1
|
Neißner K, Frohnapfel C, Keller H, Duchardt‐Ferner E, Schneider V, Kamjou Z, Averhoff B, Wöhnert J. NMR Solution Structure of the N-Terminal GSPII Domain from the Thermus Thermophilus Traffic ATPase PilF and Reconstruction of its c-di-GMP Binding Capability. Chembiochem 2025; 26:e202400959. [PMID: 39960869 PMCID: PMC12002112 DOI: 10.1002/cbic.202400959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/16/2025] [Indexed: 03/14/2025]
Abstract
The cyclic dinucleotide c-di-GMP is an important second messenger molecule in bacteria and interacts with a variety of receptor molecules including RNA and protein domains. An important class of c-di-GMP-binding protein domains are the general secretory pathway type II (GSPII) domains as exemplified by the N-terminal domain of the ATPase MshE from Vibrio cholerae (MshEN). MshEN binds monomeric c-di-GMP via two consecutive copies of a 24-residue sequence motif, which form a compact 4-α-helical bundle. The ATPase PilF from Thermus thermophilus regulates pilus formation, motility and DNA-uptake. Its N-terminal section contains three consecutive GSPII domains (GSPII-A-GSPII-C) all with considerable sequence homology to MshEN. While the GSPII-B and the GSPII-C domains bind c-di-GMP, the GSPII-A domain does not. To determine why it is incapable of c-di-GMP-binding we determined the NMR-solution structure of this domain. Our structure shows how small deviations in the consensus motif sequence, a stabilizing N-terminal helical capping motif and intersubdomain interactions absent in MshEN cooperate to prevent c-di-GMP-binding. By combining point mutations and truncations, we re-established the c-di-GMP binding capability. Our findings shed new light on the evolution and functional diversification of GSPII domains and the importance of sequence variations for protein activity in this domain family.
Collapse
Affiliation(s)
- Konstantin Neißner
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University Frankfurt/M.Max-von-Laue-Str. 960438FrankfurtGermany
- Institute for Molecular BiosciencesGoethe-University Frankfurt/MMax-von-Laue-Str. 960438FrankfurtGermany
| | - Carolin Frohnapfel
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University Frankfurt/M.Max-von-Laue-Str. 960438FrankfurtGermany
- Institute for Molecular BiosciencesGoethe-University Frankfurt/MMax-von-Laue-Str. 960438FrankfurtGermany
- Bruker Biospin GmbH &Co. KGRudolf-Plank-Str. 2376275EttlingenGermany
| | - Heiko Keller
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University Frankfurt/M.Max-von-Laue-Str. 960438FrankfurtGermany
- Institute for Molecular BiosciencesGoethe-University Frankfurt/MMax-von-Laue-Str. 960438FrankfurtGermany
| | - Elke Duchardt‐Ferner
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University Frankfurt/M.Max-von-Laue-Str. 960438FrankfurtGermany
- Institute for Molecular BiosciencesGoethe-University Frankfurt/MMax-von-Laue-Str. 960438FrankfurtGermany
| | - Vanessa Schneider
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University Frankfurt/M.Max-von-Laue-Str. 960438FrankfurtGermany
- Institute for Molecular BiosciencesGoethe-University Frankfurt/MMax-von-Laue-Str. 960438FrankfurtGermany
| | - Zeinab Kamjou
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University Frankfurt/M.Max-von-Laue-Str. 960438FrankfurtGermany
- Institute for Molecular BiosciencesGoethe-University Frankfurt/MMax-von-Laue-Str. 960438FrankfurtGermany
| | - Beate Averhoff
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University Frankfurt/M.Max-von-Laue-Str. 960438FrankfurtGermany
- Molecular Microbiology and BioenergeticsGoethe-University Frankfurt/M.Max-von-Laue-Str. 960438FrankfurtGermany
| | - Jens Wöhnert
- Institute for Molecular BiosciencesGoethe-University Frankfurt/M.Max-von-Laue-Str. 9, 60438FrankfurtGermany
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University Frankfurt/M.Max-von-Laue-Str. 960438FrankfurtGermany
- Institute for Molecular BiosciencesGoethe-University Frankfurt/MMax-von-Laue-Str. 960438FrankfurtGermany
| |
Collapse
|
2
|
Neißner K, Keller H, Kirchner L, Düsterhus S, Duchardt-Ferner E, Averhoff B, Wöhnert J. The structural basis for high-affinity c-di-GMP binding to the GSPII-B domain of the traffic ATPase PilF from Thermus thermophilus. J Biol Chem 2025; 301:108041. [PMID: 39615687 PMCID: PMC11731258 DOI: 10.1016/j.jbc.2024.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
c-di-GMP is an important second messenger in bacteria regulating, for example motility, biofilm formation, cell wall biosynthesis, infectivity, and natural transformability. It binds to a multitude of intracellular receptors. This includes proteins containing general secretory pathway II (GSPII) domains such as the N-terminal domain of the Vibrio cholerae ATPase MshE (MshEN) which binds c-di-GMP with two copies of a 24-amino acids sequence motif. The traffic ATPase PilF from Thermus thermophilus is important for type IV pilus biogenesis, twitching motility, surface attachment, and natural DNA-uptake and contains three consecutive homologous GPSII domains. We show that only two of these domains bind c-di-GMP and define the structural basis for the exceptional high affinity of the GSPII-B domain for c-di-GMP, which is 83-fold higher than that of the prototypical MshEN domain. Our work establishes an extended consensus sequence for the c-di-GMP-binding motif and highlights the role of hydrophobic residues for high-affinity recognition of c-di-GMP. Our structure is the first example for a c-di-GMP-binding domain not relying on arginine residues for ligand recognition. We also show that c-di-GMP-binding induces local unwinding of an α-helical turn as well as subdomain reorientation to reinforce intermolecular contacts between c-di-GMP and the C-terminal subdomain. Abolishing c-di-GMP binding to GSPII-B reduces twitching motility and surface attachment but not natural DNA-uptake. Overall, our work contributes to a better characterization of c-di-GMP binding in this class of effector domains, allows the prediction of high-affinity c-di-GMP-binding family members, and advances our understanding of the importance of c-di-GMP binding for T4P-related functions.
Collapse
Affiliation(s)
- Konstantin Neißner
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Heiko Keller
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Lennart Kirchner
- Molecular Microbiology and Bioenergetics, Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Stefanie Düsterhus
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Frankfurt, Germany.
| |
Collapse
|
3
|
McDonald-Ramos JS, Hicklin IK, Yang Z, Brown AM. Identification of small molecule inhibitors of the Chloracidobacterium thermophilum type IV pilus protein PilB by ensemble virtual screening. Arch Biochem Biophys 2024; 760:110127. [PMID: 39154818 DOI: 10.1016/j.abb.2024.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Antivirulence strategy has been explored as an alternative to traditional antibiotic development. The bacterial type IV pilus is a virulence factor involved in host invasion and colonization in many antibiotic resistant pathogens. The PilB ATPase hydrolyzes ATP to drive the assembly of the pilus filament from pilin subunits. We evaluated Chloracidobacterium thermophilum PilB (CtPilB) as a model for structure-based virtual screening by molecular docking and molecular dynamics (MD) simulations. A hexameric structure of CtPilB was generated through homology modeling based on an existing crystal structure of a PilB from Geobacter metallireducens. Four representative structures were obtained from molecular dynamics simulations to examine the conformational plasticity of PilB and improve docking analyses by ensemble docking. Structural analyses after 1 μs of simulation revealed conformational changes in individual PilB subunits are dependent on ligand presence. Further, ensemble virtual screening of a library of 4234 compounds retrieved from the ZINC15 database identified five promising PilB inhibitors. Molecular docking and binding analyses using the four representative structures from MD simulations revealed that top-ranked compounds interact with multiple Walker A residues, one Asp-box residue, and one arginine finger, indicating these are key residues in inhibitor binding within the ATP binding pocket. The use of multiple conformations in molecular screening can provide greater insight into compound flexibility within receptor sites and better inform future drug development for therapeutics targeting the type IV pilus assembly ATPase.
Collapse
Affiliation(s)
| | | | - Zhaomin Yang
- Department of Biological Sciences, USA; Center for Drug Discovery, USA; Center for Emerging, Zoonotic and Arthropod-borne Pathogens, USA.
| | - Anne M Brown
- Department of Biochemistry, USA; Center for Drug Discovery, USA; Center for Emerging, Zoonotic and Arthropod-borne Pathogens, USA; University Libraries, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
4
|
Kirchner L, Averhoff B. DNA binding by pilins and their interaction with the inner membrane platform of the DNA transporter in Thermus thermophilus. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183818. [PMID: 34774498 DOI: 10.1016/j.bbamem.2021.183818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
The natural transformation system of Thermus thermophilus has become a model system for studies of the structure and function of DNA transporter in thermophilic bacteria. The DNA transporter in T. thermophilus is functionally linked to type IV pili (T4P) and the major pilin PilA4 plays an essential role in both systems. However, T4P are dispensable for natural transformation. In addition to pilA4, T. thermophilus has a gene cluster encoding the three additional pilins PilA1-PilA3; deletion of the cluster abolished natural transformation but retained T4P biogenesis. In this study, we investigated the roles of single pilins PilA1, PilA2 and PilA3 in natural transformation by mutant studies. These studies revealed that each of these pilins is essential for natural transformation. Two of the pilins, PilA1 and PilA2, were found to bind dsDNA. PilA1 and PilA3 were detected in the inner membrane (IM) but not in the outer membrane (OM) whereas PilA2 was present in both membranes. All three pilins where absent in pilus fractions. This suggests that the pilins form a short DNA binding pseudopilus anchored in the IM. PilA1 was found to bind to the IM assembly platform of the DNA transporter via PilM and PilO. These data are in line with the hypothesis that a DNA binding pseudopilus is connected via an IM platform to the cytosolic motor ATPase PilF.
Collapse
Affiliation(s)
- Lennart Kirchner
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
5
|
Adhikary R, Kundu S, Maiti PK, Mitra PK, Mandal S, Mandal V. Effect of different stimuli on twitching behavior of endophytic bacteria isolated from Loranthus sp. Jacq. Antonie van Leeuwenhoek 2020; 113:1489-1505. [PMID: 32789713 DOI: 10.1007/s10482-020-01458-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 08/03/2020] [Indexed: 11/29/2022]
Abstract
Bacteria need to adopt to different behavioral tuning depending on the dynamic eco-physiological conditions they are exposed to. One of these adaptive strategies is the use of motility. Here we report the twitching motility response of four endophytic isolates of Bacillus sp. when exposed to different eco-physiological stimuli like different nutrient sources, and mechanical and chemical antagonists on solid surfaces. These endophytic bacteria were isolated from different parts of a hemiparasite Loranthus sp. Jacq. (Loranthaceae) growing on economically important mango trees. The results show that the twitching motility of these bacteria was more when exposed to organic acids, metals salts (among nutrients) and mechanical shearing (stress) than the other factors. Their motility is not affected by surface lubrication or EPS production, but instead is influenced by shear-sensitive structures and affinity to metal ions. Further molecular studies are needed to elucidate the basis of this twitching behaviour on solid surfaces.
Collapse
Affiliation(s)
| | - Smriti Kundu
- University of Gour Banga, Malda, West Bengal, India
| | | | | | | | | |
Collapse
|
6
|
Neuhaus A, Selvaraj M, Salzer R, Langer JD, Kruse K, Kirchner L, Sanders K, Daum B, Averhoff B, Gold VAM. Cryo-electron microscopy reveals two distinct type IV pili assembled by the same bacterium. Nat Commun 2020; 11:2231. [PMID: 32376942 PMCID: PMC7203116 DOI: 10.1038/s41467-020-15650-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Type IV pili are flexible filaments on the surface of bacteria, consisting of a helical assembly of pilin proteins. They are involved in bacterial motility (twitching), surface adhesion, biofilm formation and DNA uptake (natural transformation). Here, we use cryo-electron microscopy and mass spectrometry to show that the bacterium Thermus thermophilus produces two forms of type IV pilus ('wide' and 'narrow'), differing in structure and protein composition. Wide pili are composed of the major pilin PilA4, while narrow pili are composed of a so-far uncharacterized pilin which we name PilA5. Functional experiments indicate that PilA4 is required for natural transformation, while PilA5 is important for twitching motility.
Collapse
Affiliation(s)
- Alexander Neuhaus
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Muniyandi Selvaraj
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
- Laboratory of Structural Biology, Helsinki Institute of Life Science, 00014 University of Helsinki, Helsinki, Finland
| | - Ralf Salzer
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
- Structural Studies Division, Medical Research Council-Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Julian D Langer
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
- Proteomics, Max Planck Institute for Brain Research, Max-von-Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Kerstin Kruse
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Lennart Kirchner
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Kelly Sanders
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
7
|
Keller H, Kruse K, Averhoff B, Duchardt-Ferner E, Wöhnert J. NMR resonance assignments for the GSPII-C domain of the PilF ATPase from Thermus thermophilus in complex with c-di-GMP. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:361-366. [PMID: 31372934 DOI: 10.1007/s12104-019-09906-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
The natural transformation system of the thermophilic bacterium Thermus thermophilus is one of the most efficient DNA transport systems in terms of DNA uptake rate and promiscuity. The DNA transporter of T. thermophilus plays an important role in interdomain DNA transfer in hot environments. PilF is the traffic ATPase that provides the energy for the assembly of the DNA translocation machinery and the functionally linked type IV pilus system in T. thermophilus. In contrast to other known traffic ATPases, the N-terminal region of PilF harbors three consecutive domains with homology to general secretory pathway II (GSPII) domains. These GSPII-like domains influence pilus assembly, twitching motility and transformation efficiency. A structural homolog of the PilF GSPII-like domains, the N-terminal domain of the traffic ATPase MshE from Vibrio cholerae, was recently crystallized in complex with the bacterial second messenger c-di-GMP. In order to study the consequences of c-di-GMP binding on the three-dimensional architecture of PilF, we initiated structural studies on the PilF GSPII-like domains. Here, we present the 1H, 13C and 15N chemical shift assignments for the isolated PilF GSPII-C domain from T. thermophilus in complex with c-di-GMP. In addition, the structural dynamics of the complex was investigated in an {1H},15N-hetNOE experiment.
Collapse
Affiliation(s)
- Heiko Keller
- Institute for Molecular Biosciences, Goethe University Frankfurt/M, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt/M, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
| | - Kerstin Kruse
- Institute for Molecular Biosciences, Goethe University Frankfurt/M, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Beate Averhoff
- Institute for Molecular Biosciences, Goethe University Frankfurt/M, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe University Frankfurt/M, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt/M, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe University Frankfurt/M, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt/M, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
8
|
Neißner K, Keller H, Duchardt-Ferner E, Hacker C, Kruse K, Averhoff B, Wöhnert J. NMR resonance assignments for the GSPII-B domain of the traffic ATPase PilF from Thermus thermophilus in the apo and the c-di-GMP-bound state. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:383-390. [PMID: 31432400 DOI: 10.1007/s12104-019-09911-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
The PilF protein from the thermophilic bacterium Thermus thermophilus is a traffic ATPase powering the assembly of the DNA translocation machinery as well as of type 4 pili. Thereby PilF mediates the natural transformability of T. thermophilus. PilF contains a C-terminal ATPase domain and three N-terminal domains with partial homology to so-called general secretory pathway II (GSPII) domains. These three GSPII domains (GSPII-A, GSPII-B and GSPII-C) are essential for pilus assembly and twitching motility. They show varying degrees of sequence homology to the N-terminal domain of the ATPase MshE from Vibrio cholerae which binds the bacterial second messenger molecule c-di-GMP. NMR experiments demonstrate that the GSPII-B domain of PilF also binds c-di-GMP with high affinity and forms a 1:1 complex in slow exchange on the NMR time scale. As a prerequisite for structural studies of c-di-GMP binding to the GSPII-B domain of T. thermophilus PilF we present here the NMR resonance assignments for the apo and the c-di-GMP bound state of GSPII-B. In addition, we map the binding site for c-di-GMP on the GSPII-B domain using chemical shift perturbation data and compare the dynamics of the apo and the c-di-GMP-bound state of the GSPII-B domain based on {1H},15N-hetNOE data.
Collapse
Affiliation(s)
- Konstantin Neißner
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
| | - Heiko Keller
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Carolin Hacker
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Kerstin Kruse
- Molecular Microbiology and Bioenergetics, Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
9
|
Structure and Properties of a Natural Competence-Associated Pilin Suggest a Unique Pilus Tip-Associated DNA Receptor. mBio 2019; 10:mBio.00614-19. [PMID: 31186316 PMCID: PMC6561018 DOI: 10.1128/mbio.00614-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Natural competence is the term used to describe the uptake of "naked" extracellular DNA by bacteria; it plays a significant role in horizontal genetic exchange. It is associated with type IV pili, and specialized competence pili mediate DNA uptake. Here, we show that the crystal structure of a competence-associated protein from Thermus thermophilus, ComZ, consists of a type II secretion pseudopilin-like domain, with a large β-solenoid domain inserted into the β-sheet of the pilin-like fold. ComZ binds with high affinity to another competence-associated pilin, PilA2, which lies adjacent to the comZ gene in the genome. The crystal structure of PilA2 revealed a similar type II secretion pseudopilin-like fold, with a small subdomain; docking simulations predicted that PilA2 binds between the pseudopilin-like and β-solenoid domains of ComZ. Electrophoretic shift analysis and DNase protection studies were used to show that ComZ alone and the ComZ/PilA2 complex are able to bind DNA. Protection against reductive dimethylation was used in combination with mass spectrometry and site-directed mutagenesis to identify two lysine residues in ComZ which are involved in DNA binding. They are located between the two domains in ComZ, on the opposite side from the predicted PilA2 binding site. These results suggest a model in which PilA2 assists ComZ in forming the competence pilus tip and DNA binds to the side of the fiber. The results demonstrate how a type IV pilin can be adapted to a specific function by domain insertion and provide the first structural insights into a tip-located competence pilin.IMPORTANCE Thermus thermophilus is a thermophilic bacterium which is capable of natural transformation, the uptake of external DNA with high efficiency. DNA uptake is thought to be mediated by a competence-associated pilus, which binds the DNA substrate and mediates its transfer across the outer membrane and periplasm. Here, we describe the structural and functional analysis of two pilins which are known to be essential for DNA uptake, ComZ and PilA2. ComZ adopts an unusual structure, incorporating a large β-solenoid domain into the pilin structural framework. We argue on structural grounds that this structure cannot readily be accommodated into the competence pilus fiber unless it is at the tip. We also show that ComZ binds DNA and identify two lysine residues which appear to be important for DNA binding. These results suggest a model in which ComZ and PilA2 form a tip-associated DNA receptor which mediates DNA uptake.
Collapse
|
10
|
Kruse K, Salzer R, Averhoff B. The traffic ATPase PilF interacts with the inner membrane platform of the DNA translocator and type IV pili from Thermus thermophilus. FEBS Open Bio 2018; 9:4-17. [PMID: 30652069 PMCID: PMC6325625 DOI: 10.1002/2211-5463.12548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Abstract
A major driving force for the adaptation of bacteria to changing environments is the uptake of naked DNA from the environment by natural transformation, which allows the acquisition of new capabilities. Uptake of the high molecular weight DNA is mediated by a complex transport machinery that spans the entire cell periphery. This DNA translocator catalyzes the binding and splitting of double‐stranded DNA and translocation of single‐stranded DNA into the cytoplasm, where it is recombined with the chromosome. The thermophilic bacterium Thermus thermophilus exhibits the highest transformation frequencies reported and is a model system to analyze the structure and function of this macromolecular transport machinery. Transport activity is powered by the traffic ATPase PilF, a soluble protein that forms hexameric complexes. Here, we demonstrate that PilF physically binds to an inner membrane assembly platform of the DNA translocator, comprising PilMNO, via the ATP‐binding protein PilM. Binding to PilMNO or PilMN stimulates the ATPase activity of PilF ~ 2‐fold, whereas there is no stimulation when binding to PilM or PilN alone. A PilMK26A variant defective in ATP binding still binds PilF and, together with PilN, stimulates PilF‐mediated ATPase activity. PilF is unique in having three conserved GSPII (general secretory pathway II) domains (A–C) at its N terminus. Deletion analyses revealed that none of the GSPII domains is essential for binding PilMN, but GSPIIC is essential for PilMN‐mediated stimulation of ATP hydrolysis by PilF. Our data suggest that PilM is a coupling protein that physically and functionally connects the soluble motor ATPase PilF to the DNA translocator via the PilMNO assembly platform.
Collapse
Affiliation(s)
- Kerstin Kruse
- Molecular Microbiology & Bioenergetics Institute of Molecular Biosciences Goethe University Frankfurt Germany
| | - Ralf Salzer
- Molecular Microbiology & Bioenergetics Institute of Molecular Biosciences Goethe University Frankfurt Germany.,Present address: Structural Studies Division Medical Research Council - Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Ave Cambridge CB2 OQH UK
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics Institute of Molecular Biosciences Goethe University Frankfurt Germany
| |
Collapse
|
11
|
Sukmana A, Yang Z. The type IV pilus assembly motor PilB is a robust hexameric ATPase with complex kinetics. Biochem J 2018; 475:1979-1993. [PMID: 29717025 DOI: 10.1042/bcj20180167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 01/06/2023]
Abstract
The bacterial type IV pilus (T4P) is a versatile nanomachine that functions in pathogenesis, biofilm formation, motility, and horizontal gene transfer. T4P assembly is powered by the motor ATPase PilB which is proposed to hydrolyze ATP by a symmetrical rotary mechanism. This mechanism, which is deduced from the structure of PilB, is untested. Here, we report the first kinetic studies of the PilB ATPase, supporting co-ordination among the protomers of this hexameric enzyme. Analysis of the genome sequence of Chloracidobacterium thermophilum identified a pilB gene whose protein we then heterologously expressed. This PilB formed a hexamer in solution and exhibited highly robust ATPase activity. It displays complex steady-state kinetics with an incline followed by a decline over an ATP concentration range of physiological relevance. The incline is multiphasic and the decline signifies substrate inhibition. These observations suggest that variations in intracellular ATP concentrations may regulate T4P assembly and T4P-mediated functions in vivo in accordance with the physiological state of bacteria with unanticipated complexity. We also identified a mutant pilB gene in the genomic DNA of C. thermophilum from an enrichment culture. The mutant PilB variant, which is significantly less active, exhibited similar inhibition of its ATPase activity by high concentrations of ATP. Our findings here with the PilB ATPase from C. thermophilum provide the first line of biochemical evidence for the co-ordination among PilB protomers consistent with the symmetrical rotary model of catalysis based on structural studies.
Collapse
Affiliation(s)
- Andreas Sukmana
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A.
| |
Collapse
|
12
|
Functional dissection of the three N-terminal general secretory pathway domains and the Walker motifs of the traffic ATPase PilF from Thermus thermophilus. Extremophiles 2018; 22:461-471. [PMID: 29464394 DOI: 10.1007/s00792-018-1008-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/05/2018] [Indexed: 01/25/2023]
Abstract
The traffic ATPase PilF of Thermus thermophilus powers pilus assembly as well as uptake of DNA. PilF differs from other traffic ATPases by a triplicated general secretory pathway II, protein E, N-terminal domain (GSPIIABC). We investigated the in vivo and in vitro roles of the GSPII domains, the Walker A motif and a catalytic glutamate by analyzing a set of PilF deletion derivatives and pilF mutants. Here, we report that PilF variants devoid of the first two or all three GSPII domains do not form stable hexamers indicating a role of the triplicated GSPII domain in complex formation and/or stability. A pilFΔGSPIIC mutant was significantly impaired in piliation which leads to the conclusion that the GSPIIC domain plays a vital role in pilus assembly. Interestingly, the pilFΔGSPIIC mutant was hypertransformable. This suggests that GSPIIC strongly affects transformation efficiency. A pilF∆GSPIIA mutant exhibited wild-type piliation but reduced pilus-mediated twitching motility, suggesting that GSPIIA plays a role in pilus dynamics. Furthermore, we report that pilF mutants with a defect in the ATP binding Walker A motif or in the catalytic glutamate residue are defective in piliation and natural transformation. These findings show that both, ATP binding and hydrolysis, are essential for the dual function of PilF in natural transformation and pilus assembly.
Collapse
|
13
|
D'Imprima E, Salzer R, Bhaskara RM, Sánchez R, Rose I, Kirchner L, Hummer G, Kühlbrandt W, Vonck J, Averhoff B. Cryo-EM structure of the bifunctional secretin complex of Thermus thermophilus. eLife 2017; 6. [PMID: 29280731 PMCID: PMC5745081 DOI: 10.7554/elife.30483] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/13/2017] [Indexed: 11/13/2022] Open
Abstract
Secretins form multimeric channels across the outer membrane of Gram-negative bacteria that mediate the import or export of substrates and/or extrusion of type IV pili. The secretin complex of Thermus thermophilus is an oligomer of the 757-residue PilQ protein, essential for DNA uptake and pilus extrusion. Here, we present the cryo-EM structure of this bifunctional complex at a resolution of ~7 Å using a new reconstruction protocol. Thirteen protomers form a large periplasmic domain of six stacked rings and a secretin domain in the outer membrane. A homology model of the PilQ protein was fitted into the cryo-EM map. A crown-like structure outside the outer membrane capping the secretin was found not to be part of PilQ. Mutations in the secretin domain disrupted the crown and abolished DNA uptake, suggesting a central role of the crown in natural transformation.
Collapse
Affiliation(s)
- Edoardo D'Imprima
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Ralf Salzer
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Ramachandra M Bhaskara
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Ricardo Sánchez
- Sofja Kovalevskaja Group, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Ilona Rose
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Lennart Kirchner
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany.,Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
14
|
Abstract
In this issue of Structure, Mancl et al. (2016) elucidate the crystal structure of the PilB ATPase domain in complex with ATPγS and unveil how ATP binding and hydrolysis coordinates conformational change. Their results reveal a distinct symmetric rotary mechanism for ATP hydrolysis to power bacterial pilus assembly.
Collapse
Affiliation(s)
- Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
15
|
McCallum M, Tammam S, Khan A, Burrows LL, Howell PL. The molecular mechanism of the type IVa pilus motors. Nat Commun 2017; 8:15091. [PMID: 28474682 PMCID: PMC5424180 DOI: 10.1038/ncomms15091] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/24/2017] [Indexed: 02/05/2023] Open
Abstract
Type IVa pili are protein filaments essential for virulence in many bacterial pathogens; they extend and retract from the surface of bacterial cells to pull the bacteria forward. The motor ATPase PilB powers pilus assembly. Here we report the structures of the core ATPase domains of Geobacter metallireducens PilB bound to ADP and the non-hydrolysable ATP analogue, AMP-PNP, at 3.4 and 2.3 Å resolution, respectively. These structures reveal important differences in nucleotide binding between chains. Analysis of these differences reveals the sequential turnover of nucleotide, and the corresponding domain movements. Our data suggest a clockwise rotation of the central sub-pores of PilB, which through interactions with PilC, would support the assembly of a right-handed helical pilus. Our analysis also suggests a counterclockwise rotation of the C2 symmetric PilT that would enable right-handed pilus disassembly. The proposed model provides insight into how this family of ATPases can power pilus extension and retraction.
Collapse
Affiliation(s)
- Matthew McCallum
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Stephanie Tammam
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Ahmad Khan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - P Lynne Howell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| |
Collapse
|
16
|
Cyclic Di-GMP Binding by an Assembly ATPase (PilB2) and Control of Type IV Pilin Polymerization in the Gram-Positive Pathogen Clostridium perfringens. J Bacteriol 2017; 199:JB.00034-17. [PMID: 28242722 DOI: 10.1128/jb.00034-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/18/2017] [Indexed: 11/20/2022] Open
Abstract
The Gram-positive pathogen Clostridium perfringens possesses type IV pili (TFP), which are extracellular fibers that are polymerized from a pool of pilin monomers in the cytoplasmic membrane. Two proteins that are essential for pilus functions are an assembly ATPase (PilB) and an inner membrane core protein (PilC). Two homologues each of PilB and PilC are present in C. perfringens, called PilB1/PilB2 and PilC1/PilC2, respectively, along with four pilin proteins, PilA1 to PilA4. The gene encoding PilA2, which is considered the major pilin based on previous studies, is immediately downstream of the pilB2 and pilC2 genes. Purified PilB2 had ATPase activity, bound zinc, formed hexamers even in the absence of ATP, and bound the second messenger molecule cyclic di-GMP (c-di-GMP). Circular dichroism spectroscopy of purified PilC2 indicated that it retained its predicted degree of alpha-helical secondary structure. Even though no direct interactions between PilB2 and PilC2 could be detected in vivo or in vitro even in the presence of c-di-GMP, high levels of expression of a diguanylate cyclase from C. perfringens (CPE1788) stimulated polymerization of PilA2 in a PilB2- and PilC2-dependent manner. These results suggest that PilB2 activity is controlled by c-di-GMP levels in vivo but that PilB2-PilC2 interactions are either transitory or of low affinity, in contrast to results reported previously from in vivo studies of the PilB1/PilC1 pair in which PilC1 was needed for polar localization of PilB1. This is the first biochemical characterization of a c-di-GMP-dependent assembly ATPase from a Gram-positive bacterium.IMPORTANCE Type IV pili (TFP) are protein fibers involved in important bacterial functions, including motility, adherence to surfaces and host cells, and natural transformation. All clostridia whose genomes have been sequenced show evidence of the presence of TFP. The genetically tractable species Clostridium perfringens was used to study proteins involved in polymerizing the pilin, PilA2, into a pilus. The assembly ATPase PilB2 and its cognate membrane protein partner, PilC2, were purified. PilB2 bound the intracellular signal molecule c-di-GMP. Increased levels of intracellular c-di-GMP led to increased polymerization of PilA2, indicating that Gram-positive bacteria use this molecule to regulate pilus synthesis. These findings provide valuable information for understanding how pathogenic clostridia regulate TFP to cause human diseases.
Collapse
|
17
|
Mancl JM, Black WP, Robinson H, Yang Z, Schubot FD. Crystal Structure of a Type IV Pilus Assembly ATPase: Insights into the Molecular Mechanism of PilB from Thermus thermophilus. Structure 2016; 24:1886-1897. [PMID: 27667690 DOI: 10.1016/j.str.2016.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/21/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
Abstract
Type IV pili (T4P) mediate bacterial motility and virulence. The PilB/GspE family ATPases power the assembly of T4P and type 2 secretion systems. We determined the structure of the ATPase region of PilB (PilBATP) in complex with ATPγS to provide a model of a T4P assembly ATPase and a view of a PilB/GspE family hexamer at better than 3-Å resolution. Spatial positioning and conformations of the protomers suggest a mechanism of force generation. All six PilBATP protomers contain bound ATPγS. Two protomers form a closed conformation poised for ATP hydrolysis. The other four molecules assume an open conformation but separate into two pairs with distinct active-site accessibilities. We propose that one pair represents the post-hydrolysis phase while the other pair appears poised for ADP/ATP exchange. Collectively, the data suggest that T4P assembly is powered by coordinating concurrent substrate binding with ATP hydrolysis across the PilB hexamer.
Collapse
Affiliation(s)
- Jordan M Mancl
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, 125 Life Sciences 1 (MC 0910), 970 Washington Street Southwest, Blacksburg, VA 24061, USA
| | - Wesley P Black
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, 125 Life Sciences 1 (MC 0910), 970 Washington Street Southwest, Blacksburg, VA 24061, USA
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, 125 Life Sciences 1 (MC 0910), 970 Washington Street Southwest, Blacksburg, VA 24061, USA
| | - Florian D Schubot
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, 125 Life Sciences 1 (MC 0910), 970 Washington Street Southwest, Blacksburg, VA 24061, USA.
| |
Collapse
|
18
|
The Pilin N-terminal Domain Maintains Neisseria gonorrhoeae Transformation Competence during Pilus Phase Variation. PLoS Genet 2016; 12:e1006069. [PMID: 27213957 PMCID: PMC4877100 DOI: 10.1371/journal.pgen.1006069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 04/29/2016] [Indexed: 02/06/2023] Open
Abstract
The obligate human pathogen Neisseria gonorrhoeae is the sole aetiologic agent of the sexually transmitted infection, gonorrhea. Required for gonococcal infection, Type IV pili (Tfp) mediate many functions including adherence, twitching motility, defense against neutrophil killing, and natural transformation. Critical for immune escape, the gonococcal Tfp undergoes antigenic variation, a recombination event at the pilE locus that varies the surface exposed residues of the major pilus subunit PilE (pilin) in the pilus fiber. This programmed recombination system has the potential to produce thousands of pilin variants and can produce strains with unproductive pilin molecules that are completely unable to form Tfp. Saturating mutagenesis of the 3' third of the pilE gene identified 68 unique single nucleotide mutations that each resulted in an underpiliated colony morphology. Notably, all isolates, including those with undetectable levels of pilin protein and no observable surface-exposed pili, retained an intermediate level of transformation competence not exhibited in ΔpilE strains. Site-directed, nonsense mutations revealed that only the first 38 amino acids of the mature pilin N-terminus (the N-terminal domain or Ntd) are required for transformation competence, and microscopy, ELISAs and pilus purification demonstrate that extended Tfp are not required for competence. Transformation in strains producing only the pilin Ntd has the same genetic determinants as wild-type transformation. The Ntd corresponds to the alternative product of S-pilin cleavage, a specific proteolysis unique to pathogenic Neisseria. Mutation of the S-pilin cleavage site demonstrated that S-pilin cleavage mediated release of the Ntd is required for competence when a strain produces unproductive pilin molecules that cannot assemble into a Tfp through mutation or antigenic variation. We conclude that S-pilin cleavage evolved as a mechanism to maintain competence in nonpiliated antigenic variants and suggest there are alternate forms of the Tfp assembly apparatus that mediate various functions including transformation.
Collapse
|
19
|
Salzer R, D'Imprima E, Gold VAM, Rose I, Drechsler M, Vonck J, Averhoff B. Topology and Structure/Function Correlation of Ring- and Gate-forming Domains in the Dynamic Secretin Complex of Thermus thermophilus. J Biol Chem 2016; 291:14448-56. [PMID: 27226590 DOI: 10.1074/jbc.m116.724153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 11/06/2022] Open
Abstract
Secretins are versatile outer membrane pores used by many bacteria to secrete proteins, toxins, or filamentous phages; extrude type IV pili (T4P); or take up DNA. Extrusion of T4P and natural transformation of DNA in the thermophilic bacterium Thermus thermophilus requires a unique secretin complex comprising six stacked rings, a membrane-embedded cone structure, and two gates that open and close a central channel. To investigate the role of distinct domains in ring and gate formation, we examined a set of deletion derivatives by cryomicroscopy techniques. Here we report that maintaining the N0 ring in the deletion derivatives led to stable PilQ complexes. Analyses of the variants unraveled that an N-terminal domain comprising a unique βββαβ fold is essential for the formation of gate 2. Furthermore, we identified four βαββα domains essential for the formation of the N2 to N5 rings. Mutant studies revealed that deletion of individual ring domains significantly reduces piliation. The N1, N2, N4, and N5 deletion mutants were significantly impaired in T4P-mediated twitching motility, whereas the motility of the N3 mutant was comparable with that of wild-type cells. This indicates that the deletion of the N3 ring leads to increased pilus dynamics, thereby compensating for the reduced number of pili of the N3 mutant. All mutants exhibit a wild-type natural transformation phenotype, leading to the conclusion that DNA uptake is independent of functional T4P.
Collapse
Affiliation(s)
- Ralf Salzer
- From Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main and
| | - Edoardo D'Imprima
- the Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Vicki A M Gold
- the Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Ilona Rose
- From Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main and
| | - Moritz Drechsler
- From Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main and
| | - Janet Vonck
- the Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Beate Averhoff
- From Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main and
| |
Collapse
|
20
|
Rule CS, Patrick M, Camberg JL, Maricic N, Hol WG, Sandkvist M. Zinc coordination is essential for the function and activity of the type II secretion ATPase EpsE. Microbiologyopen 2016; 5:870-882. [PMID: 27168165 PMCID: PMC5061722 DOI: 10.1002/mbo3.376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 11/10/2022] Open
Abstract
The type II secretion system Eps in Vibrio cholerae promotes the extracellular transport of cholera toxin and several hydrolytic enzymes and is a major virulence system in many Gram‐negative pathogens which is structurally related to the type IV pilus system. The cytoplasmic ATPase EpsE provides the energy for exoprotein secretion through ATP hydrolysis. EpsE contains a unique metal‐binding domain that coordinates zinc through a tetracysteine motif (CXXCX29CXXC), which is also present in type IV pilus assembly but not retraction ATPases. Deletion of the entire domain or substitution of any of the cysteine residues that coordinate zinc completely abrogates secretion in an EpsE‐deficient strain and has a dominant negative effect on secretion in the presence of wild‐type EpsE. Consistent with the in vivo data, chemical depletion of zinc from purified EpsE hexamers results in loss of in vitro ATPase activity. In contrast, exchanging the residues between the two dicysteines with those from the homologous ATPase XcpR from Pseudomonas aeruginosa does not have a significant impact on EpsE. These results indicate that, although the individual residues in the metal‐binding domain are generally interchangeable, zinc coordination is essential for the activity and function of EpsE.
Collapse
Affiliation(s)
- Chelsea S Rule
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Marcella Patrick
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jodi L Camberg
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Rockville, Maryland
| | - Natalie Maricic
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Wim G Hol
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, Washington
| | - Maria Sandkvist
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
21
|
Matthey N, Blokesch M. The DNA-Uptake Process of Naturally Competent Vibrio cholerae. Trends Microbiol 2015; 24:98-110. [PMID: 26614677 DOI: 10.1016/j.tim.2015.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/05/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
The sophisticated DNA-uptake machinery used during natural transformation is still poorly characterized, especially in Gram-negative bacteria where the transforming DNA has to cross two membranes as well as the peptidoglycan layer before entering the cytoplasm. The DNA-uptake machinery was hypothesized to take the form of a pseudopilus, which, upon repeated cycles of extension and retraction, would pull external DNA towards the cell surface or into the periplasmic space, followed by translocation across the cytoplasmic membrane. In this review, we summarize recent advances on the DNA-uptake machinery of V. cholerae, highlighting the presence of an extended competence-induced pilus and the contribution of a conserved DNA-binding protein that acts as a ratchet and reels DNA into the periplasm.
Collapse
Affiliation(s)
- Noémie Matthey
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
22
|
Gold VAM, Salzer R, Averhoff B, Kühlbrandt W. Structure of a type IV pilus machinery in the open and closed state. eLife 2015; 4. [PMID: 25997099 PMCID: PMC4463427 DOI: 10.7554/elife.07380] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/20/2015] [Indexed: 01/20/2023] Open
Abstract
Proteins of the secretin family form large macromolecular complexes, which assemble in the outer membrane of Gram-negative bacteria. Secretins are major components of type II and III secretion systems and are linked to extrusion of type IV pili (T4P) and to DNA uptake. By electron cryo-tomography of whole Thermus thermophilus cells, we determined the in situ structure of a T4P molecular machine in the open and the closed state. Comparison reveals a major conformational change whereby the N-terminal domains of the central secretin PilQ shift by ∼30 Å, and two periplasmic gates open to make way for pilus extrusion. Furthermore, we determine the structure of the assembled pilus. DOI:http://dx.doi.org/10.7554/eLife.07380.001 Gram-negative bacteria can cause serious diseases in humans, such as cholera and bacterial meningitis. These bacteria are surrounded by two membranes: an inner membrane and an outer membrane. Proteins called secretins are components of several large molecular complexes that are embedded within the outer membrane. Some secretin-containing complexes form pores in the bacterial membranes and allow molecules to pass in or out of the cell. Some secretins also form part of the machinery that allow Gram-negative bacteria to grow fibre-like structures called type IV pili. These pili help bacteria that cause infections to move and stick to host cells, where they can also trigger massive changes in the host cells' architecture. Multiple copies of a secretin protein called PilQ form a channel in the outer membrane of the bacteria that allows a type IV pilus to grow out of the surface of the cell. The pilus can then hook the bacteria onto surfaces and other cells. There is evidence to suggest the type IV pilus machinery is involved in the uptake of DNA from other bacteria, an important but poorly understood process that has contributed to the spread of multi-drug resistance. Now, Gold et al. have used a cutting-edge technique called ‘electron cryo-tomography’ to analyse the three-dimensional structure of the machinery that builds the type IV pili in the membranes of a bacterium called Thermus thermophilus. This analysis revealed that, similar to many other channel complexes, the PilQ channel can be ‘open’ or ‘closed’. When pili are absent, the channel is closed, but the channel opens when pili are present. Further analysis also revealed the structure of an assembled pilus. Next, Gold et al. studied the open state of the type IV pilus in more detail and observed that a region of each of the PilQ proteins moves a considerable distance to make way for the pilus to enter the central pore. These results will pave the way for future studies of type IV pili and other secretin-containing complexes and underpin efforts to investigate new drug targets to combat bacterial infections. DOI:http://dx.doi.org/10.7554/eLife.07380.002
Collapse
Affiliation(s)
- Vicki A M Gold
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ralf Salzer
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Salzer R, Kern T, Joos F, Averhoff B. The Thermus thermophilus comEA/comEC operon is associated with DNA binding and regulation of the DNA translocator and type IV pili. Environ Microbiol 2015; 18:65-74. [PMID: 25727469 DOI: 10.1111/1462-2920.12820] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/20/2015] [Indexed: 11/30/2022]
Abstract
Natural transformation systems and type IV pili are linked in many naturally competent bacteria. In the Gram-negative bacterium Thermus thermophilus, a leading model organism for studies of DNA transporters in thermophilic bacteria, seven competence proteins play a dual role in both systems, whereas two competence genes, comEA and comEC, are suggested to represent unique DNA translocator proteins. Here we show that the T. thermophilus ComEA protein binds dsDNA and is anchored in the inner membrane. comEA is co-transcribed with the flanking comEC gene, and transcription of this operon is upregulated by nutrient limitation and low temperature. To our surprise, a comEC mutant was impaired in piliation. We followed this observation and uncovered that the impaired piliation of the comEC mutant is due to a transcriptional downregulation of pilA4 and the pilN both playing a dual role in piliation and natural competence. Moreover, the comEC mutation resulted in a dramatic decrease in mRNA levels of the pseudopilin gene pilA1, which is unique for the DNA transporter. We conclude that ComEC modulates transcriptional regulation of type IV pili and DNA translocator components thereby mediating a response to extracellular parameters.
Collapse
Affiliation(s)
- Ralf Salzer
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Timo Kern
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Friederike Joos
- Department of Structural Biology, Max-Planck Institute of Biophysics, Frankfurt am Main, 60438, Germany
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
24
|
Salzer R, Joos F, Averhoff B. Different effects of MglA and MglB on pilus-mediated functions and natural competence in Thermus thermophilus. Extremophiles 2014; 19:261-7. [PMID: 25472010 DOI: 10.1007/s00792-014-0711-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/16/2014] [Indexed: 02/02/2023]
Abstract
The thermophilic bacterium Thermus thermophilus is known for its high natural competence. Uptake of DNA is mediated by a DNA translocator that shares components with type IV pili. Localization and function of type IV pili in other bacteria depend on the cellular localization at the poles of the bacterium, a process that involves MglA and MglB. T. thermophilus contains homologs of MglA and MglB. The genes encoding MglA and MglB were deleted and the physiology of the mutants was studied. Deletion of the genes individually or in tandem had no effect on pili formation but pili lost their localization at the poles. The mutants abolished pilus-mediated functions such as twitching motility and adherence but had no effect on uptake of DNA by natural competence. These data demonstrate that MglA and MglB are dispensable for natural transformation and are consistent with the hypothesis that uptake of DNA does not depend on type IV pili or their cellular localization.
Collapse
Affiliation(s)
- Ralf Salzer
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | | | | |
Collapse
|