1
|
Jiang H, Wang X, Ma J, Xu G. The fine-tuned crosstalk between lysine acetylation and the circadian rhythm. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194958. [PMID: 37453648 DOI: 10.1016/j.bbagrm.2023.194958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Circadian rhythm is a roughly 24-h wake and sleep cycle that almost all of the organisms on the earth follow when they execute their biological functions and physiological activities. The circadian clock is mainly regulated by the transcription-translation feedback loop (TTFL), consisting of the core clock proteins, including BMAL1, CLOCK, PERs, CRYs, and a series of accessory factors. The circadian clock and the downstream gene expression are not only controlled at the transcriptional and translational levels but also precisely regulated at the post-translational modification level. Recently, it has been discovered that CLOCK exhibits lysine acetyltransferase activities and could acetylate protein substrates. Core clock proteins are also acetylated, thereby altering their biological functions in the regulation of the expression of downstream genes. Studies have revealed that many protein acetylation events exhibit oscillation behavior. However, the biological function of acetylation on circadian rhythm has only begun to explore. This review will briefly introduce the acetylation and deacetylation of the core clock proteins and summarize the proteins whose acetylation is regulated by CLOCK and circadian rhythm. Then, we will also discuss the crosstalk between lysine acetylation and the circadian clock or other post-translational modifications. Finally, we will briefly describe the possible future perspectives in the field.
Collapse
Affiliation(s)
- Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaohui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
2
|
Richard M, Doubková K, Nitta Y, Kawai H, Sugie A, Tavosanis G. A Quantitative Model of Sporadic Axonal Degeneration in the Drosophila Visual System. J Neurosci 2022; 42:4937-4952. [PMID: 35534228 PMCID: PMC9188428 DOI: 10.1523/jneurosci.2115-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
In human neurodegenerative diseases, neurons undergo axonal degeneration months to years before they die. Here, we developed a system modeling early degenerative events in Drosophila adult photoreceptor cells. Thanks to the stereotypy of their axonal projections, this system delivers quantitative data on sporadic and progressive axonal degeneration of photoreceptor cells. Using this method, we show that exposure of adult female flies to a constant light stimulation for several days overcomes the intrinsic resilience of R7 photoreceptors and leads to progressive axonal degeneration. This was not associated with apoptosis. We furthermore provide evidence that loss of synaptic integrity between R7 and a postsynaptic partner preceded axonal degeneration, thus recapitulating features of human neurodegenerative diseases. Finally, our experiments uncovered a role of postsynaptic partners of R7 to initiate degeneration, suggesting that postsynaptic cells signal back to the photoreceptor to maintain axonal structure. This model can be used to dissect cellular and circuit mechanisms involved in the early events of axonal degeneration, allowing for a better understanding of how neurons cope with stress and lose their resilience capacities.SIGNIFICANCE STATEMENT Neurons can be active and functional for several years. In the course of aging and in disease conditions leading to neurodegeneration, subsets of neurons lose their resilience and start dying. What initiates this turning point at the cellular level is not clear. Here, we developed a model allowing to systematically describe this phase. The loss of synapses and axons represents an early and functionally relevant event toward degeneration. Using the ordered distribution of Drosophila photoreceptor axon terminals, we assembled a system to study sporadic initiation of axon loss and delineated a role for non-cell-autonomous activity regulation in the initiation of axon degeneration. This work will help shed light on key steps in the etiology of nonfamilial cases of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mélisande Richard
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V., 53127 Bonn, Germany
| | - Karolína Doubková
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V., 53127 Bonn, Germany
| | - Yohei Nitta
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | - Atsushi Sugie
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Gaia Tavosanis
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V., 53127 Bonn, Germany
- Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
3
|
Epigenetics of Autism Spectrum Disorder: Histone Deacetylases. Biol Psychiatry 2022; 91:922-933. [PMID: 35120709 DOI: 10.1016/j.biopsych.2021.11.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/08/2023]
Abstract
The etiology of autism spectrum disorder (ASD) remains unknown, but gene-environment interactions, mediated through epigenetic mechanisms, are thought to be a key contributing factor. Prenatal environmental factors have been shown to be associated with both increased risk of ASD and altered histone deacetylases (HDACs) or acetylation levels. The relationship between epigenetic changes and gene expression in ASD suggests that alterations in histone acetylation, which lead to changes in gene transcription, may play a key role in ASD. Alterations in the acetylome have been demonstrated for several genes in ASD, including genes involved in synaptic function, neuronal excitability, and immune responses, which are mechanisms previously implicated in ASD. We review preclinical and clinical studies that investigated HDACs and autism-associated behaviors and discuss risk genes for ASD that code for proteins associated with HDACs. HDACs are also implicated in neurodevelopmental disorders with a known genetic etiology, such as 15q11-q13 duplication and Phelan-McDermid syndrome, which share clinical features and diagnostic comorbidities (e.g., epilepsy, anxiety, and intellectual disability) with ASD. Furthermore, we highlight factors that affect the behavioral phenotype of acetylome changes, including sensitive developmental periods and brain region specificity in the context of epigenetic programming.
Collapse
|
4
|
Abstract
Circadian clocks are biochemical time-keeping machines that synchronize animal behavior and physiology with planetary rhythms. In Drosophila, the core components of the clock comprise a transcription/translation feedback loop and are expressed in seven neuronal clusters in the brain. Although it is increasingly evident that the clocks in each of the neuronal clusters are regulated differently, how these clocks communicate with each other across the circadian neuronal network is less clear. Here, we review the latest evidence that describes the physical connectivity of the circadian neuronal network . Using small ventral lateral neurons as a starting point, we summarize how one clock may communicate with another, highlighting the signaling pathways that are both upstream and downstream of these clocks. We propose that additional efforts are required to understand how temporal information generated in each circadian neuron is integrated across a neuronal circuit to regulate rhythmic behavior.
Collapse
Affiliation(s)
- Myra Ahmad
- Department of Pediatrics, Division of Medical Genetics, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Wanhe Li
- Laboratory of Genetics, The Rockefeller University, New York, NY, USA
| | - Deniz Top
- Department of Pediatrics, Division of Medical Genetics, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
5
|
Palli SR. Epigenetic regulation of post-embryonic development. CURRENT OPINION IN INSECT SCIENCE 2021; 43:63-69. [PMID: 33068783 PMCID: PMC8044252 DOI: 10.1016/j.cois.2020.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 05/02/2023]
Abstract
Modifications to DNA and core histones influence chromatin organization and expression of the genome. DNA methylation plays a significant role in the regulation of multiple biological processes that regulate behavior and caste differentiation in social insects. Histone modifications play significant roles in the regulation of development and reproduction in other insects. Genes coding for acetyltransferases, deacetylases, methyltransferases, and demethylases that modify core histones have been identified in genomes of multiple insects. Studies on the function and mechanisms of action of some of these enzymes uncovered their contribution to post-embryonic development. The results from studies on epigenetic modifiers could help in the identification of inhibitors of epigenetic modifiers that could be developed to control pests and disease vectors.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, S225 Ag. Science N, Lexington, KY 40546, United States.
| |
Collapse
|
6
|
Villagra C, Frías-Lasserre D. Epigenetic Molecular Mechanisms in Insects. NEOTROPICAL ENTOMOLOGY 2020; 49:615-642. [PMID: 32514997 DOI: 10.1007/s13744-020-00777-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Insects are the largest animal group on Earth both in biomass and diversity. Their outstanding success has inspired genetics and developmental research, allowing the discovery of dynamic process explaining extreme phenotypic plasticity and canalization. Epigenetic molecular mechanisms (EMMs) are vital for several housekeeping functions in multicellular organisms, regulating developmental, ontogenetic trajectories and environmental adaptations. In Insecta, EMMs are involved in the development of extreme phenotypic divergences such as polyphenisms and eusocial castes. Here, we review the history of this research field and how the main EMMs found in insects help to understand their biological processes and diversity. EMMs in insects confer them rapid response capacity allowing insect either to change with plastic divergence or to keep constant when facing different stressors or stimuli. EMMs function both at intra as well as transgenerational scales, playing important roles in insect ecology and evolution. We discuss on how EMMs pervasive influences in Insecta require not only the control of gene expression but also the dynamic interplay of EMMs with further regulatory levels, including genetic, physiological, behavioral, and environmental among others, as was earlier proposed by the Probabilistic Epigenesis model and Developmental System Theory.
Collapse
Affiliation(s)
- C Villagra
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile.
| | - D Frías-Lasserre
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|
7
|
Toro TB, Watt TJ. Critical review of non-histone human substrates of metal-dependent lysine deacetylases. FASEB J 2020; 34:13140-13155. [PMID: 32862458 DOI: 10.1096/fj.202001301rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
Lysine acetylation is a posttranslational modification that occurs on thousands of human proteins, most of which are cytoplasmic. Acetylated proteins are involved in numerous cellular processes and human diseases. Therefore, how the acetylation/deacetylation cycle is regulated is an important question. Eleven metal-dependent lysine deacetylases (KDACs) have been identified in human cells. These enzymes, along with the sirtuins, are collectively responsible for reversing lysine acetylation. Despite several large-scale studies which have characterized the acetylome, relatively few of the specific acetylated residues have been matched to a proposed KDAC for deacetylation. To understand the function of lysine acetylation, and its association with diseases, specific KDAC-substrate pairs must be identified. Identifying specific substrates of a KDAC is complicated both by the complexity of assaying relevant activity and by the non-catalytic interactions of KDACs with cellular proteins. Here, we discuss in vitro and cell-based experimental strategies used to identify KDAC-substrate pairs and evaluate each for the purpose of directly identifying non-histone substrates of metal-dependent KDACs. We propose criteria for a combination of reproducible experimental approaches that are necessary to establish a direct enzymatic relationship. This critical analysis of the literature identifies 108 proposed non-histone substrate-KDAC pairs for which direct experimental evidence has been reported. Of these, five pairs can be considered well-established, while another thirteen pairs have both cell-based and in vitro evidence but lack independent replication and/or sufficient cell-based evidence. We present a path forward for evaluating the remaining substrate leads and reliably identifying novel KDAC substrates.
Collapse
Affiliation(s)
- Tasha B Toro
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Terry J Watt
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| |
Collapse
|
8
|
Nitta Y, Matsui S, Kato Y, Kaga Y, Sugimoto K, Sugie A. Analysing the evolutional and functional differentiation of four types of Daphnia magna cryptochrome in Drosophila circadian clock. Sci Rep 2019; 9:8857. [PMID: 31222139 PMCID: PMC6586792 DOI: 10.1038/s41598-019-45410-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 06/06/2019] [Indexed: 12/02/2022] Open
Abstract
Cryptochrome (CRY) plays an important role in the input of circadian clocks in various species, but gene copies in each species are evolutionarily divergent. Type I CRYs function as a photoreceptor molecule in the central clock, whereas type II CRYs directly regulate the transcriptional activity of clock proteins. Functions of other types of animal CRYs in the molecular clock remain unknown. The water flea Daphnia magna contains four Cry genes. However, it is still difficult to analyse these four genes. In this study, we took advantage of powerful genetic resources available from Drosophila to investigate evolutionary and functional differentiation of CRY proteins between the two species. We report differences in subcellular localisation of each D. magna CRY protein when expressed in the Drosophila clock neuron. Circadian rhythm behavioural experiments revealed that D. magna CRYs are not functionally conserved in the Drosophila molecular clock. These findings provide a new perspective on the evolutionary conservation of CRY, as functions of the four D. magna CRY proteins have diverse subcellular localisation levels. Furthermore, molecular clocks of D. magna have been evolutionarily differentiated from those of Drosophila. This study highlights the extensive functional diversity existing among species in their complement of Cry genes.
Collapse
Affiliation(s)
- Yohei Nitta
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Sayaka Matsui
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Yukine Kato
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Yosuke Kaga
- School of Medicine, Niigata University, Niigata, Japan
| | - Kenkichi Sugimoto
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Niigata, Japan.
| | - Atsushi Sugie
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan.
- Brain Research Institute, Niigata University, Niigata, Japan.
| |
Collapse
|
9
|
Molecular characterization of class I histone deacetylases and their expression in response to thermal and oxidative stresses in the red flour beetle, Tribolium castaneum. Genetica 2019; 147:281-290. [DOI: 10.1007/s10709-019-00065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
|
10
|
Zhang C, Zhang Z, Chang Z, Mao G, Hu S, Zeng A, Fu M. miR-193b-5p regulates chondrocytes metabolism by directly targeting histone deacetylase 7 in interleukin-1β-induced osteoarthritis. J Cell Biochem 2019; 120:12775-12784. [PMID: 30854734 DOI: 10.1002/jcb.28545] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/14/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2022]
Abstract
There is increasing evidence regarding the pivotal roles of microRNAs (miRNAs) and histone deacetylases (HDACs) in the development of osteoarthritis (OA). This study aimed to determine whether miR-193b-5p regulates HDAC7 expression directly to affect cartilage degeneration. Expression levels of miR-193b-5p, HDAC7, matrix metalloproteinase 3 (MMP3), and MMP13 were determined in normal and OA cartilage and primary human chondrocytes (PHCs) stimulated with interleukin-1β (IL-1β). PHCs were transfected with a miR-193b-5p mimic or inhibitor to verify whether miR-193b-5p influences the expression of HDAC7 and MMPs. A luciferase reporter assay was performed to demonstrate the binding between miR-193b-5p and the 3'-untranslated region (UTR) of HDAC7. Expression of miR-193b-5p was reduced in IL-1β-stimulated PHCs and in OA cartilage compared to that in normal cartilage. Luciferase reporter assay exhibited the repressed activity of the reporter construct containing the 3'UTR of HDAC7. Both miR-193b-5p overexpression and HDAC7 inhibition decreased the expression of MMP3 and MMP13, whereas the inhibition of miR-193b-5p enhanced HDAC7, MMP3, and MMP13 expression. miR-193b-5p downregulates HDAC7 directly and, as a result, inhibits MMP3 and MMP13 expression, which suggests that miR-193b-5p has a protective role in OA.
Collapse
Affiliation(s)
- Chengyun Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiqi Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zongkun Chang
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Guping Mao
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shu Hu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anyu Zeng
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Fu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Hamid R, Hajirnis N, Kushwaha S, Saleem S, Kumar V, Mishra RK. Drosophila Choline transporter non-canonically regulates pupal eclosion and NMJ integrity through a neuronal subset of mushroom body. Dev Biol 2019; 446:80-93. [DOI: 10.1016/j.ydbio.2018.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/25/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022]
|
12
|
Anreiter I, Biergans SD, Sokolowski MB. Epigenetic regulation of behavior in Drosophila melanogaster. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2018.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
CGPS: A machine learning-based approach integrating multiple gene set analysis tools for better prioritization of biologically relevant pathways. J Genet Genomics 2018; 45:489-504. [PMID: 30292791 DOI: 10.1016/j.jgg.2018.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022]
Abstract
Gene set enrichment (GSE) analyses play an important role in the interpretation of large-scale transcriptome datasets. Multiple GSE tools can be integrated into a single method as obtaining optimal results is challenging due to the plethora of GSE tools and their discrepant performances. Several existing ensemble methods lead to different scores in sorting pathways as integrated results; furthermore, it is difficult for users to choose a single ensemble score to obtain optimal final results. Here, we develop an ensemble method using a machine learning approach called Combined Gene set analysis incorporating Prioritization and Sensitivity (CGPS) that integrates the results provided by nine prominent GSE tools into a single ensemble score (R score) to sort pathways as integrated results. Moreover, to the best of our knowledge, CGPS is the first GSE ensemble method built based on a priori knowledge of pathways and phenotypes. Compared with 10 widely used individual methods and five types of ensemble scores from two ensemble methods, we demonstrate that sorting pathways based on the R score can better prioritize relevant pathways, as established by an evaluation of 120 simulated datasets and 45 real datasets. Additionally, CGPS is applied to expression data involving the drug panobinostat, which is an anticancer treatment against multiple myeloma. The results identify cell processes associated with cancer, such as the p53 signaling pathway (hsa04115); by contrast, according to two ensemble methods (EnrichmentBrowser and EGSEA), this pathway has a rank higher than 20, which may cause users to miss the pathway in their analyses. We show that this method, which is based on a priori knowledge, can capture valuable biological information from numerous types of gene set collections, such as KEGG pathways, GO terms, Reactome, and BioCarta. CGPS is publicly available as a standalone source code at ftp://ftp.cbi.pku.edu.cn/pub/CGPS_download/cgps-1.0.0.tar.gz.
Collapse
|
14
|
Crittenden JR, Skoulakis EMC, Goldstein ES, Davis RL. Drosophila mef2 is essential for normal mushroom body and wing development. Biol Open 2018; 7:bio.035618. [PMID: 30115617 PMCID: PMC6176937 DOI: 10.1242/bio.035618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MEF2 (myocyte enhancer factor 2) transcription factors are found in the brain and muscle of insects and vertebrates and are essential for the differentiation of multiple cell types. We show that in the fruit fly Drosophila, MEF2 is essential for the formation of mushroom bodies in the embryonic brain and for the normal development of wings in the adult. In embryos mutant for mef2, there is a striking reduction in the number of mushroom body neurons and their axon bundles are not detectable. The onset of MEF2 expression in neurons of the mushroom bodies coincides with their formation in the embryo and, in larvae, expression is restricted to post-mitotic neurons. In flies with a mef2 point mutation that disrupts nuclear localization, we find that MEF2 is restricted to a subset of Kenyon cells that project to the α/β, and γ axonal lobes of the mushroom bodies, but not to those forming the α’/β’ lobes. Summary:Drosophila mef2 expression is restricted to subsets of mushroom body neurons, from the time of their differentiation to adulthood, and is essential for mushroom body formation.
Collapse
Affiliation(s)
- Jill R Crittenden
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Efthimios M C Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre 'Alexander Fleming', Vari, 16672, Greece
| | - Elliott S Goldstein
- School of Life Science, Cellular, Molecular and Bioscience Program, Arizona State University, Tempe, AZ, 85287, USA
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| |
Collapse
|
15
|
Li CY, Cui JY. Regulation of protein-coding gene and long noncoding RNA pairs in liver of conventional and germ-free mice following oral PBDE exposure. PLoS One 2018; 13:e0201387. [PMID: 30067809 PMCID: PMC6070246 DOI: 10.1371/journal.pone.0201387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/14/2018] [Indexed: 02/07/2023] Open
Abstract
Gut microbiome communicates with the host liver to modify hepatic xenobiotic biotransformation and nutrient homeostasis. Polybrominated diphenyl ethers (PBDEs) are persistent environmental contaminants that are detected in fatty food, household dust, and human breast milk at worrisome levels. Recently, long noncoding RNAs (lncRNAs) have been recognized as novel biomarkers for toxicological responses and may regulate the transcriptional/translational output of protein-coding genes (PCGs). However, very little is known regarding to what extent the interactions between PBDEs and gut microbiome modulate hepatic lncRNAs and PCGs, and what critical signaling pathways are impacted at the transcriptomic scale. In this study, we performed RNA-Seq in livers of nine-week-old male conventional (CV) and germ-free (GF) mice orally exposed to the most prevalent PBDE congeners BDE-47 and BDE-99 (100 μmol/kg once daily for 4-days; vehicle: corn oil, 10 ml/kg), and unveiled key molecular pathways and PCG-lncRNA pairs targeted by PBDE-gut microbiome interactions. Lack of gut microbiome profoundly altered the PBDE-mediated transcriptomic response in liver, with the most prominent effect observed in BDE-99-exposed GF mice. The top pathways up-regulated by PBDEs were related to xenobiotic metabolism, whereas the top pathways down-regulated by PBDEs were in lipid metabolism and protein synthesis in both enterotypes. Genomic annotation of the differentially regulated lncRNAs revealed that majority of these lncRNAs overlapped with introns and 3'-UTRs of PCGs. Lack of gut microbiome profoundly increased the percentage of PBDE-regulated lncRNAs mapped to the 3'-UTRs of PCGs, suggesting the potential involvement of lncRNAs in increasing the translational efficiency of PCGs by preventing miRNA-3'-UTR binding, as a compensatory mechanism following toxic exposure to PBDEs. Pathway analysis of PCGs paired with lncRNAs revealed that in CV mice, BDE-47 regulated nucleic acid and retinol metabolism, as well as circadian rhythm; whereas BDE-99 regulated fatty acid metabolism. In GF mice, BDE-47 differentially regulated 19 lncRNA-PCG pairs that were associated with glutathione conjugation and transcriptional regulation. In contrast, BDE-99 up-regulated the xenobiotic-metabolizing Cyp3a genes, but down-regulated the fatty acid-metabolizing Cyp4 genes. Taken together, the present study reveals common and unique lncRNAs and PCG targets of PBDEs in mouse liver, and is among the first to show that lack of gut microbiome sensitizes the liver to toxic exposure of BDE-99 but not BDE-47. Therefore, lncRNAs may serve as specific biomarkers that differentiate various PBDE congeners as well as environmental chemical-mediated dysbiosis. Coordinate regulation of PCG-lncRNA pairs may serve as a more efficient molecular mechanism to combat against xenobiotic insult, and especially during dysbiosis-induced increase in the internal dose of toxicants.
Collapse
Affiliation(s)
- Cindy Yanfei Li
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
16
|
Top D, Young MW. Coordination between Differentially Regulated Circadian Clocks Generates Rhythmic Behavior. Cold Spring Harb Perspect Biol 2018; 10:a033589. [PMID: 28893860 PMCID: PMC6028074 DOI: 10.1101/cshperspect.a033589] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Specialized groups of neurons in the brain are key mediators of circadian rhythms, receiving daily environmental cues and communicating those signals to other tissues in the organism for entrainment and to organize circadian physiology. In Drosophila, the "circadian clock" is housed in seven neuronal clusters, which are defined by their expression of the main circadian proteins, Period, Timeless, Clock, and Cycle. These clusters are distributed across the fly brain and are thereby subject to the respective environments associated with their anatomical locations. While these core components are universally expressed in all neurons of the circadian network, additional regulatory proteins that act on these components are differentially expressed, giving rise to "local clocks" within the network that nonetheless converge to regulate coherent behavioral rhythms. In this review, we describe the communication between the neurons of the circadian network and the molecular differences within neurons of this network. We focus on differences in protein-expression patterns and discuss how such variation can impart functional differences in each local clock. Finally, we summarize our current understanding of how communication within the circadian network intersects with intracellular biochemical mechanisms to ultimately specify behavioral rhythms. We propose that additional efforts are required to identify regulatory mechanisms within each neuronal cluster to understand the molecular basis of circadian behavior.
Collapse
Affiliation(s)
- Deniz Top
- Laboratory of Genetics, The Rockefeller University, New York, New York 10065
| | - Michael W Young
- Laboratory of Genetics, The Rockefeller University, New York, New York 10065
| |
Collapse
|
17
|
Wu KJ, Kumar S, Serrano Negron YL, Harbison ST. Genotype Influences Day-to-Day Variability in Sleep in Drosophila melanogaster. Sleep 2018; 41:zsx205. [PMID: 29228366 PMCID: PMC6018780 DOI: 10.1093/sleep/zsx205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/27/2017] [Indexed: 12/22/2022] Open
Abstract
Patterns of sleep often vary among individuals. But sleep and activity may also vary within an individual, fluctuating in pattern across time. One possibility is that these daily fluctuations in sleep are caused by the underlying genotype of the individual. However, differences attributable to genetic causes are difficult to distinguish from environmental factors in outbred populations such as humans. We therefore employed Drosophila as a model of intra-individual variability in sleep using previously collected sleep and activity data from the Drosophila Genetic Reference Panel, a collection of wild-derived inbred lines. Individual flies had significant daily fluctuations in their sleep patterns, and these fluctuations were heritable. Using the standard deviation of sleep parameters as a metric, we conducted a genome-wide association study. We found 663 polymorphisms in 104 genes associated with daily fluctuations in sleep. We confirmed the effects of 12 candidate genes on the standard deviation of sleep parameters. Our results suggest that daily fluctuations in sleep patterns are due in part to gene activity.
Collapse
Affiliation(s)
- Katherine J Wu
- Laboratory of Systems Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Shailesh Kumar
- Laboratory of Systems Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Yazmin L Serrano Negron
- Laboratory of Systems Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Susan T Harbison
- Laboratory of Systems Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
18
|
Nippe OM, Wade AR, Elliott CJH, Chawla S. Circadian Rhythms in Visual Responsiveness in the Behaviorally Arrhythmic Drosophila Clock Mutant Clk Jrk. J Biol Rhythms 2017; 32:583-592. [PMID: 29172879 PMCID: PMC5734378 DOI: 10.1177/0748730417735397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An organism's biological day is characterized by a pattern of anticipatory physiological and behavioral changes that are governed by circadian clocks to align with the 24-h cycling environment. Here, we used flash electroretinograms (ERGs) and steady-state visually evoked potentials (SSVEPs) to examine how visual responsiveness in wild-type Drosophila melanogaster and the circadian clock mutant ClkJrk varies over circadian time. We show that the ERG parameters of wild-type flies vary over the circadian day, with a higher luminance response during the subjective night. The SSVEP response that assesses contrast sensitivity also showed a time-of-day dependence, including 2 prominent peaks within a 24-h period and a maximal response at the end of the subjective day, indicating a tradeoff between luminance and contrast sensitivity. Moreover, the behaviorally arrhythmic ClkJrk mutants maintained a circadian profile in both luminance and contrast sensitivity, but unlike the wild-types, which show bimodal profiles in their visual response, ClkJrk flies show a weakening of the bimodal character, with visual responsiveness tending to peak once a day. We conclude that the ClkJrk mutation mainly affects 1 of 2 functionally coupled oscillators and that the visual system is partially separated from the locomotor circadian circuits that drive bouts of morning and evening activity. As light exposure is a major mechanism for entrainment, our work suggests that a detailed temporal analysis of electrophysiological responses is warranted to better identify the time window at which circadian rhythms are most receptive to light-induced phase shifting.
Collapse
Affiliation(s)
- Olivia M Nippe
- Department of Biology, University of York, Heslington, York, UK.,1. School of Life Sciences, University of Warwick, Coventry, UK
| | - Alex R Wade
- Department of Psychology, University of York, Heslington, York, UK
| | - Christopher J H Elliott
- Department of Biology, University of York, Heslington, York, UK.,1. School of Life Sciences, University of Warwick, Coventry, UK
| | - Sangeeta Chawla
- Department of Biology, University of York, Heslington, York, UK
| |
Collapse
|
19
|
Bentley SJ, Boshoff A. Hsp70/J-protein machinery from Glossina morsitans morsitans, vector of African trypanosomiasis. PLoS One 2017; 12:e0183858. [PMID: 28902917 PMCID: PMC5597180 DOI: 10.1371/journal.pone.0183858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/11/2017] [Indexed: 11/18/2022] Open
Abstract
Tsetse flies (Glossina spp.) are the sole vectors of the protozoan parasites of the genus Trypanosoma, the causative agents of African Trypanosomiasis. Species of Glossina differ in vector competence and Glossina morsitans morsitans is associated with transmission of Trypanosoma brucei rhodesiense, which causes an acute and often fatal form of African Trypanosomiasis. Heat shock proteins are evolutionarily conserved proteins that play critical roles in proteostasis. The activity of heat shock protein 70 (Hsp70) is regulated by interactions with its J-protein (Hsp40) co-chaperones. Inhibition of these interactions are emerging as potential therapeutic targets. The assembly and annotation of the G. m. morsitans genome provided a platform to identify and characterize the Hsp70s and J-proteins, and carry out an evolutionary comparison to its well-studied eukaryotic counterparts, Drosophila melanogaster and Homo sapiens, as well as Stomoxys calcitrans, a comparator species. In our study, we identified 9 putative Hsp70 proteins and 37 putative J-proteins in G. m. morsitans. Phylogenetic analyses revealed three evolutionarily distinct groups of Hsp70s, with a closer relationship to orthologues from its blood-feeding dipteran relative Stomoxys calcitrans. G. m. morsitans also lacked the high number of heat inducible Hsp70s found in D. melanogaster. The potential localisations, functions, domain organisations and Hsp70/J-protein partnerships were also identified. A greater understanding of the heat shock 70 (Hsp70) and J-protein (Hsp40) families in G. m. morsitans could enhance our understanding of the cell biology of the tsetse fly.
Collapse
Affiliation(s)
- Stephen J. Bentley
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
- * E-mail:
| |
Collapse
|
20
|
SIK3-HDAC4 signaling regulates Drosophila circadian male sex drive rhythm via modulating the DN1 clock neurons. Proc Natl Acad Sci U S A 2017; 114:E6669-E6677. [PMID: 28743754 PMCID: PMC5558993 DOI: 10.1073/pnas.1620483114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The physiology and behavior of many organisms are subject to daily cycles. In Drosophila melanogaster the daily locomotion patterns of single flies are characterized by bursts of activity at dawn and dusk. Two distinct clusters of clock neurons-morning oscillators (M cells) and evening oscillators (E cells)-are largely responsible for these activity bursts. In contrast, male-female pairs of flies follow a distinct pattern, most notably characterized by an activity trough at dusk followed by a high level of male courtship during the night. This male sex drive rhythm (MSDR) is mediated by the M cells along with DN1 neurons, a cluster of clock neurons located in the dorsal posterior region of the brain. Here we report that males lacking Salt-inducible kinase 3 (SIK3) expression in M cells exhibit a short period of MSDR but a long period of single-fly locomotor rhythm (SLR). Moreover, lack of Sik3 in M cells decreases the amplitude of PERIOD (PER) cycling in DN1 neurons, suggesting that SIK3 non-cell-autonomously regulates DN1 neurons' molecular clock. We also show that Sik3 reduction interferes with circadian nucleocytoplasmic shuttling of Histone deacetylase 4 (HDAC4), a SIK3 phosphorylation target, in clock neurons and that constitutive HDAC4 localization in the nucleus shortens the period of MSDR. Taking these findings together, we conclude that SIK3-HDAC4 signaling in M cells regulates MSDR by regulating the molecular oscillation in DN1 neurons.
Collapse
|
21
|
Prostaglandin dehydrogenase is a target for successful induction of cervical ripening. Proc Natl Acad Sci U S A 2017; 114:E6427-E6436. [PMID: 28716915 DOI: 10.1073/pnas.1704945114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The cervix represents a formidable structural barrier for successful induction of labor. Approximately 10% of pregnancies undergo induction of cervical ripening and labor with prostaglandin (PG) E2 or PGE analogs, often requiring many hours of hospitalization and monitoring. On the other hand, preterm cervical ripening in the second trimester predicts preterm birth. The regulatory mechanisms of this paradoxical function of the cervix are unknown. Here, we show that PGE2 uses cell-specific EP2 receptor-mediated increases in Ca2+ to dephosphorylate and translocate histone deacetylase 4 (HDAC4) to the nucleus for repression of 15-hydroxy prostaglandin dehydrogenase (15-PGDH). The crucial role of 15-PGDH in cervical ripening was confirmed in vivo. Although PGE2 or 15-PGDH inhibitor alone did not alter gestational length, treatment with 15-PGDH inhibitor + PGE2 or metabolism-resistant dimethyl-PGE2 resulted in preterm cervical ripening and delivery in mice. The ability of PGE2 to selectively autoamplify its own synthesis in stromal cells by signaling transcriptional repression of 15-PGDH elucidates long sought-after molecular mechanisms that govern PG action in the cervix. This report details unique mechanisms of action in the cervix and serves as a catalyst for (i) the use of 15-PGDH inhibitors to initiate or amplify low-dose PGE2-mediated cervical ripening or (ii) EP2 receptor antagonists, HDAC4 inhibitors, and 15-PGDH activators to prevent preterm cervical ripening and preterm birth.
Collapse
|
22
|
mPer1 promotes morphine-induced locomotor sensitization and conditioned place preference via histone deacetylase activity. Psychopharmacology (Berl) 2017; 234:1713-1724. [PMID: 28243713 DOI: 10.1007/s00213-017-4574-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 02/06/2017] [Indexed: 12/25/2022]
Abstract
RATIONALE Previous studies have shown that repeated exposure to drugs of abuse is associated with changes in clock genes expression and that mice strains with various mutations in clock genes show alterations in drug-induced behaviors. OBJECTIVE The objective of this study is to characterize the role of the clock gene mPer1 in the development of morphine-induced behaviors and a possible link to histone deacetylase (HDAC) activity. METHODS In Per1 Brdm1 null mutant mice and wild-type (WT) littermates, we examined whether there were any differences in the development of morphine antinociception, tolerance to antinociception, withdrawal, sensitization to locomotion, and conditioned place preference (CPP). RESULTS Per1 Brdm1 mutant mice did not show any difference in morphine antinociception, tolerance development, nor in physical withdrawal signs precipitated by naloxone administration compared to WT. However, morphine-induced locomotor sensitization and CPP were significantly impaired in Per1 Brdm1 mutant mice. Because a very similar dissociation between tolerance and dependence vs. sensitization and CPP was recently observed after the co-administration of morphine and the HDAC inhibitor sodium butyrate (NaBut), we studied a possible link between mPer1 and HDAC activity. As opposed to WT controls, Per1 Brdm1 mutant mice showed significantly enhanced striatal global HDAC activity within the striatum when exposed to a locomotor-sensitizing morphine administration regimen. Furthermore, the administration of the HDAC inhibitor NaBut restored the ability of morphine to promote locomotor sensitization and reward in Per1 Brdm1 mutant mice. CONCLUSIONS Our results reveal that although the mPer1 gene does not alter morphine-induced antinociception nor withdrawal, it plays a prominent role in the development of morphine-induced behavioral sensitization and reward via inhibitory modulation of striatal HDAC activity. These data suggest that PER1 inhibits deacetylation to promote drug-induced neuroplastic changes.
Collapse
|
23
|
Mellor J. The molecular basis of metabolic cycles and their relationship to circadian rhythms. Nat Struct Mol Biol 2017; 23:1035-1044. [PMID: 27922609 DOI: 10.1038/nsmb.3311] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022]
Abstract
Metabolic cycles result from the partitioning of oxidative and reductive metabolism into rhythmic phases of gene expression and oscillating post-translational protein modifications. Relatively little is known about how these switches in gene expression are controlled, although recent studies have suggested that transcription itself may play a central role. This review explores the molecular basis of the metabolic and gene-expression oscillations in the yeast Saccharomyces cerevisiae, as well as how they relate to other biological time-keeping mechanisms, such as circadian rhythms.
Collapse
Affiliation(s)
- Jane Mellor
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Reynolds JA, Bautista-Jimenez R, Denlinger DL. Changes in histone acetylation as potential mediators of pupal diapause in the flesh fly, Sarcophaga bullata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:29-37. [PMID: 27350056 DOI: 10.1016/j.ibmb.2016.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
The growing appreciation that epigenetic processes are integral to the responses of many organisms to changes in the environment suggests a possible role for epigenetics in coordination of insect diapause. The results we present suggest that histone modification may be one type of epigenetic process that contributes to regulation of pupal diapause in the flesh fly, Sarcophaga bullata. Reduction in total histone H3 acetylation in diapausing pupae, shifts in mRNA expression profiles of genes encoding histone acetyltransferase (HAT) and histone deacetylase (HDAC) in pre-diapause, diapause and post-diapause flies compared to their nondiapause counterparts, and alterations in HDAC enzyme activity during and post-diapause lend support to the hypothesis that this specific type of histone modification is involved in regulating diapause programming, maintenance, and termination. Transcription of genes encoding HDAC1, HDAC3, HDAC6, and Sirtuin2 were all upregulated in photosensitive first instar larvae programmed to enter pupal diapause, suggesting that histone deacetylation may be linked to the early decision to enter diapause. A 50% reduction in transcription of hdac3 and a corresponding 30% reduction in HDAC activity during diapause suggest that removal of acetyl groups from histones primarily occurs prior to diapause entry and that further histone deacetylation is not necessary to maintain diapause. Transcription of the HDAC genes was quickly elevated when diapause was terminated, followed by an increase in enzyme activity after a short delay. A maternal effect operating in these flies prevents pupal diapause in progeny whose mothers experienced pupal diapause, even if the progeny are reared in strong diapause-inducing short-day conditions. Such nondiapausing pupae had HDAC transcription profiles nearly identical to the profiles seen in nondiapausing pupae generated under a long-day photoperiod. Together, these results provide consistent evidence for histone acetylation and deacetylation as regulators of this insect's developmental trajectory.
Collapse
Affiliation(s)
- J A Reynolds
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Robin Bautista-Jimenez
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - D L Denlinger
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Entomology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
25
|
Heegaard NHH, Carlsen AL, Lilje B, Ng KL, Rønne ME, Jørgensen HL, Sennels H, Fahrenkrug J. Diurnal Variations of Human Circulating Cell-Free Micro-RNA. PLoS One 2016; 11:e0160577. [PMID: 27494182 PMCID: PMC4975411 DOI: 10.1371/journal.pone.0160577] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/21/2016] [Indexed: 12/26/2022] Open
Abstract
A 24-hour light and dark cycle-dependent rhythmicity pervades physiological processes in virtually all living organisms including humans. These regular oscillations are caused by external cues to endogenous, independent biological time-keeping systems (clocks). The rhythm is reflected by gene expression that varies in a circadian and specific fashion in different organs and tissues and is regulated largely by dynamic epigenetic and post-transcriptional mechanisms. This leads to well-documented oscillations of specific electrolytes, hormones, metabolites, and plasma proteins in blood samples. An emerging, important class of gene regulators is short single-stranded RNA (micro-RNA, miRNA) that interferes post-transcriptionally with gene expression and thus may play a role in the circadian variation of gene expression. MiRNAs are promising biomarkers by virtue of their disease-specific tissue expression and because of their presence as stable entities in the circulation. However, no studies have addressed the putative circadian rhythmicity of circulating, cell-free miRNAs. This question is important both for using miRNAs as biological markers and for clues to miRNA function in the regulation of circadian gene expression. Here, we investigate 92 miRNAs in plasma samples from 24 young male, healthy volunteers repeatedly sampled 9 times during a 24-hour stay in a regulated environment. We demonstrate that a third (26/79) of the measurable plasma miRNAs (using RT-qPCR on a microfluidic system) exhibit a rhythmic behavior and are distributed in two main phase patterns. Some of these miRNAs weakly target known clock genes and many have strong targets in intracellular MAPK signaling pathways. These novel findings highlight the importance of considering bio-oscillations in miRNA biomarker studies and suggest the further study of a set of specific circulating miRNAs in the regulation and functioning of biological clocks.
Collapse
Affiliation(s)
- Niels H. H. Heegaard
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
- * E-mail:
| | - Anting Liu Carlsen
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Berit Lilje
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Kim Lee Ng
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Mette E. Rønne
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik L. Jørgensen
- Department of Clinical Biochemistry, Faculty of Health Science, Bispebjerg Hospital, University of Copenhagen, Denmark
| | - Henriette Sennels
- Department of Clinical Biochemistry, Faculty of Health Science, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Faculty of Health Science, Bispebjerg Hospital, University of Copenhagen, Denmark
| |
Collapse
|
26
|
Putker M, O’Neill JS. Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal. Mol Cells 2016; 39:6-19. [PMID: 26810072 PMCID: PMC4749875 DOI: 10.14348/molcells.2016.2323] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/16/2022] Open
Abstract
Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.
Collapse
Affiliation(s)
- Marrit Putker
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH,
UK
| | - John Stuart O’Neill
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH,
UK
| |
Collapse
|
27
|
Klieser E, Swierczynski S, Mayr C, Schmidt J, Neureiter D, Kiesslich T, Illig R. Role of histone deacetylases in pancreas: Implications for pathogenesis and therapy. World J Gastrointest Oncol 2015; 7:473-483. [PMID: 26691388 PMCID: PMC4678394 DOI: 10.4251/wjgo.v7.i12.473] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/03/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023] Open
Abstract
In the last years, our knowledge of the pathogenesis in acute and chronic pancreatitis (AP/CP) as well as in pancreatic cancerogenesis has significantly diversified. Nevertheless, the medicinal therapeutic options are still limited and therapeutic success and patient outcome are poor. Epigenetic deregulation of gene expression is known to contribute to development and progression of AP and CP as well as of pancreatic cancer. Therefore, the selective inhibition of aberrantly active epigenetic regulators can be an effective option for future therapies. Histone deacetylases (HDACs) are enzymes that remove an acetyl group from histone tails, thereby causing chromatin compaction and repression of transcription. In this review we present an overview of the currently available literature addressing the role of HDACs in the pancreas and in pancreatic diseases. In pancreatic cancerogenesis, HDACs play a role in the important process of epithelial-mesenchymal-transition, ubiquitin-proteasome pathway and, hypoxia-inducible-factor-1-angiogenesis. Finally, we focus on HDACs as potential therapeutic targets by summarizing currently available histone deacetylase inhibitors.
Collapse
|
28
|
Erburu M, Cajaleon L, Guruceaga E, Venzala E, Muñoz-Cobo I, Beltrán E, Puerta E, Tordera R. Chronic mild stress and imipramine treatment elicit opposite changes in behavior and in gene expression in the mouse prefrontal cortex. Pharmacol Biochem Behav 2015; 135:227-36. [DOI: 10.1016/j.pbb.2015.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 01/22/2023]
|
29
|
Hoyle NP, O'Neill JS. Oxidation-reduction cycles of peroxiredoxin proteins and nontranscriptional aspects of timekeeping. Biochemistry 2014; 54:184-93. [PMID: 25454580 PMCID: PMC4302831 DOI: 10.1021/bi5008386] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The circadian clock allows organisms to accurately predict the earth's rotation and modify their behavior as a result. Genetic analyses in a variety of organisms have defined a mechanism based largely on gene expression feedback loops. However, as we delve more deeply into the mechanisms of circadian timekeeping, we are discovering that post-translational mechanisms play a key role in defining the character of the clock. We are also discovering that these modifications are inextricably linked to cellular metabolism, including redox homeostasis. A robust circadian oscillation in the redox status of the peroxiredoxins (a major class of cellular antioxidants) was recently shown to be remarkably conserved from archaea and cyanobacteria all the way to plants and animals. Furthermore, recent findings indicate that cellular redox status is coupled not only to canonical circadian gene expression pathways but also to a noncanonical transcript-independent circadian clock. The redox rhythms observed in peroxiredoxins in the absence of canonical clock mechanisms may hint at the nature of this new and hitherto unknown aspect of circadian timekeeping.
Collapse
Affiliation(s)
- Nathaniel P Hoyle
- Laboratory of Molecular Biology, Medical Research Council , Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | | |
Collapse
|