1
|
Chen GE, Hunter CN. Engineering Chlorophyll, Bacteriochlorophyll, and Carotenoid Biosynthetic Pathways in Escherichia coli. ACS Synth Biol 2023; 12:2236-2244. [PMID: 37531642 PMCID: PMC10443036 DOI: 10.1021/acssynbio.3c00237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 08/04/2023]
Abstract
The biosynthesis of chlorophylls (Chls) and bacteriochlorophylls (BChls) represents a key aspect of photosynthesis research. Our previous work assembled the complete pathway for the synthesis of Chl a in Escherichia coli; here we engineer the more complex BChl a pathway in the same heterotrophic host. Coexpression of 18 genes enabled E. coli to produce BChl a, verifying that we have identified the minimum set of genes for the BChl a biosynthesis pathway. The protochlorophyllide reduction step was mediated by the bchNBL genes, and this same module was used to modify the Chl a pathway previously constructed in E. coli, eliminating the need for the light-dependent protochlorophyllide reductase. Furthermore, we demonstrate the feasibility of synthesizing more than one family of photosynthetic pigments in one host by engineering E. coli strains that accumulate the carotenoids neurosporene and β-carotene in addition to BChl a.
Collapse
Affiliation(s)
- Guangyu E. Chen
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - C. Neil Hunter
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
2
|
Hirose M, Tsukatani Y, Harada J, Tamiaki H. In vitro reversible dehydration in C3-substituents of zinc chlorophyll analogs by BchF and BchV enzymes: Stereoselectivity and substrate specificity in the dehydration. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148959. [PMID: 36822492 DOI: 10.1016/j.bbabio.2023.148959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
In the biosynthetic pathway of bacteriochlorophyll(BChl)-a/b/c/d/e molecules, BchF and BchV enzymes catalyze the hydration of a C3-vinyl to C3-1-hydroxyethyl group. In this study, the in vitro reactions catalyzed by BchF and BchV partially afforded a C31-epimeric mixture of the hydrated products (secondary alcohols), with the primary recovery of the C3-vinylated substrate. The stereoselectivity and substrate specificity for the in vitro reverse enzymatic dehydration were examined using zinc chlorophyll analogs as model substrates by BchF and BchV, which were obtained from extracts of Escherichia coli overexpressing the respective genes from Chlorobaculum tepidum and used without further purification. Both BchF and BchV preferred dehydration of the (31R)-epimers over the (31S)-epimers. The (31R)-epimer was directly dehydrated by BchF and BchV to give the C3-vinylated product. By contrast, two reaction pathways for BchF and BchV dehydrations of the (31S)-epimer were proposed: (1) the (31S)-epimer would be directly dehydrated to C3-vinyl group. (2) the (31S)-epimer would be epimerized to the (31R)-epimer, and the resulting epimer was dehydrated. The results indicated that both BchF and BchV did function as a hydratase/dehydratase and could play a role in the C31-epimerization. An increase in the alkyl size at the C8-position gradually suppressed the BchF and BchV-catalyzed dehydration in vitro, while the C121- and C20-methylation only slightly affected the reaction. Using the BchF dehydration, a large amount of 3-vinyl-bacteriochlorophyllide-a was successfully prepared, with the retention of the chemically labile, central magnesium atom.
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yusuke Tsukatani
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237-0061, Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
3
|
Kim J, Kim C, Kim S, Ihee H, Shin W, Kim EJ, Lee JK. The Photoactive Photosynthetic Reaction Center of a Rhodobacter sphaeroides Mutant Lacking 3-Vinyl (Bacterio)Chlorophyllide a Hydratase Contains 3-Vinyl Bacteriochlorophyll a. Microbiol Spectr 2023; 11:e0387822. [PMID: 36971575 PMCID: PMC10101016 DOI: 10.1128/spectrum.03878-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Rhodobacter sphaeroides mutant BF-lacking 3-vinyl (bacterio)chlorophyllide a hydratase (BchF)-accumulates chlorophyllide a (Chlide a) and 3-vinyl bacteriochlorophyllide a (3V-Bchlide a). BF synthesizes 3-vinyl bacteriochlorophyll a (3V-Bchl a) through prenylation of 3V-Bchlide a and assembles a novel reaction center (V-RC) using 3V-Bchl a and Mg-free 3-vinyl bacteriopheophytin a (3V-Bpheo a) at a molar ratio of 2:1. We aimed to verify whether a bchF-deleted R. sphaeroides mutant produces a photochemically active RC that facilitates photoheterotrophic growth. The mutant grew photoheterotrophically-implying a functional V-RC-as confirmed by the emergence of growth-competent suppressors of bchC-deleted mutant (BC) under irradiation. Suppressor mutations in BC were localized to bchF, which diminished BchF activity and caused 3V-Bchlide a accumulation. bchF expression carrying the suppressor mutations in trans resulted in the coproduction of V-RC and wild-type RC (WT-RC) in BF. The V-RC had a time constant (τ) for electron transfer from the primary electron donor P (a dimer of 3V-Bchl a) to the A-side containing 3V-Bpheo a (HA) similar to that of the WT-RC and a 60% higher τ for electron transfer from HA to quinone A (QA). Thus, the electron transfer from HA to QA in the V-RC should be slower than that in the WT-RC. Furthermore, the midpoint redox potential of P/P+ of the V-RC was 33 mV more positive than that of the WT-RC. R. sphaeroides, thus, synthesizes the V-RC when 3V-Bchlide a accumulates. The V-RC can support photoheterotrophic growth; however, its photochemical activity is inferior to that of the WT-RC. IMPORTANCE 3V-Bchlide a is an intermediate in the bacteriochlorophyll a (Bchl a)-specific biosynthetic branch and prenylated by bacteriochlorophyll synthase. R. sphaeroides synthesizes V-RC that absorbs light at short wavelengths. The V-RC was not previously discovered because 3V-Bchlide a does not accumulate during the growth of WT cells synthesizing Bchl a. The levels of reactive oxygen species increased with the onset of photoheterotrophic growth in BF, resulting in a long lag period. Although the inhibitor of BchF is unknown, the V-RC may act as a substitute for the WT-RC when BchF is completely inhibited. Alternatively, it may act synergistically with WT-RC at low levels of BchF activity. The V-RC may broaden the absorption spectra of R. sphaeroides and supplement its photosynthetic ability at various wavelengths of visible light to a greater extent than that by the WT-RC alone.
Collapse
Affiliation(s)
- June Kim
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Changwon Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science, Daejeon, Republic of Korea
| | - Siin Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science, Daejeon, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science, Daejeon, Republic of Korea
| | - Woonsup Shin
- Department of Chemistry, Sogang University, Seoul, Republic of Korea
| | - Eui-Jin Kim
- Microbial Research Department, Nakdonggang National Institute of Biological Resources, Gyeongsangbuk-do, Republic of Korea
| | - Jeong K. Lee
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Abstract
Modified tetrapyrroles are large macrocyclic compounds, consisting of diverse conjugation and metal chelation systems and imparting an array of colors to the biological structures that contain them. Tetrapyrroles represent some of the most complex small molecules synthesized by cells and are involved in many essential processes that are fundamental to life on Earth, including photosynthesis, respiration, and catalysis. These molecules are all derived from a common template through a series of enzyme-mediated transformations that alter the oxidation state of the macrocycle and also modify its size, its side-chain composition, and the nature of the centrally chelated metal ion. The different modified tetrapyrroles include chlorophylls, hemes, siroheme, corrins (including vitamin B12), coenzyme F430, heme d1, and bilins. After nearly a century of study, almost all of the more than 90 different enzymes that synthesize this family of compounds are now known, and expression of reconstructed operons in heterologous hosts has confirmed that most pathways are complete. Aside from the highly diverse nature of the chemical reactions catalyzed, an interesting aspect of comparative biochemistry is to see how different enzymes and even entire pathways have evolved to perform alternative chemical reactions to produce the same end products in the presence and absence of oxygen. Although there is still much to learn, our current understanding of tetrapyrrole biogenesis represents a remarkable biochemical milestone that is summarized in this review.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| |
Collapse
|
5
|
Teramura M, Tsukatani Y, Harada J, Hirose M, Tamiaki H. Stereoselective C3‐substituent modification and substrate channeling by oxidoreductase BchC in bacteriochlorophyll
a
biosynthesis. FEBS Lett 2019; 593:799-809. [DOI: 10.1002/1873-3468.13372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Misato Teramura
- Graduate School of Life Sciences Ritsumeikan University Kusatsu Japan
| | - Yusuke Tsukatani
- Research and Development Center for Marine Biosciences Japan Agency for Marine‐Earth Science and Technology (JAMSTEC) Yokosuka Japan
| | - Jiro Harada
- Department of Medical Biochemistry Kurume University School of Medicine Japan
| | - Mitsuaki Hirose
- Graduate School of Life Sciences Ritsumeikan University Kusatsu Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences Ritsumeikan University Kusatsu Japan
| |
Collapse
|
6
|
Teramura M, Tamiaki H. Semi-synthesis and HPLC analysis of (bacterio)chlorophyllides possessing a propionic acid residue at the C17-position. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500347] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Various chlorophyll and bacteriochlorophyll derivatives possessing a magnesium or zinc atom at the central position and a free carboxylic acid group at the C17[Formula: see text]-position, also known as (bacterio)chlorophyllides, were synthesized through a combination of organic synthesis techniques and enzymatic steps. The semi-synthetic (bacterio)chlorophyllides were purified and analyzed using reversed-phase high-performance liquid chromatography with UV-vis spectroscopy and mass spectrometry. These free propionic acid-containing chlorophyllous pigments can be useful research materials for the study of (bacterio)chlorophyll metabolisms.
Collapse
Affiliation(s)
- Misato Teramura
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
7
|
Teramura M, Harada J, Tamiaki H. In vitro stereospecific hydration activities of the 3-vinyl group of chlorophyll derivatives by BchF and BchV enzymes involved in bacteriochlorophyll c biosynthesis of green sulfur bacteria. PHOTOSYNTHESIS RESEARCH 2016; 130:33-45. [PMID: 26816140 DOI: 10.1007/s11120-016-0220-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
The photosynthetic green sulfur bacterium Chlorobaculum (Cba.) tepidum produces bacteriochlorophyll (BChl) c pigments bearing a chiral 1-hydroxyethyl group at the 3-position, which self-aggregate to construct main light-harvesting antenna complexes, chlorosomes. The secondary alcoholic hydroxy group is requisite for chlorosomal aggregation and biosynthesized by hydrating the 3-vinyl group of their precursors. Using recombinant proteins of Cba. tepidum BchF and BchV, we examined in vitro enzymatic hydration of some 3-vinyl-chlorophyll derivatives. Both the enzymes catalyzed stereoselective hydration of zinc 3-vinyl-8-ethyl-12-methyl-bacteriopheophorbide c or d to the zinc 31 R-bacteriopheophorbide c or d homolog, respectively, with a slight amount of the 31 S-epimric species. A similar R-stereoselectivity was observed in the BchF-hydration of zinc 3-vinyl-8-ethyl- and propyl-12-ethyl-bacteriopheophorbides c, while their BchV-hydration gave a relatively larger amount of the 31 S-epimers. The in vitro stereoselective hydration confirmed the in vivo production of the S-epimeric species by BchV. The enzymatic hydration for the above 8-propylated substrate proceeded more slowly than that for the 8-ethylated, and the 8-isobutylated substrate was no longer hydrated. Based on these results, biosynthetic pathways of BChl c homologs and epimers are proposed.
Collapse
Affiliation(s)
- Misato Teramura
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
8
|
Tamiaki H, Kimura Y, Watanabe H, Miyatake T. Synthesis of methyl pyropheophorbide-d derivatives possessing the 3-acyl groups and their electronic absorption spectra. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.04.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Tamiaki H, Teramura M, Tsukatani Y. Reduction Processes in Biosynthesis of Chlorophyll Molecules: Chemical Implication of Enzymatically Regio- and Stereoselective Hydrogenations in the Late Stages of Their Biosynthetic Pathway. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20150307] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | | | - Yusuke Tsukatani
- Graduate School of Life Sciences, Ritsumeikan University
- Earth-Life Science Institute, Tokyo Institute of Technology
- PRESTO, Japan Science and Technology Agency
| |
Collapse
|