1
|
Janissen R, Barth R, Polinder M, van der Torre J, Dekker C. Single-molecule visualization of twin-supercoiled domains generated during transcription. Nucleic Acids Res 2024; 52:1677-1687. [PMID: 38084930 PMCID: PMC10899792 DOI: 10.1093/nar/gkad1181] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 02/29/2024] Open
Abstract
Transcription-coupled supercoiling of DNA is a key factor in chromosome compaction and the regulation of genetic processes in all domains of life. It has become common knowledge that, during transcription, the DNA-dependent RNA polymerase (RNAP) induces positive supercoiling ahead of it (downstream) and negative supercoils in its wake (upstream), as rotation of RNAP around the DNA axis upon tracking its helical groove gets constrained due to drag on its RNA transcript. Here, we experimentally validate this so-called twin-supercoiled-domain model with in vitro real-time visualization at the single-molecule scale. Upon binding to the promoter site on a supercoiled DNA molecule, RNAP merges all DNA supercoils into one large pinned plectoneme with RNAP residing at its apex. Transcription by RNAP in real time demonstrates that up- and downstream supercoils are generated simultaneously and in equal portions, in agreement with the twin-supercoiled-domain model. Experiments carried out in the presence of RNases A and H, revealed that an additional viscous drag of the RNA transcript is not necessary for the RNAP to induce supercoils. The latter results contrast the current consensus and simulations on the origin of the twin-supercoiled domains, pointing at an additional mechanistic cause underlying supercoil generation by RNAP in transcription.
Collapse
Affiliation(s)
- Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, South-Holland 2629HZ, The Netherlands
| | - Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, South-Holland 2629HZ, The Netherlands
| | - Minco Polinder
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, South-Holland 2629HZ, The Netherlands
| | - Jaco van der Torre
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, South-Holland 2629HZ, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, South-Holland 2629HZ, The Netherlands
| |
Collapse
|
2
|
Dubrovin EV. Atomic force microscopy-based approaches for single-molecule investigation of nucleic acid- protein complexes. Biophys Rev 2023; 15:1015-1033. [PMID: 37974971 PMCID: PMC10643717 DOI: 10.1007/s12551-023-01111-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/07/2023] [Indexed: 11/19/2023] Open
Abstract
The interaction of nucleic acids with proteins plays an important role in many fundamental biological processes in living cells, including replication, transcription, and translation. Therefore, understanding nucleic acid-protein interaction is of high relevance in many areas of biology, medicine and technology. During almost four decades of its existence atomic force microscopy (AFM) accumulated a significant experience in investigation of biological molecules at a single-molecule level. AFM has become a powerful tool of molecular biology and biophysics providing unique information about properties, structure, and functioning of biomolecules. Despite a great variety of nucleic acid-protein systems under AFM investigations, there are a number of typical approaches for such studies. This review is devoted to the analysis of the typical AFM-based approaches of investigation of DNA (RNA)-protein complexes with a major focus on transcription studies. The basic strategies of AFM analysis of nucleic acid-protein complexes including investigation of the products of DNA-protein reactions and real-time dynamics of DNA-protein interaction are categorized and described by the example of the most relevant research studies. The described approaches and protocols have many universal features and, therefore, are applicable for future AFM studies of various nucleic acid-protein systems.
Collapse
Affiliation(s)
- Evgeniy V. Dubrovin
- Lomonosov Moscow State University, Leninskie Gory 1 Bld. 2, 119991 Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Institutskiy Per. 9, Dolgoprudny, 141700 Russian Federation
- Sirius University of Science and Technology, Olimpiyskiy Ave 1, Township Sirius, Krasnodar Region, 354349 Russia
| |
Collapse
|
3
|
Kasho K, Ozaki S, Katayama T. IHF and Fis as Escherichia coli Cell Cycle Regulators: Activation of the Replication Origin oriC and the Regulatory Cycle of the DnaA Initiator. Int J Mol Sci 2023; 24:11572. [PMID: 37511331 PMCID: PMC10380432 DOI: 10.3390/ijms241411572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
This review summarizes current knowledge about the mechanisms of timely binding and dissociation of two nucleoid proteins, IHF and Fis, which play fundamental roles in the initiation of chromosomal DNA replication in Escherichia coli. Replication is initiated from a unique replication origin called oriC and is tightly regulated so that it occurs only once per cell cycle. The timing of replication initiation at oriC is rigidly controlled by the timely binding of the initiator protein DnaA and IHF to oriC. The first part of this review presents up-to-date knowledge about the timely stabilization of oriC-IHF binding at oriC during replication initiation. Recent advances in our understanding of the genome-wide profile of cell cycle-coordinated IHF binding have revealed the oriC-specific stabilization of IHF binding by ATP-DnaA oligomers at oriC and by an initiation-specific IHF binding consensus sequence at oriC. The second part of this review summarizes the mechanism of the timely regulation of DnaA activity via the chromosomal loci DARS2 (DnaA-reactivating sequence 2) and datA. The timing of replication initiation at oriC is controlled predominantly by the phosphorylated form of the adenosine nucleotide bound to DnaA, i.e., ATP-DnaA, but not ADP-ADP, is competent for initiation. Before initiation, DARS2 increases the level of ATP-DnaA by stimulating the exchange of ADP for ATP on DnaA. This DARS2 function is activated by the site-specific and timely binding of both IHF and Fis within DARS2. After initiation, another chromosomal locus, datA, which inactivates ATP-DnaA by stimulating ATP hydrolysis, is activated by the timely binding of IHF. A recent study has shown that ATP-DnaA oligomers formed at DARS2-Fis binding sites competitively dissociate Fis via negative feedback, whereas IHF regulation at DARS2 and datA still remains to be investigated. This review summarizes the current knowledge about the specific role of IHF and Fis in the regulation of replication initiation and proposes a mechanism for the regulation of timely IHF binding and dissociation at DARS2 and datA.
Collapse
Affiliation(s)
- Kazutoshi Kasho
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
4
|
Chromosomal Position of Ribosomal Protein Genes Affects Long-Term Evolution of Vibrio cholerae. mBio 2023; 14:e0343222. [PMID: 36861972 PMCID: PMC10127744 DOI: 10.1128/mbio.03432-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
It is unclear how gene order within the chromosome influences genome evolution. Bacteria cluster transcription and translation genes close to the replication origin (oriC). In Vibrio cholerae, relocation of s10-spc-α locus (S10), the major locus of ribosomal protein genes, to ectopic genomic positions shows that its relative distance to the oriC correlates to a reduction in growth rate, fitness, and infectivity. To test the long-term impact of this trait, we evolved 12 populations of V. cholerae strains bearing S10 at an oriC-proximal or an oriC-distal location for 1,000 generations. During the first 250 generations, positive selection was the main force driving mutation. After 1,000 generations, we observed more nonadaptative mutations and hypermutator genotypes. Populations fixed inactivating mutations at many genes linked to virulence: flagellum, chemotaxis, biofilm, and quorum sensing. Throughout the experiment, all populations increased their growth rates. However, those bearing S10 close to oriC remained the fittest, indicating that suppressor mutations cannot compensate for the genomic position of the main ribosomal protein locus. Selection and sequencing of the fastest-growing clones allowed us to characterize mutations inactivating, among other sites, flagellum master regulators. Reintroduction of these mutations into the wild-type context led to a ≈10% growth improvement. In conclusion, the genomic location of ribosomal protein genes conditions the evolutionary trajectory of V. cholerae. While genomic content is highly plastic in prokaryotes, gene order is an underestimated factor that conditions cellular physiology and evolution. A lack of suppression enables artificial gene relocation as a tool for genetic circuit reprogramming. IMPORTANCE The bacterial chromosome harbors several entangled processes such as replication, transcription, DNA repair, and segregation. Replication begins bidirectionally at the replication origin (oriC) until the terminal region (ter) organizing the genome along the ori-ter axis gene order along this axis could link genome structure to cell physiology. Fast-growing bacteria cluster translation genes near oriC. In Vibrio cholerae, moving them away was feasible but at the cost of losing fitness and infectivity. Here, we evolved strains harboring ribosomal genes close or far from oriC. Growth rate differences persisted after 1,000 generations. No mutation was able to compensate for the growth defect, showing that ribosomal gene location conditions their evolutionary trajectory. Despite the high plasticity of bacterial genomes, evolution has sculpted gene order to optimize the ecological strategy of the microorganism. We observed growth rate improvement throughout the evolution experiment that occurred at expense of energetically costly processes such the flagellum biosynthesis and virulence-related functions. From the biotechnological point of view, manipulation of gene order enables altering bacterial growth with no escape events.
Collapse
|
5
|
Muskhelishvili G, Sobetzko P, Travers A. Spatiotemporal Coupling of DNA Supercoiling and Genomic Sequence Organization-A Timing Chain for the Bacterial Growth Cycle? Biomolecules 2022; 12:biom12060831. [PMID: 35740956 PMCID: PMC9221221 DOI: 10.3390/biom12060831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
In this article we describe the bacterial growth cycle as a closed, self-reproducing, or autopoietic circuit, reestablishing the physiological state of stationary cells initially inoculated in the growth medium. In batch culture, this process of self-reproduction is associated with the gradual decline in available metabolic energy and corresponding change in the physiological state of the population as a function of "travelled distance" along the autopoietic path. We argue that this directional alteration of cell physiology is both reflected in and supported by sequential gene expression along the chromosomal OriC-Ter axis. We propose that during the E. coli growth cycle, the spatiotemporal order of gene expression is established by coupling the temporal gradient of supercoiling energy to the spatial gradient of DNA thermodynamic stability along the chromosomal OriC-Ter axis.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Natural Sciences, Biology Program, Agricultural University of Georgia, 0159 Tbilisi, Georgia
- Correspondence:
| | - Patrick Sobetzko
- Synmikro, Loewe Center for Synthetic Microbiology, Philipps-Universität Marburg, 35043 Marburg, Germany;
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| |
Collapse
|
6
|
Travers A, Muskhelishvili G. Chromosomal Organization and Regulation of Genetic Function in Escherichia coli Integrates the DNA Analog and Digital Information. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0016-2019. [PMID: 32056535 PMCID: PMC11168577 DOI: 10.1128/ecosalplus.esp-0016-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Indexed: 12/22/2022]
Abstract
In this article, we summarize our current understanding of the bacterial genetic regulation brought about by decades of studies using the Escherichia coli model. It became increasingly evident that the cellular genetic regulation system is organizationally closed, and a major challenge is to describe its circular operation in quantitative terms. We argue that integration of the DNA analog information (i.e., the probability distribution of the thermodynamic stability of base steps) and digital information (i.e., the probability distribution of unique triplets) in the genome provides a key to understanding the organizational logic of genetic control. During bacterial growth and adaptation, this integration is mediated by changes of DNA supercoiling contingent on environmentally induced shifts in intracellular ionic strength and energy charge. More specifically, coupling of dynamic alterations of the local intrinsic helical repeat in the structurally heterogeneous DNA polymer with structural-compositional changes of RNA polymerase holoenzyme emerges as a fundamental organizational principle of the genetic regulation system. We present a model of genetic regulation integrating the genomic pattern of DNA thermodynamic stability with the gene order and function along the chromosomal OriC-Ter axis, which acts as a principal coordinate system organizing the regulatory interactions in the genome.
Collapse
Affiliation(s)
- Andrew Travers
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | |
Collapse
|
7
|
Presnell KV, Flexer-Harrison M, Alper HS. Design and synthesis of synthetic UP elements for modulation of gene expression in Escherichia coli. Synth Syst Biotechnol 2019; 4:99-106. [PMID: 31080900 PMCID: PMC6501063 DOI: 10.1016/j.synbio.2019.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 11/29/2022] Open
Abstract
Metabolic engineering requires fine-tuned gene expression for most pathway optimization applications. To develop a suitable suite of promoters, traditional bacterial promoter engineering efforts have focused on modifications to the core region, especially the −10 and −35 regions, of native promoters. Here, we demonstrate an alternate, unexplored route of promoter engineering through randomization of the UP element of the promoter—a region that contacts the alpha subunit carboxy-terminal domain instead of the sigma subunit of the RNA polymerase holoenzyme. Through this work, we identify five novel UP element sequences through library-based searches in Escherichia coli. The resulting elements were used to activate the E. coli core promoter, rrnD promoter, to levels on par and higher than the prevalent strong bacterial promoter, OXB15. These relative levels of expression activation were transferrable when applied upstream of alternate core promoter sequences, including rrnA and rrnH. This work thus presents and validates a novel strategy for bacterial promoter engineering with transferability across varying core promoters and potential for transferability across bacterial species.
Collapse
Affiliation(s)
- Kristin V Presnell
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Madeleine Flexer-Harrison
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA
| |
Collapse
|
8
|
Structure and Properties of DNA Molecules Over The Full Range of Biologically Relevant Supercoiling States. Sci Rep 2018; 8:6163. [PMID: 29670174 PMCID: PMC5906655 DOI: 10.1038/s41598-018-24499-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/04/2018] [Indexed: 01/03/2023] Open
Abstract
Topology affects physical and biological properties of DNA and impacts fundamental cellular processes, such as gene expression, genome replication, chromosome structure and segregation. In all organisms DNA topology is carefully modulated and the supercoiling degree of defined genome regions may change according to physiological and environmental conditions. Elucidation of structural properties of DNA molecules with different topology may thus help to better understand genome functions. Whereas a number of structural studies have been published on highly negatively supercoiled DNA molecules, only preliminary observations of highly positively supercoiled are available, and a description of DNA structural properties over the full range of supercoiling degree is lacking. Atomic Force Microscopy (AFM) is a powerful tool to study DNA structure at single molecule level. We here report a comprehensive analysis by AFM of DNA plasmid molecules with defined supercoiling degree, covering the full spectrum of biologically relevant topologies, under different observation conditions. Our data, supported by statistical and biochemical analyses, revealed striking differences in the behavior of positive and negative plasmid molecules.
Collapse
|
9
|
Three tandem promoters, together with IHF, regulate growth phase dependent expression of the Escherichia coli kps capsule gene cluster. Sci Rep 2017; 7:17924. [PMID: 29263430 PMCID: PMC5738388 DOI: 10.1038/s41598-017-17891-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/01/2017] [Indexed: 02/02/2023] Open
Abstract
In this study we characterise three tandem promoters (PR1-1, PR1-2 and PR1-3) within the PR1 regulatory region of the Escherichia coli kps capsule gene cluster. Transcription from promoter PR1-2 was dependent on the activity of the upstream promoter PR1-1, which activated PR1-2 via transcription coupled DNA supercoiling. During growth at 37 °C a temporal pattern of transcription from all three promoters was observed with maximum transcriptional activity evident during mid-exponential phase followed by a sharp decrease in activity as the cells enter stationary phase. The growth phase dependent transcription was regulated by Integration Host Factor (IHF), which bound within the PR1 region to repress transcription from PR1-2 and PR1-3. This pattern of transcription was mirrored by growth phase dependent expression of the K1 capsule. Overall these data reveal a complex pattern of transcriptional regulation for an important virulence factor with IHF playing a role in regulating growth phase expression.
Collapse
|
10
|
Chromosomal organization of transcription: in a nutshell. Curr Genet 2017; 64:555-565. [PMID: 29184972 DOI: 10.1007/s00294-017-0785-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/25/2023]
Abstract
Early studies of transcriptional regulation focused on individual gene promoters defined specific transcription factors as central agents of genetic control. However, recent genome-wide data propelled a different view by linking spatially organized gene expression patterns to chromosomal dynamics. Therefore, the major problem in contemporary molecular genetics concerned with transcriptional gene regulation is to establish a unifying model that reconciles these two views. This problem, situated at the interface of polymer physics and network theory, requires development of an integrative methodology. In this review, we discuss recent achievements in classical model organism E. coli and provide some novel insights gained from studies of a bacterial plant pathogen, D. dadantii. We consider DNA topology and the basal transcription machinery as key actors of regulation, in which activation of functionally relevant genes is coupled to and coordinated with the establishment of extended chromosomal domains of coherent transcription. We argue that the spatial organization of genome plays a fundamental role in its own regulation.
Collapse
|
11
|
Koroleva ON, Dubrovin EV, Yaminsky IV, Drutsa VL. Effect of DNA bending on transcriptional interference in the systems of closely spaced convergent promoters. Biochim Biophys Acta Gen Subj 2016; 1860:2086-96. [DOI: 10.1016/j.bbagen.2016.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/22/2023]
|
12
|
Tan L, Moriel DG, Totsika M, Beatson SA, Schembri MA. Differential Regulation of the Surface-Exposed and Secreted SslE Lipoprotein in Extraintestinal Pathogenic Escherichia coli. PLoS One 2016; 11:e0162391. [PMID: 27598999 PMCID: PMC5012682 DOI: 10.1371/journal.pone.0162391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 08/22/2016] [Indexed: 11/19/2022] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) are responsible for diverse infections including meningitis, sepsis and urinary tract infections. The alarming rise in anti-microbial resistance amongst ExPEC complicates treatment and has highlighted the need for alternative preventive measures. SslE is a lipoprotein secreted by a dedicated type II secretion system in E. coli that was first identified as a potential vaccine candidate using reverse genetics. Although the function and protective efficacy of SslE has been studied, the molecular mechanisms that regulate SslE expression remain to be fully elucidated. Here, we show that while the expression of SslE can be detected in E. coli culture supernatants, different strains express and secrete different amounts of SslE when grown under the same conditions. While the histone-like transcriptional regulator H-NS strongly represses sslE at ambient temperatures, the variation in SslE expression at human physiological temperature suggested a more complex mode of regulation. Using a genetic screen to identify novel regulators of sslE in the high SslE-expressing strain UTI89, we defined a new role for the nucleoid-associated regulator Fis and the ribosome-binding GTPase TypA as positive regulators of sslE transcription. We also showed that Fis-mediated enhancement of sslE transcription is dependent on a putative Fis-binding sequence located upstream of the -35 sequence in the core promoter element, and provide evidence to suggest that Fis may work in complex with H-NS to control SslE expression. Overall, this study has defined a new mechanism for sslE regulation and increases our understanding of this broadly conserved E. coli vaccine antigen.
Collapse
Affiliation(s)
- Lendl Tan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
| | - Danilo G. Moriel
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, QLD 4059, Brisbane, Australia
| | - Scott A. Beatson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
| | - Mark A. Schembri
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
- * E-mail:
| |
Collapse
|
13
|
Duprey A, Muskhelishvili G, Reverchon S, Nasser W. Temporal control of Dickeya dadantii main virulence gene expression by growth phase-dependent alteration of regulatory nucleoprotein complexes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1470-1480. [PMID: 27498372 DOI: 10.1016/j.bbagrm.2016.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 01/08/2023]
Abstract
In bacteria, important genes are often controlled at the transcriptional level by several factors, forming a complex and intertwined web of interactions. Yet, transcriptional regulators are often studied separately and little information is available concerning their interactions. In this work, we dissect the regulation of the major virulence gene pelD in D. dadantii by taking into account the effects of individual binding sites for regulatory proteins FIS and CRP, and the impact of a newly discovered divergent promoter div. Using a combination of biochemistry and genetics approaches we provide an unprecedented level of detail on the multifactorial regulation of bacterial transcription. We show that the growth phase dependent regulation of pelD is under the control of changing composition of higher-order nucleoprotein complexes between FIS, CRP, div and pelD during the growth cycle that allow sequential expression of div and pelD in the early and late exponential growth phases, respectively. This work highlights the importance of "orphan" promoters in gene regulation and that the individual binding sites for a regulator can serve several purposes and have different effects on transcription, adding a new level of complexity to bacterial transcriptional regulation.
Collapse
Affiliation(s)
- Alexandre Duprey
- Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France; INSA-Lyon, F-69621 Villeurbanne, France; CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | - Georgi Muskhelishvili
- Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France; INSA-Lyon, F-69621 Villeurbanne, France; CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | - Sylvie Reverchon
- Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France; INSA-Lyon, F-69621 Villeurbanne, France; CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | - William Nasser
- Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France; INSA-Lyon, F-69621 Villeurbanne, France; CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France.
| |
Collapse
|
14
|
Koroleva ON, Dubrovin EV, Tolstova AP, Kuzmina NV, Laptinskaya TV, Yaminsky IV, Drutsa VL. A hypothetical hierarchical mechanism of the self-assembly of the Escherichia coli RNA polymerase σ(70) subunit. SOFT MATTER 2016; 12:1974-1982. [PMID: 26758573 DOI: 10.1039/c5sm02934a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Diverse morphology of aggregates of amyloidogenic proteins has been attracting much attention in the last few years, and there is still no complete understanding of the relationships between various types of aggregates. In this work, we propose the model, which universally explains the formation of morphologically different (wormlike and rodlike) aggregates on the example of a σ(70) subunit of RNA polymerase, which has been recently shown to form amyloid fibrils. Aggregates were studied using AFM in solution and depolarized dynamic light scattering. The obtained results demonstrate comparably low Young's moduli of the wormlike structures (7.8-12.3 MPa) indicating less structured aggregation of monomeric proteins than that typical for β-sheet formation. To shed light on the molecular interaction of the protein during the aggregation, early stages of fibrillization of the σ(70) subunit were modeled using all-atom molecular dynamics. Simulations have shown that the σ(70) subunit is able to form quasi-symmetric extended dimers, which may further interact with each other and grow linearly. The proposed general model explains different pathways of σ(70) subunit aggregation and may be valid for other amyloid proteins.
Collapse
Affiliation(s)
- O N Koroleva
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, Moscow, 119991 Russian Federation
| | | | | | | | | | | | | |
Collapse
|
15
|
Sobetzko P. Transcription-coupled DNA supercoiling dictates the chromosomal arrangement of bacterial genes. Nucleic Acids Res 2016; 44:1514-24. [PMID: 26783203 PMCID: PMC4770239 DOI: 10.1093/nar/gkw007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 01/03/2016] [Indexed: 11/14/2022] Open
Abstract
Over the recent decade, the central importance of DNA supercoiling in chromosome organization and global gene regulation of bacteria became more and more visible. With a regulon comprising more than 2000 genes in Escherichia coli, DNA supercoiling is among the most influential regulators of gene expression found in bacteria so far. However, the mechanism creating thousands of diverse temporal gene expression patterns coordinated by DNA supercoiling remains unclear. In this study we show that a specific chromosomal arrangement of genes modulates the local levels of DNA supercoiling at gene promoters via transcription-coupled DNA supercoiling (TCDS) in the model organism E. coli. Our findings provide a consistent explanation for the strong positive coupling of temporal gene expression patterns of neighboring genes. Using comparative genomics we are furthermore able to provide evidence that TCDS is a driving force for the evolution of chromosomal gene arrangement patterns in other Enterobacteriaceae. With the currently available data of promoter supercoiling sensitivity we prove that the same principle is applicable also for the evolutionary distant gram-positive pathogenic bacterium Streptococcus pneumoniae. Moreover, our findings are fully consistent with recent investigations concerning the regulatory impact of TCDS on gene pairs in eukaryots underpinning the broad applicability of our analysis.
Collapse
Affiliation(s)
- Patrick Sobetzko
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-University Marburg, Hans-Meerwein-Strasse 6, Mehrzweckgebäude, D-35043 Marburg, Germany
| |
Collapse
|
16
|
Gerganova V, Berger M, Zaldastanishvili E, Sobetzko P, Lafon C, Mourez M, Travers A, Muskhelishvili G. Chromosomal position shift of a regulatory gene alters the bacterial phenotype. Nucleic Acids Res 2015; 43:8215-26. [PMID: 26170236 PMCID: PMC4751926 DOI: 10.1093/nar/gkv709] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/30/2015] [Indexed: 12/31/2022] Open
Abstract
Recent studies strongly suggest that in bacterial cells the order of genes along the chromosomal origin-to-terminus axis is determinative for regulation of the growth phase-dependent gene expression. The prediction from this observation is that positional displacement of pleiotropic genes will affect the genetic regulation and hence, the cellular phenotype. To test this prediction we inserted the origin-proximal dusB-fis operon encoding the global regulator FIS in the vicinity of replication terminus on both arms of the Escherichia coli chromosome. We found that the lower fis gene dosage in the strains with terminus-proximal dusB-fis operons was compensated by increased fis expression such that the intracellular concentration of FIS was homeostatically adjusted. Nevertheless, despite unchanged FIS levels the positional displacement of dusB-fis impaired the competitive growth fitness of cells and altered the state of the overarching network regulating DNA topology, as well as the cellular response to environmental stress, hazardous substances and antibiotics. Our finding that the chromosomal repositioning of a regulatory gene can determine the cellular phenotype unveils an important yet unexplored facet of the genetic control mechanisms and paves the way for novel approaches to manipulate bacterial physiology.
Collapse
Affiliation(s)
- Veneta Gerganova
- Jacobs University Bremen, School of Engineering and Science, Bremen, 28758, Germany
| | - Michael Berger
- Institut für Hygiene, Universitätsklinikum Münster, Münster, 48149, Germany
| | | | - Patrick Sobetzko
- Philipps-Universität Marburg, LOEWE-Zentrum für Synthetische Mikrobiologie, Department of Chromosome Biology, Marburg, 35032, Germany
| | - Corinne Lafon
- SANOFI/ TSU Infectious Diseases, Toulouse, 31036, France
| | - Michael Mourez
- SANOFI/ TSU Infectious Diseases, Toulouse, 31036, France
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | |
Collapse
|