1
|
Duzanic FD, Penengo L. The interferon response at the intersection of genome integrity and innate immunity. DNA Repair (Amst) 2024; 145:103786. [PMID: 39577202 DOI: 10.1016/j.dnarep.2024.103786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
In recent years, numerous reports indicated that, besides pathogen infections, DNA replication stress and defective DNA repair can trigger the innate immune response by introducing a state of viral mimicry, due to cytosolic accumulation of the self-nucleic acid species, which culminates in the activation of type I interferon (IFN) pathway. In turn, IFN upregulates a variety of factors mutually implicated in immune- and genome-related mechanisms, shedding light on the unprecedented causality between genome stability and innate immunity. Intriguingly, in addition to being induced by replication stress, IFN-regulated factors can also promote it, pinpointing IFN signaling as both a consequence and a cause of replication stress. Here, we provide an overview of the factors and molecular mechanisms implicated in the evolutionary conserved crosstalk between genome maintenance and innate immunity, highlighting the role of the IFN-stimulated gene 15 (ISG15), which appears to be at the hub of this intersection. Moreover, we discuss the potential significance and clinical implications of the immune-mediated modulation of DNA replication and repair upon pathogen infection and in human diseases such as cancer and autoinflammatory syndromes. Finally, we discuss the relevant open questions and future directions.
Collapse
Affiliation(s)
- Filip D Duzanic
- University of Zurich, Institute of Molecular Cancer Research, Zurich 8057, Switzerland
| | - Lorenza Penengo
- University of Zurich, Institute of Molecular Cancer Research, Zurich 8057, Switzerland.
| |
Collapse
|
2
|
Gnugnoli M, Rinaldi C, Casari E, Pizzul P, Bonetti D, Longhese MP. Proteasome-mediated degradation of long-range nucleases negatively regulates resection of DNA double-strand breaks. iScience 2024; 27:110373. [PMID: 39071887 PMCID: PMC11277358 DOI: 10.1016/j.isci.2024.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Homologous recombination is initiated by the nucleolytic degradation (resection) of DNA double-strand breaks (DSBs). DSB resection is a two-step process. In the short-range step, the MRX (Mre11-Rad50-Xrs2) complex, together with Sae2, incises the 5'-terminated strand at the DSB end and resects back toward the DNA end. Then, the long-range resection nucleases Exo1 and Dna2 further elongate the resected DNA tracts. We found that mutations lowering proteasome functionality bypass the need for Sae2 in DSB resection. In particular, the dysfunction of the proteasome subunit Rpn11 leads to hyper-resection and increases the levels of both Exo1 and Dna2 to such an extent that it allows the bypass of the requirement for either Exo1 or Dna2, but not for both. These observations, along with the finding that Exo1 and Dna2 are ubiquitylated, indicate a role of the proteasome in restraining DSB resection by negatively controlling the abundance of the long-range resection nucleases.
Collapse
Affiliation(s)
- Marco Gnugnoli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Carlo Rinaldi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Erika Casari
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Paolo Pizzul
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| |
Collapse
|
3
|
Wang D, Luo H, Chen Y, Ou Y, Dong M, Chen J, Liu R, Wang X, Zhang Q. 14-3-3σ downregulation sensitizes pancreatic cancer to carbon ions by suppressing the homologous recombination repair pathway. Aging (Albany NY) 2024; 16:9727-9752. [PMID: 38843383 PMCID: PMC11210243 DOI: 10.18632/aging.205896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/15/2024] [Indexed: 06/22/2024]
Abstract
This study explored the role of 14-3-3σ in carbon ion-irradiated pancreatic adenocarcinoma (PAAD) cells and xenografts and clarified the underlying mechanism. The clinical significance of 14-3-3σ in patients with PAAD was explored using publicly available databases. 14-3-3σ was silenced or overexpressed and combined with carbon ions to measure cell proliferation, cell cycle, and DNA damage repair. Immunoblotting and immunofluorescence (IF) assays were used to determine the underlying mechanisms of 14-3-3σ toward carbon ion radioresistance. We used the BALB/c mice to evaluate the biological behavior of 14-3-3σ in combination with carbon ions. Bioinformatic analysis revealed that PAAD expressed higher 14-3-3σ than normal pancreatic tissues; its overexpression was related to invasive clinicopathological features and a worse prognosis. Knockdown or overexpression of 14-3-3σ demonstrated that 14-3-3σ promoted the survival of PAAD cells after carbon ion irradiation. And 14-3-3σ was upregulated in PAAD cells during DNA damage (carbon ion irradiation, DNA damaging agent) and promotes cell recovery. We found that 14-3-3σ resulted in carbon ion radioresistance by promoting RPA2 and RAD51 accumulation in the nucleus in PAAD cells, thereby increasing homologous recombination repair (HRR) efficiency. Blocking the HR pathway consistently reduced 14-3-3σ overexpression-induced carbon ion radioresistance in PAAD cells. The enhanced radiosensitivity of 14-3-3σ depletion on carbon ion irradiation was also demonstrated in vivo. Altogether, 14-3-3σ functions in tumor progression and can be a potential target for developing biomarkers and treatment strategies for PAAD along with incorporating carbon ion irradiation.
Collapse
Affiliation(s)
- Dandan Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yanliang Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
| | - Yuhong Ou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
| | - Meng Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
| | - Junru Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Kong L, Cheng C, Cheruiyot A, Yuan J, Yang Y, Hwang S, Foust D, Tsao N, Wilkerson E, Mosammaparast N, Major MB, Piston DW, Li S, You Z. TCAF1 promotes TRPV2-mediated Ca 2+ release in response to cytosolic DNA to protect stressed replication forks. Nat Commun 2024; 15:4609. [PMID: 38816425 PMCID: PMC11139906 DOI: 10.1038/s41467-024-48988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
The protection of the replication fork structure under stress conditions is essential for genome maintenance and cancer prevention. A key signaling pathway for fork protection involves TRPV2-mediated Ca2+ release from the ER, which is triggered after the generation of cytosolic DNA and the activation of cGAS/STING. This results in CaMKK2/AMPK activation and subsequent Exo1 phosphorylation, which prevent aberrant fork processing, thereby ensuring genome stability. However, it remains poorly understood how the TRPV2 channel is activated by the presence of cytosolic DNA. Here, through a genome-wide CRISPR-based screen, we identify TRPM8 channel-associated factor 1 (TCAF1) as a key factor promoting TRPV2-mediated Ca2+ release under replication stress or other conditions that activate cGAS/STING. Mechanistically, TCAF1 assists Ca2+ release by facilitating the dissociation of STING from TRPV2, thereby relieving TRPV2 repression. Consistent with this function, TCAF1 is required for fork protection, chromosomal stability, and cell survival after replication stress.
Collapse
Affiliation(s)
- Lingzhen Kong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chen Cheng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Abigael Cheruiyot
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jiayi Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yichan Yang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sydney Hwang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Daniel Foust
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ning Tsao
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Emily Wilkerson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Shan Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease in the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310029, China.
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Campos A, Ramos F, Iglesias L, Delgado C, Merino E, Esperilla-Muñoz A, Correa-Bordes J, Clemente-Blanco A. Cdc14 phosphatase counteracts Cdk-dependent Dna2 phosphorylation to inhibit resection during recombinational DNA repair. Nat Commun 2023; 14:2738. [PMID: 37173316 PMCID: PMC10182099 DOI: 10.1038/s41467-023-38417-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Cyclin-dependent kinase (Cdk) stimulates resection of DNA double-strand breaks ends to generate single-stranded DNA (ssDNA) needed for recombinational DNA repair. Here we show in Saccharomyces cerevisiae that lack of the Cdk-counteracting phosphatase Cdc14 produces abnormally extended resected tracts at the DNA break ends, involving the phosphatase in the inhibition of resection. Over-resection in the absence of Cdc14 activity is bypassed when the exonuclease Dna2 is inactivated or when its Cdk consensus sites are mutated, indicating that the phosphatase restrains resection by acting through this nuclease. Accordingly, mitotically activated Cdc14 promotes Dna2 dephosphorylation to exclude it from the DNA lesion. Cdc14-dependent resection inhibition is essential to sustain DNA re-synthesis, thus ensuring the appropriate length, frequency, and distribution of the gene conversion tracts. These results establish a role for Cdc14 in controlling the extent of resection through Dna2 regulation and demonstrate that the accumulation of excessively long ssDNA affects the accurate repair of the broken DNA by homologous recombination.
Collapse
Affiliation(s)
- Adrián Campos
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | - Facundo Ramos
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | - Lydia Iglesias
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | - Celia Delgado
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | - Eva Merino
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | | | - Jaime Correa-Bordes
- Departamento de Ciencias Biomédicas, Universidad de Extremadura, Badajoz, Spain
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain.
| |
Collapse
|
6
|
da Silva RB, Bertoldo WDR, Naves LL, de Vito FB, Damasceno JD, Tosi LRO, Machado CR, Pedrosa AL. Specific Human ATR and ATM Inhibitors Modulate Single Strand DNA Formation in Leishmania major Exposed to Oxidative Agent. Front Cell Infect Microbiol 2022; 11:802613. [PMID: 35059327 PMCID: PMC8763966 DOI: 10.3389/fcimb.2021.802613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/03/2022] Open
Abstract
Leishmania parasites are the causative agents of a group of neglected tropical diseases known as leishmaniasis. The molecular mechanisms employed by these parasites to adapt to the adverse conditions found in their hosts are not yet completely understood. DNA repair pathways can be used by Leishmania to enable survival in the interior of macrophages, where the parasite is constantly exposed to oxygen reactive species. In higher eukaryotes, DNA repair pathways are coordinated by the central protein kinases ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR). The enzyme Exonuclease-1 (EXO1) plays important roles in DNA replication, repair, and recombination, and it can be regulated by ATM- and ATR-mediated signaling pathways. In this study, the DNA damage response pathways in promastigote forms of L. major were investigated using bioinformatics tools, exposure of lineages to oxidizing agents and radiation damage, treatment of cells with ATM and ATR inhibitors, and flow cytometry analysis. We demonstrated high structural and important residue conservation for the catalytic activity of the putative LmjEXO1. The overexpression of putative LmjEXO1 made L. major cells more susceptible to genotoxic damage, most likely due to the nuclease activity of this enzyme and the occurrence of hyper-resection of DNA strands. These cells could be rescued by the addition of caffeine or a selective ATM inhibitor. In contrast, ATR-specific inhibition made the control cells more susceptible to oxidative damage in an LmjEXO1 overexpression-like manner. We demonstrated that ATR-specific inhibition results in the formation of extended single-stranded DNA, most likely due to EXO1 nucleasic activity. Antagonistically, ATM inhibition prevented single-strand DNA formation, which could explain the survival phenotype of lineages overexpressing LmjEXO1. These results suggest that an ATM homolog in Leishmania could act to promote end resection by putative LmjEXO1, and an ATR homologue could prevent hyper-resection, ensuring adequate repair of the parasite DNA.
Collapse
Affiliation(s)
- Raíssa Bernardes da Silva
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Willian Dos Reis Bertoldo
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucila Langoni Naves
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Fernanda Bernadelli de Vito
- Departamento de Clínica Médica, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Jeziel Dener Damasceno
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Luiz Ricardo Orsini Tosi
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - André Luiz Pedrosa
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| |
Collapse
|
7
|
Yan S, Gao S, Zhou P. Multi-functions of exonuclease 1 in DNA damage response and cancer susceptibility. RADIATION MEDICINE AND PROTECTION 2021. [DOI: 10.1016/j.radmp.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
ATM controls the extent of DNA end resection by eliciting sequential posttranslational modifications of CtIP. Proc Natl Acad Sci U S A 2021; 118:2022600118. [PMID: 33723063 DOI: 10.1073/pnas.2022600118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA end resection is a critical step in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR). However, the mechanisms governing the extent of resection at DSB sites undergoing homology-directed repair remain unclear. Here, we show that, upon DSB induction, the key resection factor CtIP is modified by the ubiquitin-like protein SUMO at lysine 578 in a PIAS4-dependent manner. CtIP SUMOylation occurs on damaged chromatin and requires prior hyperphosphorylation by the ATM protein kinase. SUMO-modified hyperphosphorylated CtIP is targeted by the SUMO-dependent E3 ubiquitin ligase RNF4 for polyubiquitination and subsequent degradation. Consequently, disruption of CtIP SUMOylation results in aberrant accumulation of CtIP at DSBs, which, in turn, causes uncontrolled excessive resection, defective HR, and increased cellular sensitivity to DSB-inducing agents. These findings reveal a previously unidentified regulatory mechanism that regulates CtIP activity at DSBs and thus the extent of end resection via ATM-dependent sequential posttranslational modification of CtIP.
Collapse
|
9
|
Liu J, Zhang J. Elevated EXO1 expression is associated with breast carcinogenesis and poor prognosis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:135. [PMID: 33569437 PMCID: PMC7867906 DOI: 10.21037/atm-20-7922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Breast cancer is the most common cancer and leading cause of cancer mortality in women worldwide. Exonuclease 1 (EXO1), a protein with 5' to 3' exonuclease and RNase H activity, could be involved in mismatch repair and recombination. This study aims to investigate the prognostic value of EXO1 in breast cancer and explore the association between EXO1 expression and breast carcinogenesis. Methods The data of 1,215 breast cancer susceptibility gene (BRCA) samples were obtained from The Cancer Genome Atlas (TCGA). Real-time quantitative polymerase chain reaction (RT-qPCR) further verified the elevated mRNA expression level of EXO1 in human BRCA cells MDA-MB231 compared with that in human breast epithelial cells MCF-10A. EXO1 copy number was proved to be correlated with its expression level. Besides, Kaplan-Meier analysis, differentially expressed genes and function enrichment analysis were performed. Results Analysis of data from The Cancer Genome Atlas (TCGA) revealed that the EXO1 expression level in breast cancer tissues was significantly increased. Real-time quantitative polymerase chain reaction (RT-qPCR) supported the elevated mRNA expression level of EXO1 in human breast cancer cells MDA-MB231 compared with that in human breast epithelial cells MCF-10A. EXO1 copy number was shown to be correlated with its expression level. Kaplan-Meier analysis showed that elevated EXO1 was an indicator of poor breast cancer prognosis. Furthermore, differentially expressed genes and function enrichment analysis indicated that the cell cycle pathway and cardiac muscle contraction pathway were activated and inhibited respectively in breast cancer samples with high EXO1 expression. Conclusions Therefore, this study shows that elevated EXO1 expression is associated with carcinogenesis and poor prognosis in breast cancer, and might be a biomarker for breast cancer treatment.
Collapse
Affiliation(s)
- Jingjing Liu
- 3rd Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy of Ministry of Education, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jin Zhang
- 3rd Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy of Ministry of Education, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
10
|
Cao X, Sun Y, Lu P, Zhao M. Fluorescence imaging of intracellular nucleases-A review. Anal Chim Acta 2020; 1137:225-237. [PMID: 33153605 DOI: 10.1016/j.aca.2020.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 11/28/2022]
Abstract
Nucleases play crucial roles in maintaining genomic integrity. Visualization of intracellular distribution and translocation of nucleases are of great importance for understanding the in-vivo physiological functions of these enzymes and their roles in DNA repair and other cellular signaling pathways. Here we review the recently developed approaches for fluorescence imaging of nucleases in various eukaryotic cells. We mainly focused on the immunofluorescence techniques, the genetically encoded fluorescent probes and the chemically synthesized fluorescent DNA-substrate probes that enabled in-situ visualization of the subcellular localization of nucleases and their interactions with other protein/DNA molecules within cells. The targeted nucleases included important endonucleases, 3' exonucleases and 5' exonucleases that were involved in the DNA damage repair pathways and the intracellular DNA degradation. The advantages and limitations of the available tools were summarized and discussed.
Collapse
Affiliation(s)
- Xiangjian Cao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ying Sun
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peng Lu
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Zhao F, Kim W, Kloeber JA, Lou Z. DNA end resection and its role in DNA replication and DSB repair choice in mammalian cells. Exp Mol Med 2020; 52:1705-1714. [PMID: 33122806 PMCID: PMC8080561 DOI: 10.1038/s12276-020-00519-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/29/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
DNA end resection has a key role in double-strand break repair and DNA replication. Defective DNA end resection can cause malfunctions in DNA repair and replication, leading to greater genomic instability. DNA end resection is initiated by MRN-CtIP generating short, 3′-single-stranded DNA (ssDNA). This newly generated ssDNA is further elongated by multiple nucleases and DNA helicases, such as EXO1, DNA2, and BLM. Effective DNA end resection is essential for error-free homologous recombination DNA repair, the degradation of incorrectly replicated DNA and double-strand break repair choice. Because of its importance in DNA repair, DNA end resection is strictly regulated. Numerous mechanisms have been reported to regulate the initiation, extension, and termination of DNA end resection. Here, we review the general process of DNA end resection and its role in DNA replication and repair pathway choice. Carefully regulated enzymatic processing of the ends of DNA strands is essential for efficient replication and damage repair while also minimizing the risk of genomic instability. Replication and repair depend on a mechanism known as DNA resection, in which enzymes trim back double-stranded DNA ends to leave single-stranded overhangs. Zhenkun Lou and colleagues at the Mayo Clinic in Rochester, USA, have reviewed the various steps involved in the initiation and control of DNA resection. There are multiple different DNA repair processes, and the manner in which resection occurs can determine which of these processes subsequently takes place. The authors note that cancer cells rely heavily on these repair pathways to survive radiotherapy and chemotherapy, and highlight research opportunities that might reveal therapeutically useful vulnerabilities in the resection mechanism.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Wootae Kim
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.,Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
12
|
Umar AA, Liddell S, Hussain R, Siligardi G, Harris G, Carr S, Asiani K, Gowers DM, Odell M, Scott DJ. Allosteric inhibition of human exonuclease1 (hExo1) through a novel extended β-sheet conformation. Biochim Biophys Acta Gen Subj 2020; 1864:129730. [PMID: 32926959 DOI: 10.1016/j.bbagen.2020.129730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Human Exonuclease1 (hExo1) participates in the resection of DNA double-strand breaks by generating long 3'-single-stranded DNA overhangs, critical for homology-based DNA repair and activation of the ATR-dependent checkpoint. The C-terminal region is essential for modulating the activity of hExo1, containing numerous sites of post-translational modification and binding sites for partner proteins. METHODS Analytical Ultracentrifugation (AUC), Dynamic Light Scattering (DLS), Circular Dichroism (CD) spectroscopy and enzymatic assays. RESULTS AUC and DLS indicates the C-terminal region has a highly extended structure while CD suggest a tendency to adopt a novel left-handed β-sheet structure, together implying the C-terminus may exhibit a transient fluctuating structure that could play a role in binding partner proteins known to regulate the activity of hExo1. Interaction with 14-3-3 protein has a cooperative inhibitory effect upon DNA resection activity, which indicates an allosteric transition occurs upon binding partner proteins. CONCLUSIONS This study has uncovered that hExo1 consist of a folded N-terminal nuclease domain and a highly extended C-terminal region which is known to interact with partner proteins that regulates the activity of hExo1. A positively cooperative mechanism of binding allows for stringent control of hExo1 activity. Such a transition would coordinate the control of hExo1 by hExo1 regulators and hence allow careful coordination of the process of DNA end resection. SIGNIFICANCE The assays presented herein could be readily adapted to rapidly identify and characterise the effects of modulators of the interaction between the 14-3-3 proteins and hExo1. It is conceivable that small molecule modulators of 14-3-3 s-hExo1 interaction may serve as effective chemosensitizers for cancer therapy.
Collapse
Affiliation(s)
- Aminu Argungu Umar
- School of Biosciences, University of Nottingham Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom; Department of Biochemistry, Kebbi State University of Science and Technology, Aliero, P.M.B 1144, Birnin Kebbi, Nigeria.
| | - Susan Liddell
- School of Biosciences, University of Nottingham Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
| | - Rohanah Hussain
- Diamond Light Source, Rutherford Appleton Laboratory, Oxfordshire OX11 0DE, United Kingdom
| | - Giuliano Siligardi
- Diamond Light Source, Rutherford Appleton Laboratory, Oxfordshire OX11 0DE, United Kingdom
| | - Gemma Harris
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire OX11 0FA, United Kingdom
| | - Stephen Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire OX11 0FA, United Kingdom
| | - Karishma Asiani
- School of Biosciences, University of Nottingham Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
| | - Darren M Gowers
- School of Biological Science, King Henry Building, King Henry 1(st) Street, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Mark Odell
- Department of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, United Kingdom
| | - David J Scott
- School of Biosciences, University of Nottingham Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire OX11 0FA, United Kingdom; ISIS Spallation Neutron and Muon source, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| |
Collapse
|
13
|
Yang G, Dong K, Zhang Z, Zhang E, Liang B, Chen X, Huang Z. EXO1 Plays a Carcinogenic Role in Hepatocellular Carcinoma and is related to the regulation of FOXP3. J Cancer 2020; 11:4917-4932. [PMID: 32626539 PMCID: PMC7330697 DOI: 10.7150/jca.40673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Exonuclease 1 (EXO1), a member of the RAD2 nuclease family, was first described as possessing 5' to 3' nuclease activity and 5' structure-specific endonuclease activity. Here, we show that EXO1 is significantly upregulated in HCC tumor tissues and that high EXO1 expression is significantly correlated with liver cirrhosis. We further demonstrate that EXO1 knockdown decreases proliferation and colony forming abilities of HCC cells in vitro and tumorigenicity in vivo, as well as decreases migration and invasive capabilities of HCC cells. Alternatively, EXO1 overexpression significantly increases the proliferation, colony forming ability, and migration and invasive capabilities of HCC cells in vitro. Additionally, we truncated a region upstream of the transcription start site (TSS) of EXO1 and used the region with the strongest transcriptional activity to predict that the transcription factor FOXP3 can bind to the EXO1 promoter. Bioinformatics analysis found that FOXP3 was positively correlated with EXO1 and luciferase reporter assays and RT-PCR confirmed that FOXP3 could enhance the transcriptional activity of EXO1. CCK-8 assays showed that depletion of FOXP3 further reduces cell proliferation ability after knocking down of EXO1 in vitro. Taken together, our findings indicate that EXO1 acts as an oncogene in HCC and its expression level is related to FOXP3 activity.
Collapse
Affiliation(s)
- Guang Yang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keshuai Dong
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital, Wuhan University, Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Zunyi Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binyong Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Morafraile EC, Bugallo A, Carreira R, Fernández M, Martín-Castellanos C, Blanco MG, Segurado M. Exo1 phosphorylation inhibits exonuclease activity and prevents fork collapse in rad53 mutants independently of the 14-3-3 proteins. Nucleic Acids Res 2020; 48:3053-3070. [PMID: 32020204 PMCID: PMC7102976 DOI: 10.1093/nar/gkaa054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 01/04/2023] Open
Abstract
The S phase checkpoint is crucial to maintain genome stability under conditions that threaten DNA replication. One of its critical functions is to prevent Exo1-dependent fork degradation, and Exo1 is phosphorylated in response to different genotoxic agents. Exo1 seemed to be regulated by several post-translational modifications in the presence of replicative stress, but the specific contribution of checkpoint-dependent phosphorylation to Exo1 control and fork stability is not clear. We show here that Exo1 phosphorylation is Dun1-independent and Rad53-dependent in response to DNA damage or dNTP depletion, and in both situations Exo1 is similarly phosphorylated at multiple sites. To investigate the correlation between Exo1 phosphorylation and fork stability, we have generated phospho-mimic exo1 alleles that rescue fork collapse in rad53 mutants as efficiently as exo1-nuclease dead mutants or the absence of Exo1, arguing that Rad53-dependent phosphorylation is the mayor requirement to preserve fork stability. We have also shown that this rescue is Bmh1–2 independent, arguing that the 14-3-3 proteins are dispensable for fork stabilization, at least when Exo1 is downregulated. Importantly, our results indicated that phosphorylation specifically inhibits the 5' to 3'exo-nuclease activity, suggesting that this activity of Exo1 and not the flap-endonuclease, is the enzymatic activity responsible of the collapse of stalled replication forks in checkpoint mutants.
Collapse
Affiliation(s)
- Esther C Morafraile
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - Alberto Bugallo
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - Raquel Carreira
- Departamento de Bioquímica y Biología Molecular, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) - Instituto de Investigación Sanitaria (IDIS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Fernández
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | | | - Miguel G Blanco
- Departamento de Bioquímica y Biología Molecular, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) - Instituto de Investigación Sanitaria (IDIS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mónica Segurado
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain.,Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca 37007, Spain
| |
Collapse
|
15
|
Ca 2+-Stimulated AMPK-Dependent Phosphorylation of Exo1 Protects Stressed Replication Forks from Aberrant Resection. Mol Cell 2019; 74:1123-1137.e6. [PMID: 31053472 DOI: 10.1016/j.molcel.2019.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 12/22/2022]
Abstract
Abnormal processing of stressed replication forks by nucleases can cause fork collapse, genomic instability, and cell death. Despite its importance, it is poorly understood how the cell properly controls nucleases to prevent detrimental fork processing. Here, we report a signaling pathway that controls the activity of exonuclease Exo1 to prevent aberrant fork resection during replication stress. Our results indicate that replication stress elevates intracellular Ca2+ concentration ([Ca2+]i), leading to activation of CaMKK2 and the downstream kinase 5' AMP-activated protein kinase (AMPK). Following activation, AMPK directly phosphorylates Exo1 at serine 746 to promote 14-3-3 binding and inhibit Exo1 recruitment to stressed replication forks, thereby avoiding unscheduled fork resection. Disruption of this signaling pathway results in excessive ssDNA, chromosomal instability, and hypersensitivity to replication stress inducers. These findings reveal a link between [Ca2+]i and the replication stress response as well as a function of the Ca2+-CaMKK2-AMPK signaling axis in safeguarding fork structure to maintain genome stability.
Collapse
|
16
|
Chappidi N, De Gregorio G, Ferrari S. Replication stress-induced Exo1 phosphorylation is mediated by Rad53/Pph3 and Exo1 nuclear localization is controlled by 14-3-3 proteins. Cell Div 2019; 14:1. [PMID: 30622624 PMCID: PMC6318887 DOI: 10.1186/s13008-018-0044-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/24/2018] [Indexed: 12/22/2022] Open
Abstract
Background Mechanisms controlling DNA resection at sites of damage and affecting genome stability have been the subject of deep investigation, though their complexity is not yet fully understood. Specifically, the regulatory role of post-translational modifications in the localization, stability and function of DNA repair proteins is an important aspect of such complexity. Results Here, we took advantage of the superior resolution of phosphorylated proteins provided by Phos-Tag technology to study pathways controlling the reversible phosphorylation of yeast Exo1, an exonuclease involved in a number of DNA repair pathways. We report that Rad53, a checkpoint kinase downstream of Mec1, is responsible for Exo1 phosphorylation in response to DNA replication stress and we demonstrate a role for the type-2A protein phosphatase Pph3 in the dephosphorylation of both Rad53 and Exo1 during checkpoint recovery. Fluorescence microscopy studies showed that Rad53-dependent phosphorylation is not required for the recruitment or the release of Exo1 from the nucleus, whereas 14-3-3 proteins are necessary for Exo1 nuclear translocation. Conclusions By shedding light on the mechanism of Exo1 control, these data underscore the importance of post-translational modifications and protein interactions in the regulation of DNA end resection.
Collapse
Affiliation(s)
- Nagaraja Chappidi
- Institute of Molecular Cancer Research, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Giuseppe De Gregorio
- Institute of Molecular Cancer Research, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Stefano Ferrari
- Institute of Molecular Cancer Research, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
17
|
Human Exonuclease 1 (EXO1) Regulatory Functions in DNA Replication with Putative Roles in Cancer. Int J Mol Sci 2018; 20:ijms20010074. [PMID: 30585186 PMCID: PMC6337416 DOI: 10.3390/ijms20010074] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
Human exonuclease 1 (EXO1), a 5'→3' exonuclease, contributes to the regulation of the cell cycle checkpoints, replication fork maintenance, and post replicative DNA repair pathways. These processes are required for the resolution of stalled or blocked DNA replication that can lead to replication stress and potential collapse of the replication fork. Failure to restart the DNA replication process can result in double-strand breaks, cell-cycle arrest, cell death, or cellular transformation. In this review, we summarize the involvement of EXO1 in the replication, DNA repair pathways, cell cycle checkpoints, and the link between EXO1 and cancer.
Collapse
|
18
|
Pennington KL, Chan TY, Torres MP, Andersen JL. The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein-protein interactions. Oncogene 2018; 37:5587-5604. [PMID: 29915393 PMCID: PMC6193947 DOI: 10.1038/s41388-018-0348-3] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
14-3-3 proteins are a family of structurally similar phospho-binding proteins that regulate essentially every major cellular function. Decades of research on 14-3-3s have revealed a remarkable network of interacting proteins that demonstrate how 14-3-3s integrate and control multiple signaling pathways. In particular, these interactions place 14-3-3 at the center of the signaling hub that governs critical processes in cancer, including apoptosis, cell cycle progression, autophagy, glucose metabolism, and cell motility. Historically, the majority of 14-3-3 interactions have been identified and studied under nutrient-replete cell culture conditions, which has revealed important nutrient driven interactions. However, this underestimates the reach of 14-3-3s. Indeed, the loss of nutrients, growth factors, or changes in other environmental conditions (e.g., genotoxic stress) will not only lead to the loss of homeostatic 14-3-3 interactions, but also trigger new interactions, many of which are likely stress adaptive. This dynamic nature of the 14-3-3 interactome is beginning to come into focus as advancements in mass spectrometry are helping to probe deeper and identify context-dependent 14-3-3 interactions-providing a window into adaptive phosphorylation-driven cellular mechanisms that orchestrate the tumor cell's response to a variety of environmental conditions including hypoxia and chemotherapy. In this review, we discuss emerging 14-3-3 regulatory mechanisms with a focus on post-translational regulation of 14-3-3 and dynamic protein-protein interactions that illustrate 14-3-3's role as a stress-adaptive signaling hub in cancer.
Collapse
Affiliation(s)
- K L Pennington
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - T Y Chan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - M P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - J L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
19
|
Kochan JA, Desclos EC, Bosch R, Meister L, Vriend LE, van Attikum H, Krawczyk PM. Meta-analysis of DNA double-strand break response kinetics. Nucleic Acids Res 2017; 45:12625-12637. [PMID: 29182755 PMCID: PMC5728399 DOI: 10.1093/nar/gkx1128] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/24/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
Most proteins involved in the DNA double-strand break response (DSBR) accumulate at the damage sites, where they perform functions related to damage signaling, chromatin remodeling and repair. Over the last two decades, studying the accumulation of many DSBR proteins provided information about their functionality and underlying mechanisms of action. However, comparison and systemic interpretation of these data is challenging due to their scattered nature and differing experimental approaches. Here, we extracted, analyzed and compared the available results describing accumulation of 79 DSBR proteins at sites of DNA damage, which can be further explored using Cumulus (http://www.dna-repair.live/cumulus/)-the accompanying interactive online application. Despite large inter-study variability, our analysis revealed that the accumulation of most proteins starts immediately after damage induction, occurs in parallel and peaks within 15-20 min. Various DSBR pathways are characterized by distinct accumulation kinetics with major non-homologous end joining proteins being generally faster than those involved in homologous recombination, and signaling and chromatin remodeling factors accumulating with varying speeds. Our meta-analysis provides, for the first time, comprehensive overview of the temporal organization of the DSBR in mammalian cells and could serve as a reference for future mechanistic studies of this complex process.
Collapse
Affiliation(s)
- Jakub A. Kochan
- Department of Medical Biology and Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Emilie C.B. Desclos
- Department of Medical Biology and Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Ruben Bosch
- Department of Medical Biology and Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Luna Meister
- Department of Medical Biology and Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Lianne E.M. Vriend
- Department of Medical Biology and Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Przemek M. Krawczyk
- Department of Medical Biology and Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
20
|
Paudyal SC, Li S, Yan H, Hunter T, You Z. Dna2 initiates resection at clean DNA double-strand breaks. Nucleic Acids Res 2017; 45:11766-11781. [PMID: 28981724 PMCID: PMC5714177 DOI: 10.1093/nar/gkx830] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
Nucleolytic resection of DNA double-strand breaks (DSBs) is essential for both checkpoint activation and homology-mediated repair; however, the precise mechanism of resection, especially the initiation step, remains incompletely understood. Resection of blocked ends with protein or chemical adducts is believed to be initiated by the MRN complex in conjunction with CtIP through internal cleavage of the 5' strand DNA. However, it is not clear whether resection of clean DSBs with free ends is also initiated by the same mechanism. Using the Xenopus nuclear extract system, here we show that the Dna2 nuclease directly initiates the resection of clean DSBs by cleaving the 5' strand DNA ∼10-20 nucleotides away from the ends. In the absence of Dna2, MRN together with CtIP mediate an alternative resection initiation pathway where the nuclease activity of MRN apparently directly cleaves the 5' strand DNA at more distal sites. MRN also facilitates resection initiation by promoting the recruitment of Dna2 and CtIP to the DNA substrate. The ssDNA-binding protein RPA promotes both Dna2- and CtIP-MRN-dependent resection initiation, but a RPA mutant can distinguish between these pathways. Our results strongly suggest that resection of blocked and clean DSBs is initiated via distinct mechanisms.
Collapse
Affiliation(s)
- Sharad C. Paudyal
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Shan Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Hong Yan
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Tony Hunter
- Salk Institute, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
21
|
Tomimatsu N, Mukherjee B, Harris JL, Boffo FL, Hardebeck MC, Potts PR, Khanna KK, Burma S. DNA-damage-induced degradation of EXO1 exonuclease limits DNA end resection to ensure accurate DNA repair. J Biol Chem 2017; 292:10779-10790. [PMID: 28515316 PMCID: PMC5491765 DOI: 10.1074/jbc.m116.772475] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/11/2017] [Indexed: 12/22/2022] Open
Abstract
End resection of DNA double-strand breaks (DSBs) to generate 3'-single-stranded DNA facilitates DSB repair via error-free homologous recombination (HR) while stymieing repair by the error-prone non-homologous end joining (NHEJ) pathway. Activation of DNA end resection involves phosphorylation of the 5' to 3' exonuclease EXO1 by the phosphoinositide 3-kinase-like kinases ATM (ataxia telangiectasia-mutated) and ATR (ATM and Rad3-related) and by the cyclin-dependent kinases 1 and 2. After activation, EXO1 must also be restrained to prevent over-resection that is known to hamper optimal HR and trigger global genomic instability. However, mechanisms by which EXO1 is restrained are still unclear. Here, we report that EXO1 is rapidly degraded by the ubiquitin-proteasome system soon after DSB induction in human cells. ATR inhibition attenuated DNA-damage-induced EXO1 degradation, indicating that ATR-mediated phosphorylation of EXO1 targets it for degradation. In accord with these results, EXO1 became resistant to degradation when its SQ motifs required for ATR-mediated phosphorylation were mutated. We show that upon the induction of DNA damage, EXO1 is ubiquitinated by a member of the Skp1-Cullin1-F-box (SCF) family of ubiquitin ligases in a phosphorylation-dependent manner. Importantly, expression of degradation-resistant EXO1 resulted in hyper-resection, which attenuated both NHEJ and HR and severely compromised DSB repair resulting in chromosomal instability. These findings indicate that the coupling of EXO1 activation with its eventual degradation is a timing mechanism that limits the extent of DNA end resection for accurate DNA repair.
Collapse
Affiliation(s)
- Nozomi Tomimatsu
- From the Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Bipasha Mukherjee
- From the Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Janelle Louise Harris
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Francesca Ludovica Boffo
- Department of Molecular Medicine and Medical Biotechnology, Università Federico II, Napoli 80131, Italy, and
| | - Molly Catherine Hardebeck
- From the Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Sandeep Burma
- From the Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390,
| |
Collapse
|
22
|
Keijzers G, Liu D, Rasmussen LJ. Exonuclease 1 and its versatile roles in DNA repair. Crit Rev Biochem Mol Biol 2016; 51:440-451. [PMID: 27494243 DOI: 10.1080/10409238.2016.1215407] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Exonuclease 1 (EXO1) is a multifunctional 5' → 3' exonuclease and a DNA structure-specific DNA endonuclease. EXO1 plays roles in DNA replication, DNA mismatch repair (MMR) and DNA double-stranded break repair (DSBR) in lower and higher eukaryotes and contributes to meiosis, immunoglobulin maturation, and micro-mediated end-joining in higher eukaryotes. In human cells, EXO1 is also thought to play a role in telomere maintenance. Mutations in the human EXO1 gene correlate with increased susceptibility to some cancers. This review summarizes recent studies on the enzymatic functions and biological roles of EXO1, its possible protective role against cancer and aging, and regulation of EXO1 by posttranslational modification.
Collapse
Affiliation(s)
- Guido Keijzers
- a Department of Cellular and Molecular Medicine , Center for Healthy Aging, University of Copenhagen , Copenhagen , Denmark
| | - Dekang Liu
- a Department of Cellular and Molecular Medicine , Center for Healthy Aging, University of Copenhagen , Copenhagen , Denmark
| | - Lene Juel Rasmussen
- a Department of Cellular and Molecular Medicine , Center for Healthy Aging, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
23
|
Paudyal SC, You Z. Sharpening the ends for repair: mechanisms and regulation of DNA resection. Acta Biochim Biophys Sin (Shanghai) 2016; 48:647-57. [PMID: 27174871 DOI: 10.1093/abbs/gmw043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022] Open
Abstract
DNA end resection is a key process in the cellular response to DNA double-strand break damage that is essential for genome maintenance and cell survival. Resection involves selective processing of 5' ends of broken DNA to generate ssDNA overhangs, which in turn control both DNA repair and checkpoint signaling. DNA resection is the first step in homologous recombination-mediated repair and a prerequisite for the activation of the ataxia telangiectasia mutated and Rad3-related (ATR)-dependent checkpoint that coordinates repair with cell cycle progression and other cellular processes. Resection occurs in a cell cycle-dependent manner and is regulated by multiple factors to ensure an optimal amount of ssDNA required for proper repair and genome stability. Here, we review the latest findings on the molecular mechanisms and regulation of the DNA end resection process and their implications for cancer formation and treatment.
Collapse
Affiliation(s)
- Sharad C Paudyal
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
24
|
Cheruiyot A, Paudyal SC, Kim IK, Sparks M, Ellenberger T, Piwnica-Worms H, You Z. Poly(ADP-ribose)-binding promotes Exo1 damage recruitment and suppresses its nuclease activities. DNA Repair (Amst) 2015; 35:106-15. [PMID: 26519824 DOI: 10.1016/j.dnarep.2015.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/19/2022]
Abstract
Exonuclease 1 (Exo1) has important roles in DNA metabolic transactions that are essential for genome maintenance, telomere regulation and cancer suppression. However, the mechanisms for regulating Exo1 activity in these processes remain incompletely understood. Here, we report that Exo1 activity is regulated by a direct interaction with poly(ADP-ribose) (PAR), a prominent posttranslational modification at the sites of DNA damage. This PAR-binding activity promotes the early recruitment of Exo1 to sites of DNA damage, where it is retained through an interaction with PCNA, which interacts with the C-terminus of Exo1. The effects of both PAR and PCNA on Exo1 damage association are antagonized by the 14-3-3 adaptor proteins, which interact with the central domain of Exo1. Although PAR binding inhibits both the exonuclease activity and the 5' flap endonuclease activity of purified Exo1, the pharmacological blockade of PAR synthesis does not overtly affect DNA double-strand break end resection in a cell free Xenopus egg extract. Thus, the counteracting effects of PAR on Exo1 recruitment and enzymatic activity may enable appropriate resection of DNA ends while preventing unscheduled or improper processing of DNA breaks in cells.
Collapse
Affiliation(s)
- Abigael Cheruiyot
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Sharad C Paudyal
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - In-Kwon Kim
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Melanie Sparks
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Tom Ellenberger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Helen Piwnica-Worms
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77230, United States
| | - Zhongsheng You
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|