1
|
He X, Gao X, Xie W. Research Progress in Skin Aging, Metabolism, and Related Products. Int J Mol Sci 2023; 24:15930. [PMID: 37958920 PMCID: PMC10647560 DOI: 10.3390/ijms242115930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
In recent years, skin aging has received increasing attention. Many factors affect skin aging, and research has shown that metabolism plays a vital role in skin aging, but there needs to be a more systematic review. This article reviews the interaction between skin metabolism and aging from the perspectives of glucose, protein, and lipid metabolism and explores relevant strategies for skin metabolism regulation. We found that skin aging affects the metabolism of three major substances, which are glucose, protein, and lipids, and the metabolism of the three major substances in the skin also affects the process of skin aging. Some drugs or compounds can regulate the metabolic disorders mentioned above to exert anti-aging effects. Currently, there are a variety of products, but most of them focus on improving skin collagen levels. Skin aging is closely related to metabolism, and they interact with each other. Regulating specific metabolic disorders in the skin is an important anti-aging strategy. Research and development have focused on improving collagen levels, while the regulation of other skin glycosylation and lipid disorders including key membrane or cytoskeleton proteins is relatively rare. Further research and development are expected.
Collapse
Affiliation(s)
- Xin He
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.H.); (X.G.)
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| | - Xinyu Gao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.H.); (X.G.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.H.); (X.G.)
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
2
|
Plasma Amino Acid Concentration in Obese Horses with/without Insulin Dysregulation and Laminitis. Animals (Basel) 2022; 12:ani12243580. [PMID: 36552500 PMCID: PMC9774246 DOI: 10.3390/ani12243580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Laminitic horses commonly suffer from an endocrine disease such as equine metabolic syndrome. Hyperinsulinemia is considered a key factor in the pathogenesis of laminitis. Since insulin also affects protein turnover in the body, the resting plasma amino acid concentrations of obese horses that were presented for a combined glucose insulin test (CGIT) were determined. In total, 25 obese horses and two lean horses with recurrent laminitis underwent a CGIT. Of these, five were not insulin dysregulated (obese), 14 were insulin dysregulated (ID), and eight were insulin-dysregulated and laminitic (IDL). Significant differences in the resting concentrations between obese and insulin dysregulated and laminitic (citrulline p = 0.038, obese: 73.001 ± 12.661 nmol/mL, IDL: 49.194 ± 15.486 nmol/mL; GABA p = 0.02, obese: 28.234 ± 3.885 nmol/mL, IDL: 16.697 ± 1.679 nmol/mL; methionine p = 0.018, obese: 28.691 ± 5.913 nmol/mL, IDL: 20.143 ± 3.09 nmol/mL) as well as between insulin dysregulated individuals with and without laminitis (GABA p < 0.001, ID: 28.169 ± 6.739 nmol/mL) regarding three amino acids were determined. This may be an interesting approach, especially for diagnostic testing and possibly also for the feed supplements of horses at risk of developing laminitis. However, further research, including a higher number of cases, is required.
Collapse
|
3
|
Plasma Amino Acids in Horses Suffering from Pituitary Pars Intermedia Dysfunction. Animals (Basel) 2022; 12:ani12233315. [PMID: 36496836 PMCID: PMC9737035 DOI: 10.3390/ani12233315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Pituitary pars intermedia dysfunction is one of the most common diseases of aged horses and ponies. In Parkinson's disease, which is, similar to PPID, a disease that involves oxidative damage to dopaminergic pathways but with different clinical signs, alterations to the serum amino acid profile have been reported. To examine changes in the plasma amino acid profile in horses with PPID, EDTA plasma of horses that were presented for various reasons that required laboratory examinations of blood anticoagulated with EDTA was collected. With this plasma, the basal ACTH concentration as well as the amino acid profile was determined. Horses were considered PPID patients if the ACTH concentration was ≥ 100 pg/mL, i.e., they would be considered affected at any time. Horses were defined as non-PPID (nPPID) patients if the ACTH concentration was below 30 pg/mL. Horses receiving pergolide with ACTH ≤ 30 pg/mL were allocated to the group PPIDrr (PPID, ACTH in reference range) and horses receiving pergolide with ACTH ≥ 100 pg/mL to the group PPIDarr (PPID, ACTH above reference range). In total, 93 horses were examined, including 88 horses at the clinic and 5 horses at a private practice. Of these, 53 horses fulfilled the inclusion criteria (ACTH ≤ 30 pg/mL or ACTH ≥ 100 pg/mL). A total of 25 horses were diagnosed as nPPID, 20 as PPID, 5 as PPIDrr, and 3 as PPIDarr. Arginine was significantly higher in PPIDrr than in PPID and nPPID, asparagine was significantly higher in PPID, PPIDrr, and PPIDarr than in nPPID, citrulline was significantly higher in PPIDrr than in nPPID and PPID, cysteine was significantly lower in PPIDrr than in PPID, nPPID, and PPIDarr, and glutamine was significantly higher in PPID and PPIDarr than in nPPID. Especially, asparagine, citrulline, and glutamine may be potential diagnostic markers and may offer interesting approaches for research regarding amino supplementation in PPID.
Collapse
|
4
|
Stokes SM, Stefanovski D, Bertin FR, Medina-Torres CE, Belknap JK, van Eps AW. Plasma amino acid concentrations during experimental hyperinsulinemia in 2 laminitis models. J Vet Intern Med 2021; 35:1589-1596. [PMID: 33704816 PMCID: PMC8163125 DOI: 10.1111/jvim.16095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Endocrinopathic laminitis develops in association with insulin dysregulation, but the role of insulin in the pathogenesis remains unclear. Hyperinsulinemia can cause hypoaminoacidemia, which is associated with integumentary lesions in other species and therefore warrants investigation as a potential mechanism in laminitis. OBJECTIVE Evaluate plasma amino acid concentrations in the euglycemic-hyperinsulinemic clamp (EHC) and prolonged glucose infusion (PGI) laminitis models. ANIMALS Sixteen Standardbred horses. METHODS Prospective experimental study. Plasma amino acid concentrations were measured in samples collected every 6 hours from horses that underwent a 48-hour EHC (n = 8) or 66-hour PGI (n = 8) after a 24- or 6-hour baseline period in EHC and PGI groups, respectively. RESULTS Fifteen of the 20 measured amino acid concentrations decreased over time in both EHC and PGI horses (P < 0.001). The median percentage change from baseline for these amino acids was: histidine (EHC: 41.5%; PGI: 43.9%), glutamine (EHC: 51.8%; PGI: 35.3%), arginine (EHC: 51.4%; PGI: 41%), glutamic acid (EHC: 52.4%; PGI: 31.7%), threonine (EHC: 62.8%; PGI: 25.2%), alanine (EHC: 48.9%; PGI: 19.5%), proline (EHC: 56.2%; PGI: 30.3%), cystine (EHC: 34.9%; PGI: 31.2%), lysine (EHC: 46.4%; PGI: 27.8%), tyrosine (EHC: 27.5%; PGI: 16.9%), methionine (EHC: 69.3%; PGI: 50.8%), valine (EHC: 50.8%; PGI: 34.4%), isoleucine (EHC: 60.8%; PGI: 38.7%), leucine (EHC: 48.2%; PGI: 36.6%), and phenylalanine (EHC: 16.6%; PGI: 12.1%). CONCLUSIONS AND CLINICAL IMPORTANCE Hypoaminoacidemia develops in EHC and PGI laminitis models. The role of hypoaminoacidemia in the development of hyperinsulinemia-associated laminitis warrants further investigation.
Collapse
Affiliation(s)
- Simon M Stokes
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Darko Stefanovski
- Department of Clinical Studies, School of Veterinary Medicine, New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - François-René Bertin
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Carlos E Medina-Torres
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - James K Belknap
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Andrew W van Eps
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia.,Department of Clinical Studies, School of Veterinary Medicine, New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| |
Collapse
|
5
|
Stokes SM, Bertin FR, Stefanovski D, Belknap JK, Medina-Torres CE, Pollitt CC, van Eps AW. Lamellar energy metabolism and perfusion in the euglycaemic hyperinsulinaemic clamp model of equine laminitis. Equine Vet J 2020; 52:577-584. [PMID: 31845378 DOI: 10.1111/evj.13224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/29/2019] [Accepted: 12/04/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Hyperinsulinaemia is associated with the development of endocrinopathic laminitis; however, the mechanisms remain unclear. OBJECTIVES Evaluate the effects of hyperinsulinaemia on lamellar energy metabolism and perfusion during laminitis development. STUDY DESIGN In vivo experiment. METHODS Eight Standardbred horses were instrumented with a microdialysis probe in the lamellae of a forelimb. A 24 hours baseline period (BASELINE) was followed by 48 hours of a continuous euglycaemic hyperinsulinaemic clamp (EHC) from 24 to 72 hours (CLAMP). Microdialysate was collected every 6 hours and analysed for glucose, lactate and pyruvate concentrations and lactate-to-pyruvate ratio (L:P). Microdialysis urea clearance was used to estimate lamellar tissue perfusion. Archived microdialysis samples from six identically instrumented Standardbred horses served as controls (CON). Variables were compared over time and between EHC and CON horses using a mixed-effects linear regression model. RESULTS Glucose concentration decreased during the CLAMP period in CON and EHC horses (P < .001), but there was no difference between CON and EHC (P > .9). Lactate concentration increased during the CLAMP period in CON and EHC horses (P < .001), however, the rate of increase was significantly higher in EHC horses relative to CON (P = .014). There was a relative increase in pyruvate concentration in EHC horses compared with CON during the CLAMP period (P = .03). L:P increased significantly in CON horses during the CLAMP period (P < .001) but not in EHC (P = .1). Urea clearance did not change in CON (P = .9) or EHC (P = .05) during the CLAMP, but did increase in EHC relative to CON (P = .02). MAIN LIMITATIONS The effects of microdialysis probe implantation on perfusion and metabolism remain unclear. The EHC model may not mimic natural endocrinopathic laminitis. CONCLUSIONS Laminitis developed without evidence of lamellar hypoperfusion or energy stress. Therapies to improve perfusion are unlikely to affect the initial development of endocrinopathic laminitis.
Collapse
Affiliation(s)
- Simon M Stokes
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia
| | - Francois R Bertin
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia
| | - Darko Stefanovski
- New Bolton Center, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania
| | - James K Belknap
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Carlos E Medina-Torres
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia
| | - Christopher C Pollitt
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia
| | - Andrew W van Eps
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia.,New Bolton Center, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania
| |
Collapse
|