1
|
Qi L, Sun C, Sun S, Li A, Hu Q, Liu Y, Zhang Y. Phosphatidylinositol (3,5)-bisphosphate machinery regulates neurite thickness through neuron-specific endosomal protein NSG1/NEEP21. J Biol Chem 2022; 299:102775. [PMID: 36493904 PMCID: PMC9823133 DOI: 10.1016/j.jbc.2022.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/31/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylinositol (3,5)-bisphosphate [PtdIns(3,5)P2] is a critical signaling phospholipid involved in endolysosome homeostasis. It is synthesized by a protein complex composed of PIKfyve, Vac14, and Fig4. Defects in PtdIns(3,5)P2 synthesis underlie a number of human neurological disorders, including Charcot-Marie-Tooth disease, child onset progressive dystonia, and others. However, neuron-specific functions of PtdIns(3,5)P2 remain less understood. Here, we show that PtdIns(3,5)P2 pathway is required to maintain neurite thickness. Suppression of PIKfyve activities using either pharmacological inhibitors or RNA silencing resulted in decreased neurite thickness. We further find that the regulation of neurite thickness by PtdIns(3,5)P2 is mediated by NSG1/NEEP21, a neuron-specific endosomal protein. Knockdown of NSG1 expression also led to thinner neurites. mCherry-tagged NSG1 colocalized and interacted with proteins in the PtdIns(3,5)P2 machinery. Perturbation of PtdIns(3,5)P2 dynamics by overexpressing Fig4 or a PtdIns(3,5)P2-binding domain resulted in mislocalization of NSG1 to nonendosomal locations, and suppressing PtdIns(3,5)P2 synthesis resulted in an accumulation of NSG1 in EEA1-positive early endosomes. Importantly, overexpression of NSG1 rescued neurite thinning in PtdIns(3,5)P2-deficient CAD neurons and primary cortical neurons. Our study uncovered the role of PtdIns(3,5)P2 in the morphogenesis of neurons, which revealed a novel aspect of the pathogenesis of PtdIns(3,5)P2-related neuropathies. We also identified NSG1 as an important downstream protein of PtdIns(3,5)P2, which may provide a novel therapeutic target in neurological diseases.
Collapse
Affiliation(s)
- Lijuan Qi
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China,National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chen Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Shenqing Sun
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Aiqing Li
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Qiuming Hu
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Yanling Zhang
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China,For correspondence: Yanling Zhang
| |
Collapse
|
2
|
Posada IJ, Domínguez-González C. CMT4J, parkinsonism and a new FIG4 mutation. Parkinsonism Relat Disord 2020; 81:82-83. [PMID: 33096303 DOI: 10.1016/j.parkreldis.2020.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Ignacio J Posada
- Movement Disorders Unit, Department of Neurology, University Hospital "12 de Octubre", Complutense University of Madrid, Madrid, Spain.
| | - Cristina Domínguez-González
- Neuromuscular Unit, Department of Neurology. University Hospital "12 de Octubre", Research Institute imas12, Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain.
| |
Collapse
|
3
|
Lees JA, Li P, Kumar N, Weisman LS, Reinisch KM. Insights into Lysosomal PI(3,5)P 2 Homeostasis from a Structural-Biochemical Analysis of the PIKfyve Lipid Kinase Complex. Mol Cell 2020; 80:736-743.e4. [PMID: 33098764 DOI: 10.1016/j.molcel.2020.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/11/2020] [Accepted: 10/01/2020] [Indexed: 11/30/2022]
Abstract
The phosphoinositide PI(3,5)P2, generated exclusively by the PIKfyve lipid kinase complex, is key for lysosomal biology. Here, we explore how PI(3,5)P2 levels within cells are regulated. We find the PIKfyve complex comprises five copies of the scaffolding protein Vac14 and one copy each of the lipid kinase PIKfyve, generating PI(3,5)P2 from PI3P and the lipid phosphatase Fig4, reversing the reaction. Fig4 is active as a lipid phosphatase in the ternary complex, whereas PIKfyve within the complex cannot access membrane-incorporated phosphoinositides due to steric constraints. We find further that the phosphoinositide-directed activities of both PIKfyve and Fig4 are regulated by protein-directed activities within the complex. PIKfyve autophosphorylation represses its lipid kinase activity and stimulates Fig4 lipid phosphatase activity. Further, Fig4 is also a protein phosphatase acting on PIKfyve to stimulate its lipid kinase activity, explaining why catalytically active Fig4 is required for maximal PI(3,5)P2 production by PIKfyve in vivo.
Collapse
Affiliation(s)
- Joshua A Lees
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - PeiQi Li
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Nikit Kumar
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Lois S Weisman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karin M Reinisch
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
4
|
Abstract
We assessed the incidence of mechanical injury in drug users. Incidence was 21.9% and exceeds the global average injury rate by 2.4 times Mortality from mechanical injury among drug users ranges from 4.46% to 5%. This value is 4.46-5%, which is 64-71 times higher than the average mortality rates from injury and 89-100 times higher than trauma mortality rate in Russia. Psychoactive drugs from the groups of neurostimulators and neurodepressors have a significant impact on the course of traumatic brain injury; hallucinogens only increase the risk of traumatic injury. In cases of mild traumatic brain injury and concussion combined with drug intoxication, the action of the psychoactive drug is the leading link of pathogenesis. In cases of moderate to severe traumatic brain injury combined with drug intoxication, craniocerebral trauma determines the outcome.
Collapse
Affiliation(s)
- O B Dolgova
- Department of Pathological Anatomy and Forensic Medicine of the Ural State Medical University, Ekaterinburg, Russia
| | - I A Grekhov
- Department of Pathological Anatomy and Forensic Medicine of the Ural State Medical University, Ekaterinburg, Russia
| |
Collapse
|
5
|
Severe Consequences of SAC3/FIG4 Phosphatase Deficiency to Phosphoinositides in Patients with Charcot-Marie-Tooth Disease Type-4J. Mol Neurobiol 2019; 56:8656-8667. [PMID: 31313076 DOI: 10.1007/s12035-019-01693-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/01/2019] [Indexed: 01/26/2023]
Abstract
Charcot-Marie-Tooth disease type-4J (CMT4J), an autosomal recessively inherited peripheral neuropathy characterized by neuronal degeneration, segmental demyelination, and limb muscle weakness, is caused by compound heterozygous mutations in the SAC3/FIG4 gene, resulting in SAC3/FIG4 protein deficiency. SAC3/FIG4 is a phosphatase that not only turns over PtdIns(3,5)P2 to PtdIns3P but also promotes PtdIns(3,5)P2 synthesis by activating the PIKFYVE kinase that also makes PtdIns5P. Whether CMT4J patients have alterations in PtdIns(3,5)P2, PtdIns5P or in other phosphoinositides (PIs), and if yes, in what direction these changes might be, has never been examined. We performed PI profiling in primary fibroblasts from a cohort of CMT4J patients. Subsequent to myo-[2-3H]inositol cell labeling to equilibrium, steady-state levels of PIs were quantified by HPLC under conditions concurrently detecting PtdIns5P, PtdIns(3,5)P2, and the other PIs. Immunoblotting verified SAC3/FIG4 depletion in CMT4J fibroblasts. Compared to normal human controls (n = 9), both PtdIns(3,5)P2 and PtdIns5P levels were significantly decreased in CMT4J fibroblasts (n = 13) by 36.4 ± 3.6% and 43.1 ± 4.4%, respectively (p < 0.0001). These reductions were independent of patients' gender or disease onset. Although mean values for PtdIns3P in the CMT4J cohort remained unchanged, there were high variations in PtdIns3P among individual patients. Aberrant endolysosomal vacuoles, typically seen under PtdIns(3,5)P2 reduction, were apparent but not in fibroblasts from all patients. The subset of patients without aberrant vacuoles exhibited especially low PtdIns3P levels. Concomitant decreases in PtdIns5P and PtdIns(3,5)P2 and the link between PtdIns3P levels and cellular vacuolization are novel insights shedding further light into the molecular determinants in CMT4J polyneuropathy.
Collapse
|
6
|
Qiu S, Leung A, Bo Y, Kozak RA, Anand SP, Warkentin C, Salambanga FDR, Cui J, Kobinger G, Kobasa D, Côté M. Ebola virus requires phosphatidylinositol (3,5) bisphosphate production for efficient viral entry. Virology 2017; 513:17-28. [PMID: 29031163 DOI: 10.1016/j.virol.2017.09.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 12/11/2022]
Abstract
For entry, Ebola virus (EBOV) requires the interaction of its viral glycoprotein with the cellular protein Niemann-Pick C1 (NPC1) which resides in late endosomes and lysosomes. How EBOV is trafficked and delivered to NPC1 and whether this is positively regulated during entry remain unclear. Here, we show that the PIKfyve-ArPIKfyve-Sac3 cellular complex, which is involved in the metabolism of phosphatidylinositol (3,5) bisphosphate (PtdIns(3,5)P2), is critical for EBOV infection. Although the expression of all subunits of the complex was required for efficient entry, PIKfyve kinase activity was specifically critical for entry by all pathogenic filoviruses. Inhibition of PIKfyve prevented colocalization of EBOV with NPC1 and led to virus accumulation in intracellular vesicles with characteristics of early endosomes. Importantly, genetically-encoded phosphoinositide probes revealed an increase in PtdIns(3,5)P2-positive vesicles in cells during EBOV entry. Taken together, our studies suggest that EBOV requires PtdIns(3,5)P2 production in cells to promote efficient delivery to NPC1.
Collapse
Affiliation(s)
- Shirley Qiu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Anders Leung
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Robert A Kozak
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Sai Priya Anand
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Corina Warkentin
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Fabiola D R Salambanga
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Jennifer Cui
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Gary Kobinger
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
7
|
Morioka S, Nigorikawa K, Hazeki K, Ohmura M, Sakamoto H, Matsumura T, Takasuga S, Hazeki O. Phosphoinositide phosphatase Sac3 regulates the cell surface expression of scavenger receptor A and formation of lipid droplets in macrophages. Exp Cell Res 2017; 357:252-259. [DOI: 10.1016/j.yexcr.2017.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/12/2017] [Accepted: 05/23/2017] [Indexed: 11/25/2022]
|