1
|
Shin SM, Itson-Zoske B, Fan F, Xiao Y, Qiu C, Cummins TR, Hogan QH, Yu H. Peripherally targeted analgesia via AAV-mediated sensory neuron-specific inhibition of multiple pronociceptive sodium channels. J Clin Invest 2024; 134:e170813. [PMID: 38722683 PMCID: PMC11213509 DOI: 10.1172/jci170813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/07/2024] [Indexed: 06/30/2024] Open
Abstract
This study reports that targeting intrinsically disordered regions of the voltage-gated sodium channel 1.7 (NaV1.7) protein facilitates discovery of sodium channel inhibitory peptide aptamers (NaViPA) for adeno-associated virus-mediated (AAV-mediated), sensory neuron-specific analgesia. A multipronged inhibition of INa1.7, INa1.6, INa1.3, and INa1.1 - but not INa1.5 and INa1.8 - was found for a prototype and named NaViPA1, which was derived from the NaV1.7 intracellular loop 1, and is conserved among the TTXs NaV subtypes. NaViPA1 expression in primary sensory neurons (PSNs) of dorsal root ganglia (DRG) produced significant inhibition of TTXs INa but not TTXr INa. DRG injection of AAV6-encoded NaViPA1 significantly attenuated evoked and spontaneous pain behaviors in both male and female rats with neuropathic pain induced by tibial nerve injury (TNI). Whole-cell current clamp of the PSNs showed that NaViPA1 expression normalized PSN excitability in TNI rats, suggesting that NaViPA1 attenuated pain by reversal of injury-induced neuronal hypersensitivity. IHC revealed efficient NaViPA1 expression restricted in PSNs and their central and peripheral terminals, indicating PSN-restricted AAV biodistribution. Inhibition of sodium channels by NaViPA1 was replicated in the human iPSC-derived sensory neurons. These results summate that NaViPA1 is a promising analgesic lead that, combined with AAV-mediated PSN-specific block of multiple TTXs NaVs, has potential as a peripheral nerve-restricted analgesic therapeutic.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Fan Fan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yucheng Xiao
- Department of Biology, School of Science, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Chensheng Qiu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Theodore R. Cummins
- Department of Biology, School of Science, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Kuo CWS, Dobi S, Gök C, Da Silva Costa A, Main A, Robertson-Gray O, Baptista-Hon D, Wypijewski KJ, Costello H, Hales TG, MacQuaide N, Smith GL, Fuller W. Palmitoylation of the pore-forming subunit of Ca(v)1.2 controls channel voltage sensitivity and calcium transients in cardiac myocytes. Proc Natl Acad Sci U S A 2023; 120:e2207887120. [PMID: 36745790 PMCID: PMC9963536 DOI: 10.1073/pnas.2207887120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/07/2022] [Indexed: 02/08/2023] Open
Abstract
Mammalian voltage-activated L-type Ca2+ channels, such as Ca(v)1.2, control transmembrane Ca2+ fluxes in numerous excitable tissues. Here, we report that the pore-forming α1C subunit of Ca(v)1.2 is reversibly palmitoylated in rat, rabbit, and human ventricular myocytes. We map the palmitoylation sites to two regions of the channel: The N terminus and the linker between domains I and II. Whole-cell voltage clamping revealed a rightward shift of the Ca(v)1.2 current-voltage relationship when α1C was not palmitoylated. To examine function, we expressed dihydropyridine-resistant α1C in human induced pluripotent stem cell-derived cardiomyocytes and measured Ca2+ transients in the presence of nifedipine to block the endogenous channels. The transients generated by unpalmitoylatable channels displayed a similar activation time course but significantly reduced amplitude compared to those generated by wild-type channels. We thus conclude that palmitoylation controls the voltage sensitivity of Ca(v)1.2. Given that the identified Ca(v)1.2 palmitoylation sites are also conserved in most Ca(v)1 isoforms, we propose that palmitoylation of the pore-forming α1C subunit provides a means to regulate the voltage sensitivity of voltage-activated Ca2+ channels in excitable cells.
Collapse
Affiliation(s)
- Chien-Wen S. Kuo
- School of Cardiovascular and Metabolic Health, University of Glasgow, GlasgowG12 8QQ, UK
| | - Sara Dobi
- School of Cardiovascular and Metabolic Health, University of Glasgow, GlasgowG12 8QQ, UK
| | - Caglar Gök
- School of Cardiovascular and Metabolic Health, University of Glasgow, GlasgowG12 8QQ, UK
| | - Ana Da Silva Costa
- School of Cardiovascular and Metabolic Health, University of Glasgow, GlasgowG12 8QQ, UK
| | - Alice Main
- School of Cardiovascular and Metabolic Health, University of Glasgow, GlasgowG12 8QQ, UK
| | - Olivia Robertson-Gray
- School of Cardiovascular and Metabolic Health, University of Glasgow, GlasgowG12 8QQ, UK
| | - Daniel Baptista-Hon
- Division of Systems Medicine, Institute of Academic Anaesthesia, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078China
| | | | - Hannah Costello
- Division of Systems Medicine, Institute of Academic Anaesthesia, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Tim G. Hales
- Division of Systems Medicine, Institute of Academic Anaesthesia, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Niall MacQuaide
- School of Cardiovascular and Metabolic Health, University of Glasgow, GlasgowG12 8QQ, UK
| | - Godfrey L. Smith
- School of Cardiovascular and Metabolic Health, University of Glasgow, GlasgowG12 8QQ, UK
| | - William Fuller
- School of Cardiovascular and Metabolic Health, University of Glasgow, GlasgowG12 8QQ, UK
| |
Collapse
|
3
|
Ortner NJ. CACNA1D-Related Channelopathies: From Hypertension to Autism. Handb Exp Pharmacol 2023. [PMID: 36592224 DOI: 10.1007/164_2022_626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tightly controlled Ca2+ influx through voltage-gated Ca2+ channels (Cavs) is indispensable for proper physiological function. Thus, it is not surprising that Cav loss and/or gain of function have been implicated in human pathology. Deficiency of Cav1.3 L-type Ca2+ channels (LTCCs) causes deafness and bradycardia, whereas several genetic variants of CACNA1D, the gene encoding the pore-forming α1 subunit of Cav1.3, have been linked to various disease phenotypes, such as hypertension, congenital hypoglycemia, or autism. These variants include not only common polymorphisms associated with an increased disease risk, but also rare de novo missense variants conferring high risk. This review provides a concise summary of disease-associated CACNA1D variants, whereas the main focus lies on de novo germline variants found in individuals with a neurodevelopmental disorder of variable severity. Electrophysiological recordings revealed activity-enhancing gating changes induced by these de novo variants, and tools to predict their pathogenicity and to study the resulting pathophysiological consequences will be discussed. Despite the low number of affected patients, potential phenotype-genotype correlations and factors that could impact the severity of symptoms will be covered. Since increased channel activity is assumed as the disease-underlying mechanism, pharmacological inhibition could be a treatment option. In the absence of Cav1.3-selective blockers, dihydropyridine LTCC inhibitors clinically approved for the treatment of hypertension may be used for personalized off-label trials. Findings from in vitro studies and treatment attempts in some of the patients seem promising as outlined. Taken together, due to advances in diagnostic sequencing techniques the number of reported CACNA1D variants in human diseases is constantly rising. Evidence from in silico, in vitro, and in vivo disease models can help to predict the pathogenic potential of such variants and to guide diagnosis and treatment in the clinical practice when confronted with patients harboring CACNA1D variants.
Collapse
Affiliation(s)
- Nadine J Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Davies A, Tomas A. Appreciating the potential for GPCR crosstalk with ion channels. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 195:101-120. [PMID: 36707150 DOI: 10.1016/bs.pmbts.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
G protein-coupled receptors (GPCRs) are expressed by most tissues in the body and are exploited pharmacologically in a variety of pathological conditions including diabetes, cardiovascular disease, neurological diseases, and cancers. Numerous cell signaling pathways can be regulated by GPCR activation, depending on the specific GPCR, ligand and cell type. Ion channels are among the many effector proteins downstream of these signaling pathways. Saliently, ion channels are also recognized as druggable targets, and there is evidence that their activity may regulate GPCR function via membrane potential and cytoplasmic ion concentration. Overall, there appears to be a large potential for crosstalk between ion channels and GPCRs. This might have implications not only for targeting GPCRs for drug development, but also opens the possibility of co-targeting them with ion channels to achieve improved therapeutic outcomes. In this review, we highlight the large variety of possible GPCR-ion channel crosstalk modes.
Collapse
Affiliation(s)
- Amy Davies
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
5
|
Park CG, Yu W, Suh BC. Molecular basis of the PIP2-dependent regulation of CaV2.2 channel and its modulation by CaV β subunits. eLife 2022; 11:69500. [DOI: 10.7554/elife.69500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
High-voltage-activated Ca2+ (CaV) channels that adjust Ca2+ influx upon membrane depolarization are differentially regulated by phosphatidylinositol 4,5-bisphosphate (PIP2) in an auxiliary CaV β subunit-dependent manner. However, the molecular mechanism by which the β subunits control the PIP2 sensitivity of CaV channels remains unclear. By engineering various α1B and β constructs in tsA-201 cells, we reported that at least two PIP2-binding sites, including the polybasic residues at the C-terminal end of I–II loop and the binding pocket in S4II domain, exist in the CaV2.2 channels. Moreover, they were distinctly engaged in the regulation of channel gating depending on the coupled CaV β2 subunits. The membrane-anchored β subunit abolished the PIP2 interaction of the phospholipid-binding site in the I–II loop, leading to lower PIP2 sensitivity of CaV2.2 channels. By contrast, PIP2 interacted with the basic residues in the S4II domain of CaV2.2 channels regardless of β2 isotype. Our data demonstrated that the anchoring properties of CaV β2 subunits to the plasma membrane determine the biophysical states of CaV2.2 channels by regulating PIP2 coupling to the nonspecific phospholipid-binding site in the I–II loop.
Collapse
Affiliation(s)
- Cheon-Gyu Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)
| | - Wookyung Yu
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)
| | - Byung-Chang Suh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)
| |
Collapse
|
6
|
Falginella FL, Kravec M, Drabinová M, Paclíková P, Bryja V, Vácha R. Binding of DEP domain to phospholipid membranes: More than just electrostatics. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183983. [PMID: 35750206 DOI: 10.1016/j.bbamem.2022.183983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Over the past decades an extensive effort has been made to provide a more comprehensive understanding of Wnt signaling, yet many regulatory and structural aspects remain elusive. Among these, the ability of Dishevelled (DVL) protein to relocalize at the plasma membrane is a crucial step in the activation of all Wnt pathways. The membrane binding of DVL was suggested to be mediated by the preferential interaction of its C-terminal DEP domain with phosphatidic acid (PA). However, due to the scarcity and fast turnover of PA, we investigated the role on the membrane association of other more abundant phospholipids. The combined results from computational simulations and experimental measurements with various model phospholipid membranes, demonstrate that the membrane binding of DEP/DVL constructs is governed by the concerted action of generic electrostatics and finely-tuned intermolecular interactions with individual lipid species. In particular, while we confirmed the strong preference for PA lipid, we also observed a weak but non-negligible affinity for phosphatidylserine, the most abundant anionic phospholipid in the plasma membrane, and phosphatidylinositol 4,5-bisphosphate. The obtained molecular insight into DEP-membrane interaction helps to elucidate the relation between changes in the local membrane composition and the spatiotemporal localization of DVL and, possibly, other DEP-containing proteins.
Collapse
Affiliation(s)
- Francesco L Falginella
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marek Kravec
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Martina Drabinová
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petra Paclíková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Vítĕzslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic; Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno 612 65, Czech Republic
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
7
|
Hofer NT, Pinggera A, Nikonishyna YV, Tuluc P, Fritz EM, Obermair GJ, Striessnig J. Stabilization of negative activation voltages of Cav1.3 L-Type Ca 2+-channels by alternative splicing. Channels (Austin) 2021; 15:38-52. [PMID: 33380256 PMCID: PMC7781618 DOI: 10.1080/19336950.2020.1859260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022] Open
Abstract
-->Low voltage-activated Cav1.3 L-type Ca2+-channels are key regulators of neuronal excitability controlling neuronal development and different types of learning and memory. Their physiological functions are enabled by their negative activation voltage-range, which allows Cav1.3 to be active at subthreshold voltages. Alternative splicing in the C-terminus of their pore-forming α1-subunits gives rise to C-terminal long (Cav1.3L) and short (Cav1.3S) splice variants allowing Cav1.3S to activate at even more negative voltages than Cav1.3L. We discovered that inclusion of exons 8b, 11, and 32 in Cav1.3S further shifts activation (-3 to -4 mV) and inactivation (-4 to -6 mV) to more negative voltages as revealed by functional characterization in tsA-201 cells. We found transcripts of these exons in mouse chromaffin cells, the cochlea, and the brain. Our data further suggest that Cav1.3-containing exons 11 and 32 constitute a significant part of native channels in the brain. We therefore investigated the effect of these splice variants on human disease variants. Splicing did not prevent the gating defects of the previously reported human pathogenic variant S652L, which further shifted the voltage-dependence of activation of exon 11-containing channels by more than -12 mV. In contrast, we found no evidence for gating changes of the CACNA1D missense variant R498L, located in exon 11, which has recently been identified in a patient with an epileptic syndrome. Our data demonstrate that alternative splicing outside the C-terminus involving exons 11 and 32 contributes to channel fine-tuning by stabilizing negative activation and inactivation gating properties of wild-type and mutant Cav1.3 channels.
Collapse
Affiliation(s)
- Nadja T. Hofer
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| | - Alexandra Pinggera
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Yuliia V. Nikonishyna
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| | - Eva M. Fritz
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| | - Gerald J. Obermair
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
- Division Physiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| |
Collapse
|
8
|
Klipp RC, Cullinan MM, Bankston JR. Insights into the molecular mechanisms underlying the inhibition of acid-sensing ion channel 3 gating by stomatin. J Gen Physiol 2021; 152:133684. [PMID: 32012213 PMCID: PMC7054857 DOI: 10.1085/jgp.201912471] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/07/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022] Open
Abstract
Stomatin (STOM) is a monotopic integral membrane protein found in all classes of life that has been shown to regulate members of the acid-sensing ion channel (ASIC) family. However, the mechanism by which STOM alters ASIC function is not known. Using chimeric channels, we combined patch-clamp electrophysiology and FRET to search for regions of ASIC3 critical for binding to and regulation by STOM. With this approach, we found that regulation requires two distinct sites on ASIC3: the distal C-terminus and the first transmembrane domain (TM1). The C-terminal site is critical for formation of the STOM–ASIC3 complex, while TM1 is required only for the regulatory effect. We then looked at the mechanism of STOM-dependent regulation of ASIC3 and found that STOM does not alter surface expression of ASIC3 or shift the pH dependence of channel activation. However, a point mutation (Q269G) that prevents channel desensitization also prevents STOM regulation, suggesting that STOM may alter ASIC3 currents by stabilizing the desensitized state of the channel. Based on these findings, we propose a model whereby STOM is anchored to the channel via a site on the distal C-terminus and stabilizes the desensitized state of the channel via an interaction with TM1.
Collapse
Affiliation(s)
| | - Megan M Cullinan
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO
| |
Collapse
|
9
|
Arazi E, Blecher G, Zilberberg N. A regulatory domain in the K 2P2.1 (TREK-1) carboxyl-terminal allows for channel activation by monoterpenes. Mol Cell Neurosci 2020; 105:103496. [PMID: 32320829 DOI: 10.1016/j.mcn.2020.103496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 11/30/2022] Open
Abstract
Potassium K2P ('leak') channels conduct current across the entire physiological voltage range and carry leak or 'background' currents that are, in part, time- and voltage-independent. K2P2.1 channels (i.e., TREK-1, KCNK2) are highly expressed in excitable tissues, where they play a key role in the cellular mechanisms of neuroprotection, anesthesia, pain perception, and depression. Here, we report for the first time that human K2P2.1 channel activity is regulated by monoterpenes (MTs). We found that cyclic, aromatic monoterpenes containing a phenol moiety, such as carvacrol, thymol and 4-IPP had the most profound effect on current flowing through the channel (up to a 6-fold increase). By performing sequential truncation of the carboxyl-terminal domain of the channel and testing the activity of several channel regulators, we identified two distinct regulatory domains within this portion of the protein. One domain, as previously reported, was needed for regulation by arachidonic acid, anionic phospholipids, and temperature changes. Within a second domain, a triple arginine residue motif (R344-346), an apparent PIP2-binding site, was found to be essential for regulation by holding potential changes and important for regulation by monoterpenes.
Collapse
Affiliation(s)
- Eden Arazi
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel
| | - Galit Blecher
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel
| | - Noam Zilberberg
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel.
| |
Collapse
|
10
|
Clark MB, Wrzesinski T, Garcia AB, Hall NAL, Kleinman JE, Hyde T, Weinberger DR, Harrison PJ, Haerty W, Tunbridge EM. Long-read sequencing reveals the complex splicing profile of the psychiatric risk gene CACNA1C in human brain. Mol Psychiatry 2020; 25:37-47. [PMID: 31695164 PMCID: PMC6906184 DOI: 10.1038/s41380-019-0583-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/02/2019] [Accepted: 10/25/2019] [Indexed: 01/22/2023]
Abstract
RNA splicing is a key mechanism linking genetic variation with psychiatric disorders. Splicing profiles are particularly diverse in brain and difficult to accurately identify and quantify. We developed a new approach to address this challenge, combining long-range PCR and nanopore sequencing with a novel bioinformatics pipeline. We identify the full-length coding transcripts of CACNA1C in human brain. CACNA1C is a psychiatric risk gene that encodes the voltage-gated calcium channel CaV1.2. We show that CACNA1C's transcript profile is substantially more complex than appreciated, identifying 38 novel exons and 241 novel transcripts. Importantly, many of the novel variants are abundant, and predicted to encode channels with altered function. The splicing profile varies between brain regions, especially in cerebellum. We demonstrate that human transcript diversity (and thereby protein isoform diversity) remains under-characterised, and provide a feasible and cost-effective methodology to address this. A detailed understanding of isoform diversity will be essential for the translation of psychiatric genomic findings into pathophysiological insights and novel psychopharmacological targets.
Collapse
Affiliation(s)
- Michael B. Clark
- 0000 0004 1936 8948grid.4991.5Department of Psychiatry, University of Oxford, Oxford, UK ,0000 0001 2179 088Xgrid.1008.9Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC Australia
| | | | - Aintzane B. Garcia
- 0000 0004 1936 8948grid.4991.5Department of Psychiatry, University of Oxford, Oxford, UK
| | - Nicola A. L. Hall
- 0000 0004 1936 8948grid.4991.5Department of Psychiatry, University of Oxford, Oxford, UK
| | - Joel E. Kleinman
- grid.429552.dThe Lieber Institute for Brain Development, Baltimore, MD USA
| | - Thomas Hyde
- grid.429552.dThe Lieber Institute for Brain Development, Baltimore, MD USA
| | | | - Paul J. Harrison
- 0000 0004 1936 8948grid.4991.5Department of Psychiatry, University of Oxford, Oxford, UK ,0000 0004 0573 576Xgrid.451190.8Oxford Health NHS Foundation Trust, Oxford, UK
| | | | - Elizabeth M. Tunbridge
- 0000 0004 1936 8948grid.4991.5Department of Psychiatry, University of Oxford, Oxford, UK ,0000 0004 0573 576Xgrid.451190.8Oxford Health NHS Foundation Trust, Oxford, UK
| |
Collapse
|
11
|
Liu L, Bonventre JV, Rittenhouse AR. cPLA2α-/- sympathetic neurons exhibit increased membrane excitability and loss of N-Type Ca2+ current inhibition by M1 muscarinic receptor signaling. PLoS One 2018; 13:e0201322. [PMID: 30557348 PMCID: PMC6296557 DOI: 10.1371/journal.pone.0201322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022] Open
Abstract
Group IVa cytosolic phospholipase A2 (cPLA2α) mediates GPCR-stimulated arachidonic acid (AA) release from phosphatidylinositol 4,5-bisphosphate (PIP2) located in plasma membranes. We previously found in superior cervical ganglion (SCG) neurons that PLA2 activity is required for voltage-independent N-type Ca2+ (N-) current inhibition by M1 muscarinic receptors (M1Rs). These findings are at odds with an alternative model, previously observed for M-current inhibition, where PIP2 dissociation from channels and subsequent metabolism by phospholipase C suffices for current inhibition. To resolve cPLA2α’s importance, we have investigated its role in mediating voltage-independent N-current inhibition (~40%) that follows application of the muscarinic agonist oxotremorine-M (Oxo-M). Preincubation with different cPLA2α antagonists or dialyzing cPLA2α antibodies into cells minimized N-current inhibition by Oxo-M, whereas antibodies to Ca2+-independent PLA2 had no effect. Taking a genetic approach, we found that SCG neurons from cPLA2α-/- mice exhibited little N-current inhibition by Oxo-M, confirming a role for cPLA2α. In contrast, cPLA2α antibodies or the absence of cPLA2α had no effect on voltage-dependent N-current inhibition by M2/M4Rs or on M-current inhibition by M1Rs. These findings document divergent M1R signaling mediating M-current and voltage-independent N-current inhibition. Moreover, these differences suggest that cPLA2α acts locally to metabolize PIP2 intimately associated with N- but not M-channels. To determine cPLA2α’s functional importance more globally, we examined action potential firing of cPLA2α+/+ and cPLA2α-/- SCG neurons, and found decreased latency to first firing and interspike interval resulting in a doubling of firing frequency in cPLA2α-/- neurons. These unanticipated findings identify cPLA2α as a tonic regulator of neuronal membrane excitability.
Collapse
Affiliation(s)
- Liwang Liu
- Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Joseph V. Bonventre
- Harvard Institute of Medicine, Harvard Medical School & Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Ann R. Rittenhouse
- Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
|
13
|
Polster A, Nelson BR, Papadopoulos S, Olson EN, Beam KG. Stac proteins associate with the critical domain for excitation-contraction coupling in the II-III loop of Ca V1.1. J Gen Physiol 2018; 150:613-624. [PMID: 29467163 PMCID: PMC5881444 DOI: 10.1085/jgp.201711917] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/05/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
In skeletal muscle, residues 720-764/5 within the CaV1.1 II-III loop form a critical domain that plays an essential role in transmitting the excitation-contraction (EC) coupling Ca2+ release signal to the type 1 ryanodine receptor (RyR1) in the sarcoplasmic reticulum. However, the identities of proteins that interact with the loop and its critical domain and the mechanism by which the II-III loop regulates RyR1 gating remain unknown. Recent work has shown that EC coupling in skeletal muscle of fish and mice depends on the presence of Stac3, an adaptor protein that is highly expressed only in skeletal muscle. Here, by using colocalization as an indicator of molecular interactions, we show that Stac3, as well as Stac1 and Stac2 (predominantly neuronal Stac isoforms), interact with the II-III loop of CaV1.1. Further, we find that these Stac proteins promote the functional expression of CaV1.1 in tsA201 cells and support EC coupling in Stac3-null myotubes and that Stac3 is the most effective. Coexpression in tsA201 cells reveals that Stac3 interacts only with II-III loop constructs containing the majority of the CaV1.1 critical domain residues. By coexpressing Stac3 in dysgenic (CaV1.1-null) myotubes together with CaV1 constructs whose chimeric II-III loops had previously been tested for functionality, we reveal that the ability of Stac3 to interact with them parallels the ability of these constructs to mediate skeletal type EC coupling. Based on coexpression in tsA201 cells, the interaction of Stac3 with the II-III loop critical domain does not require the presence of the PKC C1 domain in Stac3, but it does require the first of the two SH3 domains. Collectively, our results indicate that activation of RyR1 Ca2+ release by CaV1.1 depends on Stac3 being bound to critical domain residues in the II-III loop.
Collapse
Affiliation(s)
- Alexander Polster
- Department of Physiology and Biophysics, University of Colorado Denver, Aurora, CO
| | - Benjamin R Nelson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Symeon Papadopoulos
- Institute of Vegetative Physiology, University Hospital of Cologne, Cologne, Germany
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Kurt G Beam
- Department of Physiology and Biophysics, University of Colorado Denver, Aurora, CO
| |
Collapse
|
14
|
Neumaier F, Alpdogan S, Hescheler J, Schneider T. Protein phosphorylation maintains the normal function of cloned human Ca v2.3 channels. J Gen Physiol 2018; 150:491-510. [PMID: 29453293 PMCID: PMC5839719 DOI: 10.1085/jgp.201711880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/22/2017] [Accepted: 01/24/2018] [Indexed: 11/30/2022] Open
Abstract
Cav2.3 Ca2+ channels are subject to cytosolic regulation, which has been difficult to characterize in native cells. Neumaier et al. demonstrate the role of phosphorylation in the function of these channels and suggest a close relationship between voltage dependence and the phosphorylation state. R-type currents mediated by native and recombinant Cav2.3 voltage-gated Ca2+ channels (VGCCs) exhibit facilitation (run-up) and subsequent decline (run-down) in whole-cell patch-clamp recordings. A better understanding of the two processes could provide insight into constitutive modulation of the channels in intact cells, but low expression levels and the need for pharmacological isolation have prevented investigations in native systems. Here, to circumvent these limitations, we use conventional and perforated-patch-clamp recordings in a recombinant expression system, which allows us to study the effects of cell dialysis in a reproducible manner. We show that the decline of currents carried by human Cav2.3+β3 channel subunits during run-down is related to adenosine triphosphate (ATP) depletion, which reduces the number of functional channels and leads to a progressive shift of voltage-dependent gating to more negative potentials. Both effects can be counteracted by hydrolysable ATP, whose protective action is almost completely prevented by inhibition of serine/threonine but not tyrosine or lipid kinases. Protein kinase inhibition also mimics the effects of run-down in intact cells, reduces the peak current density, and hyperpolarizes the voltage dependence of gating. Together, our findings indicate that ATP promotes phosphorylation of either the channel or an associated protein, whereas dephosphorylation during cell dialysis results in run-down. These data also distinguish the effects of ATP on Cav2.3 channels from those on other VGCCs because neither direct nucleotide binding nor PIP2 synthesis is required for protection from run-down. We conclude that protein phosphorylation is required for Cav2.3 channel function and could directly influence the normal features of current carried by these channels. Curiously, some of our findings also point to a role for leupeptin-sensitive proteases in run-up and possibly ATP protection from run-down. As such, the present study provides a reliable baseline for further studies on Cav2.3 channel regulation by protein kinases, phosphatases, and possibly proteases.
Collapse
Affiliation(s)
- Felix Neumaier
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Serdar Alpdogan
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Trafficking of neuronal calcium channels. Neuronal Signal 2017; 1:NS20160003. [PMID: 32714572 PMCID: PMC7373241 DOI: 10.1042/ns20160003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 01/20/2017] [Accepted: 01/19/2017] [Indexed: 12/18/2022] Open
Abstract
Neuronal voltage-gated calcium channels (VGCCs) serve complex yet essential physiological functions via their pivotal role in translating electrical signals into intracellular calcium elevations and associated downstream signalling pathways. There are a number of regulatory mechanisms to ensure a dynamic control of the number of channels embedded in the plasma membrane, whereas alteration of the surface expression of VGCCs has been linked to various disease conditions. Here, we provide an overview of the mechanisms that control the trafficking of VGCCs to and from the plasma membrane, and discuss their implication in pathophysiological conditions and their potential as therapeutic targets.
Collapse
|
16
|
Park CG, Park Y, Suh BC. The HOOK region of voltage-gated Ca2+ channel β subunits senses and transmits PIP2 signals to the gate. J Gen Physiol 2017; 149:261-276. [PMID: 28087621 PMCID: PMC5299622 DOI: 10.1085/jgp.201611677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/12/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022] Open
Abstract
The β subunit of voltage-gated Ca2+ (CaV) channels plays an important role in regulating gating of the α1 pore-forming subunit and its regulation by phosphatidylinositol 4,5-bisphosphate (PIP2). Subcellular localization of the CaV β subunit is critical for this effect; N-terminal-dependent membrane targeting of the β subunit slows inactivation and decreases PIP2 sensitivity. Here, we provide evidence that the HOOK region of the β subunit plays an important role in the regulation of CaV biophysics. Based on amino acid composition, we broadly divide the HOOK region into three domains: S (polyserine), A (polyacidic), and B (polybasic). We show that a β subunit containing only its A domain in the HOOK region increases inactivation kinetics and channel inhibition by PIP2 depletion, whereas a β subunit with only a B domain decreases these responses. When both the A and B domains are deleted, or when the entire HOOK region is deleted, the responses are elevated. Using a peptide-to-liposome binding assay and confocal microscopy, we find that the B domain of the HOOK region directly interacts with anionic phospholipids via polybasic and two hydrophobic Phe residues. The β2c-short subunit, which lacks an A domain and contains fewer basic amino acids and no Phe residues in the B domain, neither associates with phospholipids nor affects channel gating dynamically. Together, our data suggest that the flexible HOOK region of the β subunit acts as an important regulator of CaV channel gating via dynamic electrostatic and hydrophobic interaction with the plasma membrane.
Collapse
Affiliation(s)
- Cheon-Gyu Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Yongsoo Park
- Izmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylul University, 35340 Balcova, Izmir, Turkey
| | - Byung-Chang Suh
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| |
Collapse
|
17
|
Page KM, Rothwell SW, Dolphin AC. The CaVβ Subunit Protects the I-II Loop of the Voltage-gated Calcium Channel CaV2.2 from Proteasomal Degradation but Not Oligoubiquitination. J Biol Chem 2016; 291:20402-16. [PMID: 27489103 PMCID: PMC5034038 DOI: 10.1074/jbc.m116.737270] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 11/06/2022] Open
Abstract
CaVβ subunits interact with the voltage-gated calcium channel CaV2.2 on a site in the intracellular loop between domains I and II (the I-II loop). This interaction influences the biophysical properties of the channel and leads to an increase in its trafficking to the plasma membrane. We have shown previously that a mutant CaV2.2 channel that is unable to bind CaVβ subunits (CaV2.2 W391A) was rapidly degraded (Waithe, D., Ferron, L., Page, K. M., Chaggar, K., and Dolphin, A. C. (2011) J. Biol. Chem. 286, 9598-9611). Here we show that, in the absence of CaVβ subunits, a construct consisting of the I-II loop of CaV2.2 was directly ubiquitinated and degraded by the proteasome system. Ubiquitination could be prevented by mutation of all 12 lysine residues in the I-II loop to arginines. Including a palmitoylation motif at the N terminus of CaV2.2 I-II loop was insufficient to target it to the plasma membrane in the absence of CaVβ subunits even when proteasomal degradation was inhibited with MG132 or ubiquitination was prevented by the lysine-to-arginine mutations. In the presence of CaVβ subunit, the palmitoylated CaV2.2 I-II loop was protected from degradation, although oligoubiquitination could still occur, and was efficiently trafficked to the plasma membrane. We propose that targeting to the plasma membrane requires a conformational change in the I-II loop that is induced by binding of the CaVβ subunit.
Collapse
Affiliation(s)
- Karen M Page
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, United Kingdom
| | - Simon W Rothwell
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, United Kingdom
| | - Annette C Dolphin
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, United Kingdom
| |
Collapse
|
18
|
Pinggera A, Striessnig J. Ca v 1.3 (CACNA1D) L-type Ca 2+ channel dysfunction in CNS disorders. J Physiol 2016; 594:5839-5849. [PMID: 26842699 PMCID: PMC4823145 DOI: 10.1113/jp270672] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/28/2015] [Indexed: 11/30/2022] Open
Abstract
Cav1.3 belongs to the family of voltage‐gated L‐type Ca2+ channels and is encoded by the CACNA1D gene. Cav1.3 channels are not only essential for cardiac pacemaking, hearing and hormone secretion but are also expressed postsynaptically in neurons, where they shape neuronal firing and plasticity. Recent findings provide evidence that human mutations in the CACNA1D gene can confer risk for the development of neuropsychiatric disease and perhaps also epilepsy. Loss of Cav1.3 function, as shown in knock‐out mouse models and by human mutations, does not result in neuropsychiatric or neurological disease symptoms, whereas their acute selective pharmacological activation results in a depressive‐like behaviour in mice. Therefore it is likely that CACNA1D mutations enhancing activity may be disease relevant also in humans. Indeed, whole exome sequencing studies, originally prompted to identify mutations in primary aldosteronism, revealed de novo CACNA1D missense mutations permitting enhanced Ca2+ signalling through Cav1.3. Remarkably, apart from primary aldosteronism, heterozygous carriers of these mutations also showed seizures and neurological abnormalities. Different missense mutations with very similar gain‐of‐function properties were recently reported in patients with autism spectrum disorders (ASD). These data strongly suggest that CACNA1D mutations enhancing Cav1.3 activity confer a strong risk for – or even cause – CNS disorders, such as ASD.
![]()
Collapse
Affiliation(s)
- Alexandra Pinggera
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| |
Collapse
|
19
|
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol Rev 2015; 67:821-70. [PMID: 26362469 PMCID: PMC4630564 DOI: 10.1124/pr.114.009654] [Citation(s) in RCA: 762] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Joerg Striessnig
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Alexandra Koschak
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Annette C Dolphin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| |
Collapse
|
20
|
Phosphoinositides in Ca(2+) signaling and excitation-contraction coupling in skeletal muscle: an old player and newcomers. J Muscle Res Cell Motil 2015; 36:491-9. [PMID: 26377756 DOI: 10.1007/s10974-015-9422-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
Since the postulate, 30 years ago, that phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P 2) as the precursor of inositol 1,4,5-trisphosphate (Ins(1,4,5)P 3) would be critical for skeletal muscle excitation-contraction (EC) coupling, the issue of whether phosphoinositides (PtdInsPs) may have something to do with Ca(2+) signaling in muscle raised limited interest, if any. In recent years however, the PtdInsP world has expanded considerably with new functions for PtdIns(4,5)P 2 but also with functions for the other members of the PtdInsP family. In this context, the discovery that genetic deficiency in a PtdInsP phosphatase has dramatic consequences on Ca(2+) homeostasis in skeletal muscle came unanticipated and opened up new perspectives in regards to how PtdInsPs modulate muscle Ca(2+) signaling under normal and disease conditions. This review intends to make an update of the established, the questioned, and the unknown regarding the role of PtdInsPs in skeletal muscle Ca(2+) homeostasis and EC coupling, with very specific emphasis given to Ca(2+) signals in differentiated skeletal muscle fibers.
Collapse
|