1
|
Zhang J, Han H, Liu Y, Xu J, Zhang D, Wang W, Gao Y, Li Z, Qin Y. SKF96365 Inhibits Tumor Proliferation by Inducing Apoptosis and Autophagy in Human Esophageal Squamous Cell Carcinoma. Int J Genomics 2024; 2024:4501154. [PMID: 39165489 PMCID: PMC11335422 DOI: 10.1155/2024/4501154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
Calcium channel blockers are emerging as a new generation of attractive anticancer drugs. SKF96365, originally thought to be a store-operated calcium entry (SOCE) inhibitor, is now often used as a TRPC channel blocker and is widely used in medical diagnostics. SKF96365 has shown antitumor effects on a variety of cancer cell lines. The objective of this study was to investigate the anticancer effect of SKF96365 on esophageal cancer in vivo and in vitro. Cell Counting Kit-8 (CCK-8) and colony formation were used to test the proliferation inhibition of SKF96365 on cell lines. Western blot and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were used to detect cell apoptosis rates. In addition, we demonstrated the antitumor effect of SKF96365 in vivo in xenografted mice. As a result, SKF96365 significantly inhibited the proliferation of K510, K30, and EC9706 in vitro. SKF96365 induces apoptosis in three cell lines through the poly(adenosine diphosphate-ribose) polymerase (PARP), caspase-9, and BCL-2 pathways in a dose-dependent and time-dependent manner. Moreover, SKF96365 treatment also induced apoptosis and inhibited tumor growth in nude mice. The calcium channel TRPC1 was significantly downregulated by SKF96365. Autophagy was also induced during the treatment of SKF96365. In summary, SKF96365 induces apoptosis (PARP, caspase-9, and BCL-2) and autophagy (LC3-A/B) by inhibiting TRPC1 in esophageal cancer cells, thereby inhibiting tumor growth.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huiqiong Han
- Department of OncologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yihan Liu
- Department of OncologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiayao Xu
- Department of OncologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Daidi Zhang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wenjia Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yaping Gao
- Department of OncologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yanru Qin
- Department of OncologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
2
|
Loeck T, Rugi M, Todesca LM, Kalinowska P, Soret B, Neumann I, Schimmelpfennig S, Najder K, Pethő Z, Farfariello V, Prevarskaya N, Schwab A. The context-dependent role of the Na +/Ca 2+-exchanger (NCX) in pancreatic stellate cell migration. Pflugers Arch 2023; 475:1225-1240. [PMID: 37566113 PMCID: PMC10499968 DOI: 10.1007/s00424-023-02847-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023]
Abstract
Pancreatic stellate cells (PSCs) that can co-metastasize with cancer cells shape the tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) by producing an excessive amount of extracellular matrix. This leads to a TME characterized by increased tissue pressure, hypoxia, and acidity. Moreover, cells within the tumor secrete growth factors. The stimuli of the TME trigger Ca2+ signaling and cellular Na+ loading. The Na+/Ca2+ exchanger (NCX) connects the cellular Ca2+ and Na+ homeostasis. The NCX is an electrogenic transporter, which shuffles 1 Ca2+ against 3 Na+ ions over the plasma membrane in a forward or reverse mode. Here, we studied how the impact of NCX activity on PSC migration is modulated by cues from the TME. NCX expression was revealed with qPCR and Western blot. [Ca2+]i, [Na+]i, and the cell membrane potential were determined with the fluorescent indicators Fura-2, Asante NaTRIUM Green-2, and DiBAC4(3), respectively. PSC migration was quantified with live-cell imaging. To mimic the TME, PSCs were exposed to hypoxia, pressure, acidic pH (pH 6.6), and PDGF. NCX-dependent signaling was determined with Western blot analyses. PSCs express NCX1.3 and NCX1.9. [Ca2+]i, [Na+]i, and the cell membrane potential are 94.4 nmol/l, 7.4 mmol/l, and - 39.8 mV, respectively. Thus, NCX1 usually operates in the forward (Ca2+ export) mode. NCX1 plays a differential role in translating cues from the TME into an altered migratory behavior. When NCX1 is operating in the forward mode, its inhibition accelerates PSC migration. Thus, NCX1-mediated extrusion of Ca2+ contributes to a slow mode of migration of PSCs.
Collapse
Affiliation(s)
- Thorsten Loeck
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Micol Rugi
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Luca Matteo Todesca
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Paulina Kalinowska
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Benjamin Soret
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
- Université de Lille, Inserm, U1003 - PhyCell - Physiologie Cellulaire, F-59000, Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Ilka Neumann
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Sandra Schimmelpfennig
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Karolina Najder
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Zoltán Pethő
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Valerio Farfariello
- Université de Lille, Inserm, U1003 - PhyCell - Physiologie Cellulaire, F-59000, Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Université de Lille, Inserm, U1003 - PhyCell - Physiologie Cellulaire, F-59000, Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany.
| |
Collapse
|
3
|
Loeck T, Schwab A. The role of the Na +/Ca 2+-exchanger (NCX) in cancer-associated fibroblasts. Biol Chem 2023; 404:325-337. [PMID: 36594183 DOI: 10.1515/hsz-2022-0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023]
Abstract
Cancer is characterized by uncontrolled growth, invasion, and metastasis. In addition to solid cancer cells, cancer-associated fibroblasts (CAFs) play important roles in cancer pathophysiology. They arise from "healthy" cells but get manipulated by solid cancer cells to supply them and develop a tumor microenvironment (TME) that protects the cancer cells from the immune defense. A wide variety of cell types can differentiate into CAFs, including fibroblasts, endothelial cells, and epithelial cells. Precise Ca2+ regulation is essential for each cell including CAFs. The electrogenic Na+/Ca2+ exchanger (NCX) is one of the ubiquitously expressed regulatory Ca2+ transport proteins that rapidly responds to changes of the intracellular ion concentrations. Its transport function is also influenced by the membrane potential and thereby indirectly by the activity of ion channels. NCX transports Ca2+ out of the cell (forward mode) or allows its influx (reverse mode), always in exchange for 3 Na+ ions that are moved into the opposite direction. In this review, we discuss the functional roles NCX has in CAFs and how these depend on the properties of the TME. NCX activity modifies migration and leads to a reduced proliferation and apoptosis. The effect of the NCX in fibrosis is still largely unknown.
Collapse
Affiliation(s)
- Thorsten Loeck
- Institut für Physiologie II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, D-48149 Münster, Germany
| | - Albrecht Schwab
- Institut für Physiologie II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, D-48149 Münster, Germany
| |
Collapse
|
4
|
Derakhshani A, Hesaraki S, Nezafati N, Azami M. Wound closure, angiogenesis and antibacterial behaviors of tetracalcium phosphate/hydroxyethyl cellulose/hyaluronic acid/gelatin composite dermal scaffolds. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:605-626. [PMID: 34844507 DOI: 10.1080/09205063.2021.2008786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Polymeric and tetracalcium phosphate (TTCP)-containing polymeric scaffolds were fabricated using a freeze-drying technique, with a homogenous solution of hydroxyethyl cellulose (HEC)/hyaluronic acid (HA)/gelatin (G) or suspension of 15 or 20% TTCP) particles in HEC/HA/G solution. The morphology, phase composition, chemical bands, and swelling behavior of the scaffold were determined. In vitro fibroblast cell viability and migration potential of the scaffolds were determined by MTT, live/dead staining, and scratch assay for wound healing. The in vivo chick embryo angiogenesis test was also carried out. Finally, the initial antibacterial activity of the scaffolds was determined using Staphylococcus aureus. The scaffolds exhibited an enormous porous structure in which the size of pores increased by the presence of TTCP particles. While the polymeric scaffold was amorphous, the formation of low crystalline hydroxyapatite phase and the initial TTCP particles was determined in the composition of TTCP-added scaffolds. TTCP increased swelling behavior of the polymeric scaffold in PBS. The results demonstrated that the amount of TTCP was a crucial factor in cell life. A high concentration of TTCP could restrict cell viability, although all the scaffolds were nontoxic. The scratch assessments determined better cell migration and wound closure in treating with TTCP-containing scaffolds so that after 24 h, a wound closure of 100% was observed. Furthermore, TTCP-incorporated scaffolds significantly improved the angiogenesis, in the chick embryo test. The presence of TTCP had a significant effect on reducing the bacterial activity and 20% TTCP-containing scaffold exhibited better antibacterial activity than the others.
Collapse
Affiliation(s)
- Atefeh Derakhshani
- Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Saeed Hesaraki
- Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Nader Nezafati
- Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Sahabi K, Selvarajah GT, Mokrish A, Rasedee A, Kqueen CY. Development and molecular characterization of doxorubicin-resistant canine mammary gland tumour cells. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2032719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kabiru Sahabi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Gayathri T. Selvarajah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ajat Mokrish
- Department of Veterinary Preclinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdullah Rasedee
- Department of Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Cheah Y. Kqueen
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
6
|
Xie Y, Li Q, Zhang HF, Huang TC, Yang Y, Lin YQ, Mai JT, Wen ZZ, Yuan WL, Wang JF, Chen YX. Effect of C reactive protein on the sodium-calcium exchanger 1 in cardiomyocytes. Exp Ther Med 2021; 22:815. [PMID: 34131438 PMCID: PMC8193207 DOI: 10.3892/etm.2021.10247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/26/2021] [Indexed: 11/18/2022] Open
Abstract
Numerous previous studies have found that C-reactive protein (CRP) is associated with cardiac arrhythmia and cardiac remodeling. However, the underlying mechanisms of this association remain unclear. Sodium-calcium exchanger 1 (NCX1) serves an important role in the regulation of intracellular calcium concentration, which is closely related with cardiac arrhythmia and cardiac remodeling. The present study aimed to evaluate the effects of CRP on NCX1 and intracellular calcium concentration in cardiomyocytes. Primary neonatal mouse ventricular cardiomyocytes were cultured and treated with varying concentrations of CRP (0, 5, 10, 20 and 40 µg/ml). The cardiomyocytes were also treated with NF-κB-specific inhibitor PTDC and a specific inhibitor of the reverse NCX1 KB-R7943 before their intracellular calcium concentrations were measured. mRNA and protein expression levels of NCX1 were detected by reverse transcription-quantitative PCR and western blotting, respectively and intracellular calcium concentration was evaluated by flow cytometry. CRP treatment significantly increased mRNA and protein expression levels of NCX1 in myocytes (P=0.024), as well as intracellular calcium concentration (P=0.01). These results were significantly attenuated by the NF-κB-specific inhibitor PDTC and a specific inhibitor of the reverse NCX1, KB-R7943. CRP significantly upregulated NCX1 expression and increased intracellular calcium concentration in cardiomyocytes via the NF-κB pathway, suggesting that CRP may serve a pro-arrhythmia role via direct influence on the calcium homeostasis of cardiomyocytes.
Collapse
Affiliation(s)
- Yong Xie
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Qian Li
- Department of Dermatology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 515110, P.R. China
| | - Hai-Feng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Tu-Cheng Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ying Yang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yong-Qing Lin
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jing-Ting Mai
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Zhu-Zhi Wen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wo-Liang Yuan
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jing-Feng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yang-Xin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
7
|
Bai H, Zhou R, Barravecchia M, Norman R, Friedman A, Yu D, Lin X, Young JL, Dean DA. The Na+, K+-ATPase β1 subunit regulates epithelial tight junctions via MRCKα. JCI Insight 2021; 6:134881. [PMID: 33507884 PMCID: PMC7934944 DOI: 10.1172/jci.insight.134881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
An intact lung epithelial barrier is essential for lung homeostasis. The Na+, K+-ATPase (NKA), primarily serving as an ion transporter, also regulates epithelial barrier function via modulation of tight junctions. However, the underlying mechanism is not well understood. Here, we show that overexpression of the NKA β1 subunit upregulates the expression of tight junction proteins, leading to increased alveolar epithelial barrier function by an ion transport–independent mechanism. Using IP and mass spectrometry, we identified a number of unknown protein interactions of the β1 subunit, including a top candidate, myotonic dystrophy kinase–related cdc42-binding kinase α (MRCKα), which is a protein kinase known to regulate peripheral actin formation. Using a doxycycline-inducible gene expression system, we demonstrated that MRCKα and its downstream activation of myosin light chain is required for the regulation of alveolar barrier function by the NKA β1 subunit. Importantly, MRCKα is expressed in both human airways and alveoli and has reduced expression in patients with acute respiratory distress syndrome (ARDS), a lung illness that can be caused by multiple direct and indirect insults, including the infection of influenza virus and SARS-CoV-2. Our results have elucidated a potentially novel mechanism by which NKA regulates epithelial tight junctions and have identified potential drug targets for treating ARDS and other pulmonary diseases that are caused by barrier dysfunction.
Collapse
Affiliation(s)
- Haiqing Bai
- Department of Pediatrics and.,Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | | | | | | | - Alan Friedman
- Department of Pediatrics and.,Department of Materials Design and Innovation, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Xin Lin
- Department of Pediatrics and
| | | | | |
Collapse
|
8
|
El-Mallakh RS, Gao Y, You P. Role of endogenous ouabain in the etiology of bipolar disorder. Int J Bipolar Disord 2021; 9:6. [PMID: 33523310 PMCID: PMC7851255 DOI: 10.1186/s40345-020-00213-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background Bipolar disorder is a severe psychiatric illness with poor prognosis and problematic and suboptimal treatments. Understanding the pathoetiologic mechanisms may improve treatment and outcomes. Discussion Dysregulation of cationic homeostasis is the most reproducible aspect of bipolar pathophysiology. Correction of ionic balance is the universal mechanism of action of all mood stabilizing medications. Recent discoveries of the role of endogenous sodium pump modulators (which include ‘endogenous ouabain’) in regulation of sodium and potassium distribution, inflammation, and activation of key cellular second messenger systems that are important in cell survival, and the demonstration that these stress-responsive chemicals may be dysregulated in bipolar patients, suggest that these compounds may be candidates for the coupling of environmental stressors and illness onset. Specifically, individuals with bipolar disorder appear to be unable to upregulate endogenous ouabain under conditions that require it, and therefore may experience a relative deficiency of this important regulatory hormone. In the absence of elevated endogenous ouabain, neurons are unable to maintain their normal resting potential, become relatively depolarized, and are then susceptible to inappropriate activation. Furthermore, sodium pump activity appears to be necessary to prevent inflammatory signals within the central nervous system. Nearly all available data currently support this model, but additional studies are required to solidify the role of this system. Conclusion Endogenous ouabain dysregulation appears to be a reasonable candidate for understanding the pathophysiology of bipolar disorder.
Collapse
Affiliation(s)
- Rif S El-Mallakh
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, 401 East Chestnut Street, Suite 610, Louisville, KY, 40202, USA.
| | - Yonglin Gao
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, 401 East Chestnut Street, Suite 610, Louisville, KY, 40202, USA
| | - Pan You
- Xiamen Xianyue Hospital, 399 Xianyue Road, Xiamen, China
| |
Collapse
|
9
|
Villalobo A, Berchtold MW. The Role of Calmodulin in Tumor Cell Migration, Invasiveness, and Metastasis. Int J Mol Sci 2020; 21:ijms21030765. [PMID: 31991573 PMCID: PMC7037201 DOI: 10.3390/ijms21030765] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor protein in all eukaryotic cells, that upon binding to target proteins transduces signals encoded by global or subcellular-specific changes of Ca2+ concentration within the cell. The Ca2+/CaM complex as well as Ca2+-free CaM modulate the activity of a vast number of enzymes, channels, signaling, adaptor and structural proteins, and hence the functionality of implicated signaling pathways, which control multiple cellular functions. A basic and important cellular function controlled by CaM in various ways is cell motility. Here we discuss the role of CaM-dependent systems involved in cell migration, tumor cell invasiveness, and metastasis development. Emphasis is given to phosphorylation/dephosphorylation events catalyzed by myosin light-chain kinase, CaM-dependent kinase-II, as well as other CaM-dependent kinases, and the CaM-dependent phosphatase calcineurin. In addition, the role of the CaM-regulated small GTPases Rac1 and Cdc42 (cell division cycle protein 42) as well as CaM-binding adaptor/scaffold proteins such as Grb7 (growth factor receptor bound protein 7), IQGAP (IQ motif containing GTPase activating protein) and AKAP12 (A kinase anchoring protein 12) will be reviewed. CaM-regulated mechanisms in cancer cells responsible for their greater migratory capacity compared to non-malignant cells, invasion of adjacent normal tissues and their systemic dissemination will be discussed, including closely linked processes such as the epithelial–mesenchymal transition and the activation of metalloproteases. This review covers as well the role of CaM in establishing metastatic foci in distant organs. Finally, the use of CaM antagonists and other blocking techniques to downregulate CaM-dependent systems aimed at preventing cancer cell invasiveness and metastasis development will be outlined.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area—Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
- Correspondence: (A.V.); (M.W.B.)
| | - Martin W. Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark
- Correspondence: (A.V.); (M.W.B.)
| |
Collapse
|
10
|
Wang X, Yang XL, Kong WL, Zeng ML, Shao L, Jiang GT, Cheng JJ, Kong S, He XH, Liu WH, Chen TX, Peng BW. TRPV1 translocated to astrocytic membrane to promote migration and inflammatory infiltration thus promotes epilepsy after hypoxic ischemia in immature brain. J Neuroinflammation 2019; 16:214. [PMID: 31722723 PMCID: PMC6852893 DOI: 10.1186/s12974-019-1618-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/16/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Neonatal hypoxic-ischemic brain damage (HIBD), a leading cause of neonatal mortality, has intractable sequela such as epilepsy that seriously affected the life quality of HIBD survivors. We have previously shown that ion channel dysfunction in the central nervous system played an important role in the process of HIBD-induced epilepsy. Therefore, we continued to validate the underlying mechanisms of TRPV1 as a potential target for epilepsy. METHODS Neonatal hypoxic ischemia and oxygen-glucose deprivation (OGD) were used to simulate HIBD in vivo and in vitro. Primarily cultured astrocytes were used to assess the expression of TRPV1, glial fibrillary acidic protein (GFAP), cytoskeletal rearrangement, and inflammatory cytokines by using Western blot, q-PCR, and immunofluorescence. Furthermore, brain electrical activity in freely moving mice was recorded by electroencephalography (EEG). TRPV1 current and neuronal excitability were detected by whole-cell patch clamp. RESULTS Astrocytic TRPV1 translocated to the membrane after OGD. Mechanistically, astrocytic TRPV1 activation increased the inflow of Ca2+, which promoted G-actin polymerized to F-actin, thus promoted astrocyte migration after OGD. Moreover, astrocytic TRPV1 deficiency decreased the production and release of pro-inflammatory cytokines (TNF, IL-6, IL-1β, and iNOS) after OGD. It could also dramatically attenuate neuronal excitability after OGD and brain electrical activity in HIBD mice. Behavioral testing for seizures after HIBD revealed that TRPV1 knockout mice demonstrated prolonged onset latency, shortened duration, and decreased seizure severity when compared with wild-type mice. CONCLUSIONS Collectively, TRPV1 promoted astrocyte migration thus helped the infiltration of pro-inflammatory cytokines (TNF, IL-1β, IL-6, and iNOS) from astrocytes into the vicinity of neurons to promote epilepsy. Our study provides a strong rationale for astrocytic TRPV1 to be a therapeutic target for anti-epileptogenesis after HIBD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xing-Liang Yang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wei-Lin Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Meng-Liu Zeng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lin Shao
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Guang-Tong Jiang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jing-Jing Cheng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuo Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiao-Hua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wan-Hong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Tao-Xiang Chen
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
11
|
Essential role of Na+/Ca2+ exchanger 1 in smoking-induced growth and migration of esophageal squamous cell carcinoma. Oncotarget 2018; 7:63816-63828. [PMID: 27588478 PMCID: PMC5325406 DOI: 10.18632/oncotarget.11695] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022] Open
Abstract
Tobacco-derived carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a major environmental risk factor for the pathogenesis of human esophageal squamous cell carcinoma (ESCC). However, the molecular mechanisms by which tobacco induces ESCC are not well understood. Na+/Ca2+ exchanger 1 (NCX1) is a plasma membrane transporter protein that plays an essential role in maintaining cytosolic Ca2+ ([Ca2+]cyt) homeostasis under physiological conditions and is implicated in tumorigenesis as well. In this study, we found that NCX1 expression was significantly higher in ESCC primary tissues compared to the noncancerous tissues and was overexpressed in tumor samples from the smoking patients. The expression of NCX1 proteins was also significantly higher in human ESCC cell lines compared to normal esophageal epithelial cell line. Moreover, NNK potentiated the [Ca2+]cyt signaling induced by removal of extracellular Na+, which was abolished by KB-R7943 or SN-6. NNK dose-dependently promoted proliferation and migration of human ESCC cells induced by NCX1 activation. Therefore, NCX1 expression correlates with the smoking status of ESCC patients, and NNK activates the Ca2+ entry mode of NCX1 in ESCC cells, leading to cell proliferation and migration. Our findings suggest NCX1 protein is a novel potential target for ESCC therapy.
Collapse
|
12
|
Balasubramaniam SL, Gopalakrishnapillai A, Petrelli NJ, Barwe SP. Knockdown of sodium-calcium exchanger 1 induces epithelial-to-mesenchymal transition in kidney epithelial cells. J Biol Chem 2017; 292:11388-11399. [PMID: 28550085 DOI: 10.1074/jbc.m116.752352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 05/17/2017] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal-to-epithelial transition (MET) and epithelial-to-mesenchymal transition (EMT) are important processes in kidney development. Failure to undergo MET during development leads to the initiation of Wilms tumor, whereas EMT contributes to the development of renal cell carcinomas (RCC). The role of calcium regulators in governing these processes is becoming evident. We demonstrated earlier that Na+/Ca2+ exchanger 1 (NCX1), a major calcium exporter in renal epithelial cells, regulates epithelial cell motility. Here, we show for the first time that NCX1 mRNA and protein expression was down-regulated in Wilms tumor and RCC. Knockdown of NCX1 in Madin-Darby canine kidney cells induced fibroblastic morphology, increased intercellular junctional distance, and induced paracellular permeability, loss of apico-basal polarity in 3D cultures, and anchorage-independent growth, accompanied by expression of mesenchymal markers. We also provide evidence that NCX1 interacts with and anchors E-cadherin to the cell surface independent of NCX1 ion transport activity. Consistent with destabilization of E-cadherin, NCX1 knockdown cells showed an increase in β-catenin nuclear localization, enhanced transcriptional activity, and up-regulation of downstream targets of the β-catenin signaling pathway. Taken together, knockdown of NCX1 in Madin-Darby canine kidney cells alters epithelial morphology and characteristics by destabilization of E-cadherin and induction of β-catenin signaling.
Collapse
Affiliation(s)
- Sona Lakshme Balasubramaniam
- From the Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803.,the Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, and
| | - Anilkumar Gopalakrishnapillai
- From the Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803
| | - Nicholas J Petrelli
- the Helen F. Graham Cancer Center, Christiana Care Health System, Newark, Delaware 19718
| | - Sonali P Barwe
- From the Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803, .,the Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, and
| |
Collapse
|
13
|
Smedemark-Margulies N, Brownstein CA, Vargas S, Tembulkar SK, Towne MC, Shi J, Gonzalez-Cuevas E, Liu KX, Bilguvar K, Kleiman RJ, Han MJ, Torres A, Berry GT, Yu TW, Beggs AH, Agrawal PB, Gonzalez-Heydrich J. A novel de novo mutation in ATP1A3 and childhood-onset schizophrenia. Cold Spring Harb Mol Case Stud 2016; 2:a001008. [PMID: 27626066 PMCID: PMC5002930 DOI: 10.1101/mcs.a001008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We describe a child with onset of command auditory hallucinations and behavioral regression at 6 yr of age in the context of longer standing selective mutism, aggression, and mild motor delays. His genetic evaluation included chromosomal microarray analysis and whole-exome sequencing. Sequencing revealed a previously unreported heterozygous de novo mutation c.385G>A in ATP1A3, predicted to result in a p.V129M amino acid change. This gene codes for a neuron-specific isoform of the catalytic α-subunit of the ATP-dependent transmembrane sodium–potassium pump. Heterozygous mutations in this gene have been reported as causing both sporadic and inherited forms of alternating hemiplegia of childhood and rapid-onset dystonia parkinsonism. We discuss the literature on phenotypes associated with known variants in ATP1A3, examine past functional studies of the role of ATP1A3 in neuronal function, and describe a novel clinical presentation associated with mutation of this gene.
Collapse
Affiliation(s)
- Niklas Smedemark-Margulies
- Division of Immunology, Harvard Medical School, Boston, Massachusetts 02115, USA;; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Catherine A Brownstein
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sigella Vargas
- Developmental Neuropsychiatry Research Program, Department of Psychiatry, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Sahil K Tembulkar
- Developmental Neuropsychiatry Research Program, Department of Psychiatry, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Meghan C Towne
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Elisa Gonzalez-Cuevas
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Kevin X Liu
- Developmental Neuropsychiatry Research Program, Department of Psychiatry, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Kaya Bilguvar
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Connecticut 06511, USA
| | - Robin J Kleiman
- Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA;; Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Min-Joon Han
- Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA;; Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Alcy Torres
- Division of Pediatric Neurology, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Gerard T Berry
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Timothy W Yu
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alan H Beggs
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Pankaj B Agrawal
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA;; Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Joseph Gonzalez-Heydrich
- Developmental Neuropsychiatry Research Program, Department of Psychiatry, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
14
|
Bi QR, Hou JJ, Qi P, Ma CH, Feng RH, Yan BP, Wang JW, Shi XJ, Zheng YY, Wu WY, Guo DA. TXNIP/TRX/NF-κB and MAPK/NF-κB pathways involved in the cardiotoxicity induced by Venenum Bufonis in rats. Sci Rep 2016; 6:22759. [PMID: 26961717 PMCID: PMC4785358 DOI: 10.1038/srep22759] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/04/2016] [Indexed: 01/24/2023] Open
Abstract
Venenum Bufonis (VB) is a widely used traditional medicine with serious cardiotoxic effects. The inflammatory response has been studied to clarify the mechanism of the cardiotoxicity induced by VB for the first time. In the present study, Sprague Dawley (SD) rats, were administered VB (100, 200, and 400 mg/kg) intragastrically, experienced disturbed ECGs (lowered heart rate and elevated ST-segment), increased levels of serum indicators (creatine kinase (CK), creatine kinase isoenzyme-MB (CK-MB), alanine aminotransferase (ALT), aspartate aminotransferase (AST)) and serum interleukin (IL-6, IL-1β, TNF-α) at 2 h, 4 h, 6 h, 8 h, 24 h, and 48 h, which reflected that an inflammatory response, together with cardiotoxicity, were involved in VB-treated rats. In addition, the elevated serum level of MDA and the down-regulated SOD, CAT, GSH, and GPx levels indicated the appearance of oxidative stress in the VB-treated group. Furthermore, based on the enhanced expression levels of TXNIP, p-NF-κBp65, p-IκBα, p-IKKα, p-IKKβ, p-ERK, p-JNK, and p-P38 and the obvious myocardial degeneration, it is proposed that VB-induced cardiotoxicity may promote an inflammatory response through the TXNIP/TRX/NF-κB and MAPK/NF-κB pathways. The observed inflammatory mechanism induced by VB may provide a theoretical reference for the toxic effects and clinical application of VB.
Collapse
Affiliation(s)
- Qi-Rui Bi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China.,College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Jin-Jun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Peng Qi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Chun-Hua Ma
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Rui-Hong Feng
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Bing-Peng Yan
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China.,College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Wei Wang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China.,College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Jian Shi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China.,College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan-Yuan Zheng
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Wan-Ying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| |
Collapse
|
15
|
Jing Z, Sui X, Yao J, Xie J, Jiang L, Zhou Y, Pan H, Han W. SKF-96365 activates cytoprotective autophagy to delay apoptosis in colorectal cancer cells through inhibition of the calcium/CaMKIIγ/AKT-mediated pathway. Cancer Lett 2016; 372:226-38. [PMID: 26803057 DOI: 10.1016/j.canlet.2016.01.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/24/2015] [Accepted: 01/06/2016] [Indexed: 12/19/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) inhibitors are emerging as an attractive new generation of anti-cancer drugs. Here, we report that SKF-96365, an SOCE inhibitor, exhibits potent anti-neoplastic activity by inducing cell-cycle arrest and apoptosis in colorectal cancer cells. In the meantime, SKF-96365 also induces cytoprotective autophagy to delay apoptosis by preventing the release of cytochrome c (cyt c) from the mitochondria into the cytoplasm. Mechanistically, SKF-96365 treatment inhibited the calcium/calmodulin-dependent protein kinase IIγ (CaMKIIγ)/AKT signaling cascade in vitro and in vivo. Overexpression of CaMKIIγ or AKT abolished the effects of SKF-96365 on cancer cells, suggesting a critical role of the CaMKIIγ/AKT signaling pathway in SFK-96365-induced biological effects. Moreover, Hydroxychloroquine (HCQ), an FDA-approved drug used to inhibit autophagy, could significantly augment the anti-cancer effect of SFK-96365 in a mouse xenograft model. To our best knowledge, this is the first report to demonstrate that calcium/CaMKIIγ/AKT signaling can regulate apoptosis and autophagy simultaneously in cancer cells, and the combination of the SOCE inhibitor SKF-96365 with autophagy inhibitors represents a promising strategy for treating patients with colorectal cancer.
Collapse
Affiliation(s)
- Zhao Jing
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinbing Sui
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junlin Yao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiansheng Xie
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liming Jiang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Balasubramaniam SL, Gopalakrishnapillai A, Barwe SP. Ion dependence of Na-K-ATPase-mediated epithelial cell adhesion and migration. Am J Physiol Cell Physiol 2015; 309:C437-41. [PMID: 26157008 DOI: 10.1152/ajpcell.00140.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sona Lakshme Balasubramaniam
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware; and Department of Biological Sciences, University of Delaware, Newark, Delaware
| | | | - Sonali P Barwe
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware; and Department of Biological Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|