-angiogenic activity of human PSGs and strongly suggest conservation of this function among all PSG family members.
Collapse
Affiliation(s)
- Shemona Rattila
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jimena S Beltrame
- Laboratory of Physiology and Pharmacology of Reproduction, Centre for Pharmacological and Botanical Studies (CONICET - School of Medicine, University of Buenos Aires), Buenos Aires, Argentina
| | - Maria L Ribeiro
- Laboratory of Physiology and Pharmacology of Reproduction, Centre for Pharmacological and Botanical Studies (CONICET - School of Medicine, University of Buenos Aires), Buenos Aires, Argentina
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Zimmermann W, Kammerer R. The immune-modulating pregnancy-specific glycoproteins evolve rapidly and their presence correlates with hemochorial placentation in primates. BMC Genomics 2021; 22:128. [PMID: 33602137 PMCID: PMC7893922 DOI: 10.1186/s12864-021-07413-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Background Pregnancy-specific glycoprotein (PSG) genes belong to the carcinoembryonic antigen (CEA) gene family, within the immunoglobulin gene superfamily. In humans, 10 PSG genes encode closely related secreted glycoproteins. They are exclusively expressed in fetal syncytiotrophoblast cells and represent the most abundant fetal proteins in the maternal blood. In recent years, a role in modulation of the maternal immune system possibly to avoid rejection of the semiallogeneic fetus and to facilitate access of trophoblast cells to maternal resources via the blood system has been suggested. Alternatively, they could serve as soluble pathogen decoy receptors like other members of the CEA family. Despite their clearly different domain organization, similar functional properties have also been observed for murine and bat PSG. As these species share a hemochorial type of placentation and a seemingly convergent formation of PSG genes during evolution, we hypothesized that hemochorial placentae support the evolution of PSG gene families. Results To strengthen this hypothesis, we have analyzed PSG genes in 57 primate species which exhibit hemochorial or epitheliochorial placentation. In nearly all analyzed apes some 10 PSG genes each could be retrieved from genomic databases, while 6 to 24 PSG genes were found in Old World monkey genomes. Surprisingly, only 1 to 7 PSG genes could be identified in New World monkeys. Interestingly, no PSG genes were found in more distantly related primates with epitheliochorial placentae like lemurs and lorises. The exons encoding the putative receptor-binding domains exhibit strong selection for diversification in most primate PSG as revealed by rapid loss of orthologous relationship during evolution and high ratios of nonsynonymous and synonymous mutations. Conclusion The distribution of trophoblast-specific PSGs in primates and their pattern of selection supports the hypothesis that PSG are still evolving to optimize fetal-maternal or putative pathogen interactions in mammals with intimate contact of fetal cells with the immune system of the mother like in hemochorial placentation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07413-8.
Collapse
Affiliation(s)
- Wolfgang Zimmermann
- Tumor Immunology Laboratory, LIFE Center, Department of Urology, University Hospital, LMU Munich, Germany.
| | - Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Insel Riems, Germany
| |
Collapse
|
12
|
Liu Y, Zhang S, Yu T, Zhang F, Yang F, Huang Y, Ma D, Liu G, Shao Z, Li D. Pregnancy-specific glycoprotein 9 acts as both a transcriptional target and a regulator of the canonical TGF-β/Smad signaling to drive breast cancer progression. Clin Transl Med 2020; 10:e245. [PMID: 33377651 PMCID: PMC7733318 DOI: 10.1002/ctm2.245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022] Open
Abstract
Pregnancy-specific glycoprotein 9 (PSG9) is a placental glycoprotein essential for the maintenance of normal gestation in mammals. Bioinformatics analysis of multiple publicly available datasets revealed aberrant PSG9 expression in breast tumors, but its functional and mechanistic role in breast cancer remains unexplored. Here, we report that PSG9 expression levels were elevated in tumor tissues and plasma specimens from breast cancer patients, and were associated with poor prognosis. Gain- or loss-of-function studies demonstrated that PSG9 promoted breast cancer cell proliferation, migration, and invasionin vitro, and enhanced tumor growth and lung colonization in vivo. Mechanistically, transforming growth factor-β1 (TGF-β1) transcriptionally activated PSG9 expression through enhancing the enrichment of Smad3 and Smad4 onto PSG9 promoter regions containing two putative Smad-binding elements (SBEs). Mutation of both SBEs in the PSG9 promoter, or knockdown of TGF-β receptor 1 (TGFBR1), TGFBR2, Smad3, or Smad4 impaired the ability of TGF-β1 to induce PSG9 expression. Consequently, PSG9 contributed to TGF-β1-induced epithelial-mesenchymal transition (EMT) and breast cancer cell migration and invasion. Moreover, PSG9 enhanced the stability of Smad2, Smad3, and Smad4 proteins by blocking their proteasomal degradation, and regulated the expression of TGF-β1 target genes involved in EMT and breast cancer progression, thus further amplifying the canonical TGF-β/Smad signaling in breast cancer cells. Collectively, these findings establish PSG9 as a novel player in breast cancer progressionvia hijacking the canonical TGF-β/Smad signaling, and identify PSG9 as a potential plasma biomarker for the early detection of breast cancer.
Collapse
Affiliation(s)
- Ying‐Ying Liu
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer InstituteShanghai Medical College, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Breast SurgeryShanghai Medical College, Fudan UniversityShanghaiChina
| | - Sa Zhang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Tian‐Jian Yu
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer InstituteShanghai Medical College, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Breast SurgeryShanghai Medical College, Fudan UniversityShanghaiChina
| | - Fang‐Lin Zhang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer InstituteShanghai Medical College, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Fan Yang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer InstituteShanghai Medical College, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Breast SurgeryShanghai Medical College, Fudan UniversityShanghaiChina
| | - Yan‐Ni Huang
- Department of Breast SurgeryShanghai Medical College, Fudan UniversityShanghaiChina
| | - Ding Ma
- Department of Breast SurgeryShanghai Medical College, Fudan UniversityShanghaiChina
| | - Guang‐Yu Liu
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Breast SurgeryShanghai Medical College, Fudan UniversityShanghaiChina
| | - Zhi‐Ming Shao
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer InstituteShanghai Medical College, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Breast SurgeryShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Breast CancerShanghai Medical College, Fudan UniversityShanghaiChina
| | - Da‐Qiang Li
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer InstituteShanghai Medical College, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Breast SurgeryShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Breast CancerShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
13
|
Kammerer R, Ballesteros A, Bonsor D, Warren J, Williams JM, Moore T, Dveksler G. Equine pregnancy-specific glycoprotein CEACAM49 secreted by endometrial cup cells activates TGFB. Reproduction 2020; 160:685-694. [PMID: 33065543 PMCID: PMC11404722 DOI: 10.1530/rep-20-0277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/07/2020] [Indexed: 11/08/2022]
Abstract
In early equine pregnancy, a highly invasive trophoblast cell subpopulation, the chorionic girdle cells, invade the endometrium and form endometrial cups (EC). These cells express classical MHC molecules, thereby stimulating a humoral and cellular immune response, resulting in a massive accumulation of maternal CD4+ and CD8+ T cells around the EC. Nevertheless, no immediate destruction of endometrial cups by maternal lymphoid cells occurs, presumably due to immune tolerance. Although the environment of EC is rich in TGFB and in FOXP3+, CD4+ T cells, the mechanisms leading to tolerance have not been elucidated. Recently, we discovered that equine trophoblast cells secrete pregnancy-specific glycoproteins (PSGs). Since human and murine PSGs activate latent TGFB, we hypothesized that equine PSGs may have a similar activity. We performed plasmon surface resonance experiments to show that equine PSG CEACAM49 can directly bind to the latency-associated peptide (LAP) of both TGFB1 and TGFB2. We then found that the binding of CEACAM49 leads to the activation of TGFB1 as determined by both ELISA and cell-based assays. Furthermore, the activation of TGFB is a unique function of PSGs within the human CEA family, because CEACAM1, 3, 5, 6, 8 do not activate this cytokine. This finding further strengthens the classification of CEACAM49 as an equine PSG. Based on our results, we hypothesize that activation of latent TGFB in the EC environment by equine PSGs secreted by invasive trophoblast cells, could contribute to the generation of regulatory T cells (Tregs) to maintain immune tolerance.
Collapse
Affiliation(s)
- Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Bonsor
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - James Warren
- Department of Pathology, Uniformed Services University, Bethesda, Maryland, USA
| | - John M Williams
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Timganova VP, Zamorina SA, Litvinova LS, Todosenko NM, Bochkova MS, Khramtsov PV, Rayev MB. The effects of human pregnancy-specific β1-glycoprotein preparation on Th17 polarization of CD4 + cells and their cytokine profile. BMC Immunol 2020; 21:56. [PMID: 33126863 PMCID: PMC7602336 DOI: 10.1186/s12865-020-00385-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/26/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Pregnancy-specific β1-glycoproteins are capable of regulating innate and adaptive immunity, exerting predominantly suppressive effects. In this regard, they are of interest in terms of their pharmacological potential for the treatment of autoimmune diseases and post-transplant complications. The effect of these proteins on the main pro-inflammatory subpopulation of T lymphocytes, IL-17-producing helper T cells (Th17), has not been comprehensively studied. Therefore, the effects of the native pregnancy-specific β1-glycoprotein on the proliferation, Th17 polarization and cytokine profile of human CD4+ cells were assessed. RESULTS Native human pregnancy-specific β1-glycoprotein (PSG) at а concentration of 100 μg/mL was shown to decrease the frequency of Th17 (RORγτ+) in CD4+ cell culture and to suppress the proliferation of these cells (RORγτ+Ki-67+), along with the proliferation of other cells (Ki-67+) (n = 11). A PSG concentration of 10 μg/mL showed similar effect, decreasing the frequency of Ki-67+ and RORγτ+Ki67+ cells. Using Luminex xMAP technology, it was shown that PSG decreased IL-4, IL-5, IL-8, IL-12, IL-13, IL-17, MIP-1β, IL-10, IFN-γ, TNF-α, G-CSF, and GM-CSF concentrations in Th17-polarized CD4+ cell cultures but did not affect IL-2, IL-7, and MCP-1 output. CONCLUSIONS In the experimental model used, PSG had а mainly suppressive effect on the Th17 polarization and cytokine profile of Th17-polarized CD4+ cell cultures. As Th17 activity and a pro-inflammatory cytokine background are unfavorable during pregnancy, the observed PSG effects may play a fetoprotective role in vivo.
Collapse
Affiliation(s)
- Valeria P Timganova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences - branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, Perm, Russian Federation, 614081.
| | - Svetlana A Zamorina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences - branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, Perm, Russian Federation, 614081
| | - Larisa S Litvinova
- Immanuel Kant Baltic Federal University, A. Nevsky str., 14, Kaliningrad, Russian Federation, 236016
| | - Natalia M Todosenko
- Immanuel Kant Baltic Federal University, A. Nevsky str., 14, Kaliningrad, Russian Federation, 236016
| | - Maria S Bochkova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences - branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, Perm, Russian Federation, 614081
| | - Pavel V Khramtsov
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences - branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, Perm, Russian Federation, 614081.,Immanuel Kant Baltic Federal University, A. Nevsky str., 14, Kaliningrad, Russian Federation, 236016
| | - Mikhail B Rayev
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences - branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, Perm, Russian Federation, 614081
| |
Collapse
|
15
|
Expression of Pregnancy Specific β-1 Glycoprotein 1 in Cervical Cancer Cells. Arch Med Res 2020; 51:504-514. [PMID: 32546445 DOI: 10.1016/j.arcmed.2020.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/25/2020] [Accepted: 05/07/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cervical Cancer (CC) is a worldwide public health concern associated with genetic alterations, among these the gain of the 19q chromosome harboring the Pregnancy Specific Glycoproteins (PSG) gene family. These proteins play a critical role in pregnancy, with participation in immunotolerance, angiogenesis, and invasion processes, which are also observed in carcinogenesis. The aim of this study was to determine the molecular alterations of PSG1 and its relationship with CC. METHODS PSG1 Copy Number Variation (CNV) was evaluated in 31 CC and eight normal cervical tissues by qPCR. PSG1 expression was correlated with HPV detection and IL-10 and TGF-β expression in CC samples. Finally, PSG1 protein expression was evaluated by immunofluorescence in CC cell lines, by immunohistochemistry in a tissue microarray, and by immunoblotting in the sera of women with normal cervix, pre-invasive lesions, and CC. RESULTS PSG1 showed a gain of 25.6% in CNV and gene expression in CC. There was a lack of PSG1 expression in normal cervical epithelium and positive immunostaining in 57% of CC tissues, while all CC cell lines expressed PSG1. Finally, PSG1 was immunodetected in 90% of pre-invasive lesions and in all CC serum samples, but not in healthy women. PSG1 expression correlates with the expression of IL-10 and TGF-β in CC tissues, but not with the presence of HPV. CONCLUSION These data show evidence of the differential expression of PSG1 in CC that could explain its participation in tumor-biology and immunotolerance mechanisms. Further, its immunodetection could provide early detection of this cancer.
Collapse
|
16
|
Bui NHB, Napoli M, Davis AJ, Abbas HA, Rajapakshe K, Coarfa C, Flores ER. Spatiotemporal Regulation of ΔNp63 by TGFβ-Regulated miRNAs Is Essential for Cancer Metastasis. Cancer Res 2020; 80:2833-2847. [PMID: 32312834 DOI: 10.1158/0008-5472.can-19-2733] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 03/18/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
ΔNp63 is a transcription factor of the p53 family and has crucial functions in normal development and disease. The expression pattern of ΔNp63 in human cancer suggests dynamic regulation of this isoform during cancer progression and metastasis. Many primary and metastatic tumors express high levels of ΔNp63, while ΔNp63 loss is crucial for tumor dissemination, indicating an oscillatory expression of ΔNp63 during cancer progression. Here, we use genetically engineered orthotopic mouse models of breast cancer to show that while depletion of ΔNp63 inhibits primary mammary adenocarcinoma development, oscillatory expression of ΔNp63 in established tumors is crucial for metastatic dissemination in breast cancer. A TGFβ-regulated miRNA network acted as upstream regulators of this oscillatory expression of ΔNp63 during cancer progression. This work sheds light on the pleiotropic roles of ΔNp63 in cancer and unveils critical functions of TGFβ in the metastatic process. SIGNIFICANCE: This study unveils TGFβ signaling and a network of four miRNAs as upstream regulators of ΔNp63, providing key information for the development of therapeutic strategies to treat cancers that commonly overexpress ΔNp63.
Collapse
Affiliation(s)
- Ngoc H B Bui
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Marco Napoli
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Andrew John Davis
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Hussein A Abbas
- Hematology/Oncology Fellowship Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Elsa R Flores
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida. .,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
17
|
Mendoza M, Lu D, Ballesteros A, Blois SM, Abernathy K, Feng C, Dimitroff CJ, Zmuda J, Panico M, Dell A, Vasta GR, Haslam SM, Dveksler G. Glycan characterization of pregnancy-specific glycoprotein 1 and its identification as a novel Galectin-1 ligand. Glycobiology 2020; 30:895-909. [PMID: 32280962 DOI: 10.1093/glycob/cwaa034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Pregnancy-specific beta 1 glycoprotein (PSG1) is secreted from trophoblast cells of the human placenta in increasing concentrations as pregnancy progresses, becoming one of the most abundant proteins in maternal serum in the third trimester. PSG1 has seven potential N-linked glycosylation sites across its four domains. We carried out glycomic and glycoproteomic studies to characterize the glycan composition of PSG1 purified from serum of pregnant women and identified the presence of complex N-glycans containing poly LacNAc epitopes with α2,3 sialyation at four sites. Using different techniques, we explored whether PSG1 can bind to galectin-1 (Gal-1) as these two proteins were previously shown to participate in processes required for a successful pregnancy. We confirmed that PSG1 binds to Gal-1 in a carbohydrate-dependent manner with an affinity of the interaction of 0.13 μM. In addition, we determined that out of the three N-glycosylation-carrying domains, only the N and A2 domains of recombinant PSG1 interact with Gal-1. Lastly, we observed that the interaction between PSG1 and Gal-1 protects this lectin from oxidative inactivation and that PSG1 competes the ability of Gal-1 to bind to some but not all of its glycoprotein ligands.
Collapse
Affiliation(s)
- Mirian Mendoza
- Department of Pathology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
| | - Dongli Lu
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra M Blois
- Experimental and Clinical Research Center, Charité Campus Buch, Lindenberger Weg 80, 13125 Berlin, Germany.,Charité- Universitätsmedizin Berlin, Institute for Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Kelsey Abernathy
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201, USA
| | - Chiguang Feng
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201, USA
| | - Charles J Dimitroff
- Translational Medicine, Translational Glycobiology Institute, FIU, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Jonathan Zmuda
- Biosciences Division, Thermo Fisher Scientific, 7335 Executive Way, Frederick MD 21704, USA
| | - Maria Panico
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201, USA
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
| |
Collapse
|
18
|
Temur M, Serpim G, Tuzluoğlu S, Taşgöz FN, Şahin E, Üstünyurt E. Comparison of serum human pregnancy-specific beta-1-glycoprotein 1 levels in pregnant women with or without preeclampsia. J OBSTET GYNAECOL 2019; 40:1074-1078. [PMID: 31790616 DOI: 10.1080/01443615.2019.1679734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim of this study was to investigate the relationship between the maternal serum levels of pregnancy-specific beta-1-glycoprotein 1 (PSG1) and preeclampsia, and to compare levels of PSG1 in pregnancies with preeclampsia and uneventful pregnancies. A case-control study was conducted in a research and training hospital. A total of 40 women with preeclampsia and 42 healthy pregnant women who were gestational age-matched were included. Serum PSG1 levels were measured using enzyme-linked immunosorbent assay. The maternal serum PSG1 levels were significantly lower in patients with preeclampsia compared with controls (11.60 ± 8.08 vs. 17.58 ± 9.72 ng/mL, p = .003). Circulating PSG1 levels were negatively correlated with age in the preeclampsia and control groups (r = -0.322, p = .043), (r = -0.430, p = .005). PSG1 levels, age, blood urea nitrogen levels and birth weight were significantly associated with high odds of having preeclampsia. Receiver operating characteristic (ROC) curve analysis confirmed that the area under ROC curve was 0.707 (95% CI: [0.595-0.819], p < .001) for PSG1. The optimal cut-off value of PSG1 for detecting preeclampsia was ≤ 11.80 ng/mL. There may be a decrease in PSG1 production in preeclampsia-complicated pregnancies where there are pathologies related to placenta formation. A decline in PSG1 concentrations may reflect placental dysfunction.Impact StatementWhat is already known on this subject? Previous studies have reported abnormal pregnancy-specific glycoprotein (PSG) levels in complicated pregnancies and demonstrated their importance in maintaining a healthy pregnancy. Human PSG homologues have been identified in species with haemochorial placentation such as non-human primates, rats and mice, where foetal cells are in direct contact with the maternal circulation. There are studies in which there is no clear relationship between PSGs and preeclampsia.What the results of this study add? We have demonstrated that circulating PSG1 levels were significantly lower in women with preeclampsia than in healthy pregnant women. There may be a decrease in PSG1 production in preeclampsia-complicated pregnancies where there are pathologies related to placenta formation and function. The results obtained from this current study could be used to clarify the relationship between PSG1 levels and preeclampsia.What the implications are for clinical practice and/or further research? Evaluation of the role of circulating PSG1 levels in preeclampsia would be helpful in order to design further studies to determine the feasibility of using PSG1 as a serum marker to predict the risk of developing preeclampsia. The screening performance of PSG1 for preeclampsia is not yet clinically relevant, but may become so when evaluated together with other placental proteins. This will give a lead to further researches which could focus on the early detection of preeclampsia with the combination of several serum markers.
Collapse
Affiliation(s)
- Muzaffer Temur
- Department of Obstetrics and Gynecology, Bursa Yüksek İhtisas Education and Research Hospital, Bursa, Turkey
| | - Gülçin Serpim
- Department of Obstetrics and Gynecology, Bursa Yüksek İhtisas Education and Research Hospital, Bursa, Turkey
| | - Sabiha Tuzluoğlu
- Department of Obstetrics and Gynecology, Bursa Yüksek İhtisas Education and Research Hospital, Bursa, Turkey
| | - Fatma Nurgül Taşgöz
- Department of Obstetrics and Gynecology, Bursa Yüksek İhtisas Education and Research Hospital, Bursa, Turkey
| | - Elif Şahin
- Department of Obstetrics and Gynecology, Bursa Yüksek İhtisas Education and Research Hospital, Bursa, Turkey
| | - Emin Üstünyurt
- Department of Obstetrics and Gynecology, Bursa Yüksek İhtisas Education and Research Hospital, Bursa, Turkey
| |
Collapse
|
19
|
Interaction of Pregnancy-Specific Glycoprotein 1 With Integrin Α5β1 Is a Modulator of Extravillous Trophoblast Functions. Cells 2019; 8:cells8111369. [PMID: 31683744 PMCID: PMC6912793 DOI: 10.3390/cells8111369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 01/23/2023] Open
Abstract
Human pregnancy-specific glycoproteins (PSGs) serve immunomodulatory and pro-angiogenic functions during pregnancy and are mainly expressed by syncytiotrophoblast cells. While PSG mRNA expression in extravillous trophoblasts (EVTs) was reported, the proteins were not previously detected. By immunohistochemistry and immunoblotting, we show that PSGs are expressed by invasive EVTs and co-localize with integrin 5. In addition, we determined that native and recombinant PSG1, the most highly expressed member of the family, binds to 51 and induces the formation of focal adhesion structures resulting in adhesion of primary EVTs and EVT-like cell lines under 21% oxygen and 1% oxygen conditions. Furthermore, we found that PSG1 can simultaneously bind to heparan sulfate in the extracellular matrix and to 51 on the cell membrane. Wound healing assays and single-cell movement tracking showed that immobilized PSG1 enhances EVT migration. Although PSG1 did not affect EVT invasion in the in vitro assays employed, we found that the serum PSG1 concentration is lower in African-American women diagnosed with early-onset and late-onset preeclampsia, a pregnancy pathology characterized by shallow trophoblast invasion, than in their respective healthy controls only when the fetus was a male; therefore, the reduced expression of this molecule should be considered in the context of preeclampsia as a potential therapy.
Collapse
|
20
|
iTRAQ and PRM-based quantitative proteomics in early recurrent spontaneous abortion: biomarkers discovery. Clin Proteomics 2019; 16:36. [PMID: 31636515 PMCID: PMC6798364 DOI: 10.1186/s12014-019-9256-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/12/2019] [Indexed: 01/09/2023] Open
Abstract
Background Early recurrent spontaneous abortion (ERSA) is a common condition in pregnant women. To prevent ERSA is necessary to look for abortion indicators, such as hormones and proteins, in an early stage. Methods Thirty patients with ERSA were enrolled in the case group. In the control group, we recruited 30 healthy women without a history of miscarriage undergoing voluntary pregnancy termination. The differentially expressed proteins in the serum were identified between the two groups using PRM and iTRAQ. Results Seventy-eight differentially expressed proteins were identified. Using GO functional annotation and KEGG pathway analysis, we detected that the most significant changes occurred in the pathway of Fc gamma R-mediated phagocytosis. Meanwhile, using PRM, we identified three proteins that were closely related to abortion, B4DTF1 (highly similar to PSG1), P11464 (PSG1), and B4DF70 (highly similar to Prdx-2). The levels of B4DTF1 and P11464 were down-regulated, while the level of B4DF70 was up-regulated. Conclusions CD45, PSG1, and Prdx-2, were significantly dysregulated in the samples of ERSA and could become important biomarkers for the prediction and diagnosis of ERSA. Larger‑scale studies are required to confirm the diagnostic value of these biomarkers.
Collapse
|
21
|
Warren J, Im M, Ballesteros A, Ha C, Moore T, Lambert F, Lucas S, Hinz B, Dveksler G. Activation of latent transforming growth factor-β1, a conserved function for pregnancy-specific beta 1-glycoproteins. Mol Hum Reprod 2019; 24:602-612. [PMID: 30371828 DOI: 10.1093/molehr/gay044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Do all 10 human pregnancy-specific beta 1-glycoproteins (PSGs) and murine PSG23 activate latent transforming growth factor-β1 (TGF-β1)? SUMMARY ANSWER All human PSGs and murine PSG23 activated latent TGF-β1. WHAT IS KNOWN ALREADY Two of the 10 members of the PSG1 family, PSG1 and PSG9, were previously shown to activate the soluble small latent complex of TGF-β1, a cytokine with potent immune suppressive functions. STUDY DESIGN, SIZE, DURATION Recombinant PSGs were generated and tested for their ability to activate the small latent complex of TGF-β1 in a cell-free ELISA-based assay and in a bioassay. In addition, we tested the ability of PSG1 and PSG4 to activate latent TGF-β bound to the extracellular matrix (ECM) or on the membranes of the Jurkat human T-cell line. PARTICIPANTS/MATERIALS, SETTING, METHODS Recombinant PSGs were generated by transient transfection and purified with a His-Trap column followed by gel filtration chromatography. The purified PSGs were compared to vehicle (PBS) used as control for their ability to activate the small latent complex of TGF-β1. The concentration of active TGF-β was measured in an ELISA using the TGF-β receptor II as capture and a bioassay using transformed mink epithelial cells that express luciferase in response to active TGF-β. The specificity of the signal was confirmed using a TGF-β receptor inhibitor. We also measured the binding kinetics of some human PSGs for the latent-associated peptide (LAP) of TGF-β using surface plasmon resonance and determined whether PSG1 and PSG4 could activate the large latent complex of TGF-β1 bound to the ECM and latent TGF-β1 bound to the cell membrane. All experiments were performed in triplicate wells and repeated three times. MAIN RESULTS AND THE ROLE OF CHANCE All human PSGs activated the small latent complex of TGF-β1 (P < 0.05 vs. control) and showed similar affinities (KD) for LAP. Despite the lack of sequence conservation with its human counterparts, the ability to activate latent TGF-β1 was shared by a member of the murine PSG family. We found that PSG1 and PSG4 activated the latent TGF-β stored in the ECM (P < 0.01) but did not activate latent TGF-β1 bound to glycoprotein A repetitions predominant (GARP) on the surface of Jurkat T cells. LIMITATIONS, REASONS FOR CAUTION The affinity of the interaction of LAP and PSGs was calculated using recombinant proteins, which may differ from the native proteins in their post-translational modifications. We also utilized a truncated form of murine PSG23 rather than the full-length protein. For the studies testing the ability of PSGs to activate membrane-bound TGF-β1, we utilized the T-cell line Jurkat and Jurkat cells expressing GARP rather than primary T regulatory cells. All the studies were performed in vitro. WIDER IMPLICATIONS OF THE FINDINGS Here, we show that all human PSGs activate TGF-β1 and that this function is conserved in at least one member of the rodent PSG family. In vivo PSGs could potentially increase the availability of active TGF-β1 from the soluble and matrix-bound latent forms of the cytokine contributing to the establishment of a tolerogenic environment during pregnancy. LARGE-SCALE DATA None. STUDY FUNDING/COMPETING INTEREST(S) The research was supported by a grant from the Collaborative Health Initiative Research Program (CHIRP). No conflicts of interests are declared by the authors.
Collapse
Affiliation(s)
- James Warren
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Michelle Im
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, 150 College St., FG234, ON, Canada
| | - Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute on Neurological Disorders and Stroke (NINDS-NIH), Bethesda, MD, USA
| | - Cam Ha
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, College Road, Cork, Ireland
| | - Fanny Lambert
- Institut de Duve, Université catholique de Louvain, Avenue Hippocrate 75 - B1.74.04, Brussels, Belgium
| | - Sophie Lucas
- Institut de Duve, Université catholique de Louvain, Avenue Hippocrate 75 - B1.74.04, Brussels, Belgium
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, 150 College St., FG234, ON, Canada
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
22
|
Tiensuu H, Haapalainen AM, Karjalainen MK, Pasanen A, Huusko JM, Marttila R, Ojaniemi M, Muglia LJ, Hallman M, Rämet M. Risk of spontaneous preterm birth and fetal growth associates with fetal SLIT2. PLoS Genet 2019; 15:e1008107. [PMID: 31194736 PMCID: PMC6563950 DOI: 10.1371/journal.pgen.1008107] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
Spontaneous preterm birth (SPTB) is the leading cause of neonatal death and morbidity worldwide. Both maternal and fetal genetic factors likely contribute to SPTB. We performed a genome-wide association study (GWAS) on a population of Finnish origin that included 247 infants with SPTB (gestational age [GA] < 36 weeks) and 419 term controls (GA 38-41 weeks). The strongest signal came within the gene encoding slit guidance ligand 2 (SLIT2; rs116461311, minor allele frequency 0.05, p = 1.6×10-6). Pathway analysis revealed the top-ranking pathway was axon guidance, which includes SLIT2. In 172 very preterm-born infants (GA <32 weeks), rs116461311 was clearly overrepresented (odds ratio 4.06, p = 1.55×10-7). SLIT2 variants were associated with SPTB in another European population that comprised 260 very preterm infants and 9,630 controls. To gain functional insight, we used immunohistochemistry to visualize SLIT2 and its receptor ROBO1 in placentas from spontaneous preterm and term births. Both SLIT2 and ROBO1 were located in villous and decidual trophoblasts of embryonic origin. Based on qRT-PCR, the mRNA levels of SLIT2 and ROBO1 were higher in the basal plate of SPTB placentas compared to those from term or elective preterm deliveries. In addition, in spontaneous term and preterm births, placental SLIT2 expression was correlated with variations in fetal growth. Knockdown of ROBO1 in trophoblast-derived HTR8/SVneo cells by siRNA indicated that it regulate expression of several pregnancy-specific beta-1-glycoprotein (PSG) genes and genes involved in inflammation. Our results show that the fetal SLIT2 variant and both SLIT2 and ROBO1 expression in placenta and trophoblast cells may be correlated with susceptibility to SPTB. SLIT2-ROBO1 signaling was linked with regulation of genes involved in inflammation, PSG genes, decidualization and fetal growth. We propose that this receptor-ligand couple is a component of the signaling network that promotes SPTB.
Collapse
Affiliation(s)
- Heli Tiensuu
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Antti M. Haapalainen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Minna K. Karjalainen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Anu Pasanen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Johanna M. Huusko
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, United States of America
| | - Riitta Marttila
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Marja Ojaniemi
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Louis J. Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, United States of America
| | - Mikko Hallman
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Mika Rämet
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
23
|
Larco DO, Bauman BM, Cho-Clark M, Mani SK, Wu TJ. GnRH-(1-5) Inhibits TGF-β Signaling to Regulate the Migration of Immortalized Gonadotropin-Releasing Hormone Neurons. Front Endocrinol (Lausanne) 2018; 9:45. [PMID: 29515521 PMCID: PMC5826220 DOI: 10.3389/fendo.2018.00045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/02/2018] [Indexed: 01/17/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons originate outside the central nervous system (CNS) in the nasal placode where their migration to the basal forebrain is dependent on the integration of multiple signaling cues during development. The proper migration and establishment of the GnRH neuronal population within the CNS are critical for normal pubertal onset and reproductive function. The endopeptidase EP24.15 is expressed along the migratory path of GnRH neurons and cleaves the full-length GnRH to generate the metabolite GnRH-(1-5). Using the GN11 cell model, which is considered a pre-migratory GnRH neuronal cell line, we demonstrated that GnRH-(1-5) inhibits cellular migration in a wound closure assay by binding the orphan G protein-coupled receptor 173 (GPR173). In our current experiments, we sought to utilize an in vitro migration assay that better reflects the external environment that migrating GnRH neurons are exposed to during development. Therefore, we used a transwell assay where the inserts were coated with or without a matrigel, a gelatinous mixture containing extracellular matrix (ECM) proteins, to mimic the extracellular environment. Interestingly, GnRH-(1-5) inhibited the ability of GN11 cells to migrate only through ECM mimetic and was dependent on GPR173. Furthermore, we found that GN11 cells secrete TGF-β1, 2, and 3 but only TGF-β1 release and signaling were inhibited by GnRH-(1-5). To identify potential mechanisms involved in the proteolytic activation of TGF-β, we measured a panel of genes implicated in ECM remodeling. We found that GnRH-(1-5) consistently increased tissue inhibitors of metalloproteinase 1 expression, which is an inhibitor of proteinase activity, leading to a decrease in bioactive TGF-β and subsequent signaling. These results suggest that GnRH-(1-5) activating GPR173 may modulate the response of migrating GnRH neurons to external cues present in the ECM environment via an autocrine-dependent mechanism involving TGF-β.
Collapse
Affiliation(s)
- Darwin O. Larco
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Bradly M. Bauman
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Madelaine Cho-Clark
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Shaila K. Mani
- Department of Molecular, Baylor College of Medicine, Houston, TX, United States
- Department of Cellular Biology and Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - T. John Wu
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
24
|
Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA. Regulation of Innate and Adaptive Immunity by TGFβ. Adv Immunol 2017; 134:137-233. [PMID: 28413021 DOI: 10.1016/bs.ai.2017.01.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immune regulation by cytokines is crucial in maintaining immune homeostasis, promoting responses to infection, resolving inflammation, and promoting immunological memory. Additionally, cytokine responses drive pathology in immune-mediated disease. A crucial cytokine in the regulation of all aspects of an immune response is transforming growth factor beta (TGFβ). Although best known as a crucial regulator of T cell responses, TGFβ plays a vital role in regulating responses mediated by virtually every innate and adaptive immune cell, including dendritic cells, B cells, NK cells, innate lymphoid cells, and granulocytes. Here, we review our current knowledge of how TGFβ regulates the immune system, highlighting the multifunctional nature of TGFβ and how its function can change depending on location and context of action.
Collapse
Affiliation(s)
- Aoife Kelly
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Stephanie A Houston
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Eleanor Sherwood
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Joshua Casulli
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mark A Travis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
25
|
Jones K, Ballesteros A, Mentink-Kane M, Warren J, Rattila S, Malech H, Kang E, Dveksler G. PSG9 Stimulates Increase in FoxP3+ Regulatory T-Cells through the TGF-β1 Pathway. PLoS One 2016; 11:e0158050. [PMID: 27389696 PMCID: PMC4936685 DOI: 10.1371/journal.pone.0158050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022] Open
Abstract
The pregnancy-specific glycoproteins (PSGs) are a family of proteins secreted by the syncytiotrophoblast of the placenta and are the most abundant trophoblastic proteins in maternal blood during the third trimester. The human PSG family consists of 10 protein-coding genes, some of which have a possible role in maintaining maternal immune tolerance to the fetus. PSG9 was reported as a potential predictive biomarker of pre-eclampsia, a serious complication of pregnancy that has been related to immunological dysfunction at the fetal-maternal interface. Therefore, we hypothesized that PSG9 may have an immunoregulatory role during pregnancy. We found that PSG9 binds to LAP and activates the latent form of TGF-β1. In addition, PSG9 induces the secretion of TGF-β1 from macrophages but not from CD4+ T-cells. TGF-β1 is required for the ex vivo differentiation of regulatory T-cells and, consistent with the ability of PSG9 to activate this cytokine, we observed that PSG9 induces the differentiation of FoxP3+ regulatory T-cells from naïve murine and human T-cells. Cytokines that are associated with inflammatory responses were also reduced in the supernatants of T-cells treated with PSG9, suggesting that PSG9, through its activation of TGFβ-1, could be a potent inducer of immune tolerance.
Collapse
Affiliation(s)
- Karlie Jones
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Angela Ballesteros
- National Institute on Deafness and other Communication Disorders, NIH, Bethesda, Maryland, United States of America
| | | | - James Warren
- Department of Pathology, USUHS, Bethesda, Maryland, 20814, United States of America
| | - Shemona Rattila
- Department of Pathology, USUHS, Bethesda, Maryland, 20814, United States of America
| | - Harry Malech
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Elizabeth Kang
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Gabriela Dveksler
- Department of Pathology, USUHS, Bethesda, Maryland, 20814, United States of America
- * E-mail:
| |
Collapse
|
26
|
Aleksic D, Blaschke L, Mißbach S, Hänske J, Weiß W, Handler J, Zimmermann W, Cabrera-Sharp V, Read JE, de Mestre AM, O'Riordan R, Moore T, Kammerer R. Convergent evolution of pregnancy-specific glycoproteins in human and horse. Reproduction 2016; 152:171-84. [PMID: 27280409 DOI: 10.1530/rep-16-0236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/07/2016] [Indexed: 01/13/2023]
Abstract
Pregnancy-specific glycoproteins (PSGs) are members of the carcinoembryonic antigen cell adhesion molecule (CEACAM) family that are secreted by trophoblast cells. PSGs may modulate immune, angiogenic and platelet responses during pregnancy. Until now, PSGs are only found in species that have a highly invasive (hemochorial) placentation including humans, mice and rats. Surprisingly, analyzing the CEACAM gene family of the horse, which has a non-invasive epitheliochorial placenta, with the exception of the transient endometrial cups, we identified equine CEACAM family members that seem to be related to PSGs of rodents and primates. We identified seven genes that encode secreted PSG-like CEACAMs Phylogenetic analyses indicate that they evolved independently from an equine CEACAM1-like ancestor rather than from a common PSG-like ancestor with rodents and primates. Significantly, expression of PSG-like genes (CEACAM44, CEACAM48, CEACAM49 and CEACAM55) was found in non-invasive as well as invasive trophoblast cells such as purified chorionic girdle cells and endometrial cup cells. Chorionic girdle cells are highly invasive trophoblast cells that invade the endometrium of the mare where they form endometrial cups and are in close contact with maternal immune cells. Therefore, the microenvironment of invasive equine trophoblast cells has striking similarities to the microenvironment of trophoblast cells in hemochorial placentas, suggesting that equine PSG-like CEACAMs and rodent and primate PSGs have undergone convergent evolution. This is supported by our finding that equine PSG-like CEACAM49 exhibits similar activity to certain rodent and human PSGs in a functional assay of platelet-fibrinogen binding. Our results have implications for understanding the evolution of PSGs and their functions in maternal-fetal interactions.
Collapse
Affiliation(s)
- Denis Aleksic
- Institute of ImmunologyFriedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Lisa Blaschke
- Institute of ImmunologyFriedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Sophie Mißbach
- Institute of ImmunologyFriedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jana Hänske
- Institute of ImmunologyFriedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Wiebke Weiß
- Institute of ImmunologyFriedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Johannes Handler
- Equine Center Bad SaarowFreie Universität Berlin, Bad Saarow, Germany
| | - Wolfgang Zimmermann
- Tumor Immunology LaboratoryLudwig-Maximilians-University, Munich, Germany Department of UrologyUniversity Hospital, Munich, Germany
| | - Victoria Cabrera-Sharp
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, University of London, London, UK
| | - Jordan E Read
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, University of London, London, UK
| | - Amanda M de Mestre
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, University of London, London, UK
| | - Ronan O'Riordan
- School of Biochemistry and Cell BiologyUniversity College Cork, Cork, Ireland
| | - Tom Moore
- School of Biochemistry and Cell BiologyUniversity College Cork, Cork, Ireland
| | - Robert Kammerer
- Institute of ImmunologyFriedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
27
|
Houston A, Williams JM, Rovis TL, Shanley DK, O'Riordan RT, Kiely PA, Ball M, Barry OP, Kelly J, Fanning A, MacSharry J, Mandelboim O, Singer BB, Jonjic S, Moore T. Pregnancy-specific glycoprotein expression in normal gastrointestinal tract and in tumors detected with novel monoclonal antibodies. MAbs 2016; 8:491-500. [PMID: 26926266 DOI: 10.1080/19420862.2015.1134410] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Pregnancy-specific glycoproteins (PSGs) are immunoglobulin superfamily members related to the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family and are encoded by 10 genes in the human. They are secreted at high levels by placental syncytiotrophoblast into maternal blood during pregnancy, and are implicated in immunoregulation, thromboregulation, and angiogenesis. To determine whether PSGs are expressed in tumors, we characterized 16 novel monoclonal antibodies to human PSG1 and used 2 that do not cross-react with CEACAMs to study PSG expression in tumors and in the gastrointestinal (GI) tract using tissue arrays and immunohistochemistry. Staining was frequently observed in primary squamous cell carcinomas and colonic adenocarcinomas and was correlated with the degree of tumor differentiation, being largely absent from metastatic samples. Staining was also observed in normal oesophageal and colonic epithelium. PSG expression in the human and mouse GI tract was confirmed using quantitative RT-PCR. However, mRNA expression was several orders of magnitude lower in the GI tract compared to placenta. Our results identify a non-placental site of PSG expression in the gut and associated tumors, with implications for determining whether PSGs have a role in tumor progression, and utility as tumor biomarkers.
Collapse
Affiliation(s)
- Aileen Houston
- a School of Medicine , University College Cork , Ireland
| | - John M Williams
- b School of Biochemistry and Cell Biology, University College Cork , Ireland
| | - Tihana Lenac Rovis
- c Department of Histology and Embryology/Center for Proteomics , Faculty of Medicine, University of Rijeka , Croatia
| | - Daniel K Shanley
- b School of Biochemistry and Cell Biology, University College Cork , Ireland
| | - Ronan T O'Riordan
- b School of Biochemistry and Cell Biology, University College Cork , Ireland
| | - Patrick A Kiely
- d Department of Life Sciences , Materials and Surface Science Institute and Stokes Institute, University of Limerick
| | - Melanie Ball
- b School of Biochemistry and Cell Biology, University College Cork , Ireland
| | - Orla P Barry
- e Department of Pharmacology , Alimentary Pharmabiotic Center, University College Cork , Ireland
| | - Jacquie Kelly
- a School of Medicine , University College Cork , Ireland
| | - Aine Fanning
- f Alimentary Pharmabiotic Center, University College Cork , Ireland
| | - John MacSharry
- f Alimentary Pharmabiotic Center, University College Cork , Ireland
| | - Ofer Mandelboim
- g Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School , Jerusalem , Israel
| | - Bernhard B Singer
- h Institute of Anatomy, University Hospital, University Duisburg-Essen , Essen , Germany
| | - Stipan Jonjic
- c Department of Histology and Embryology/Center for Proteomics , Faculty of Medicine, University of Rijeka , Croatia
| | - Tom Moore
- b School of Biochemistry and Cell Biology, University College Cork , Ireland
| |
Collapse
|