1
|
Xia Y, Sun G, Xiao J, He X, Jiang H, Zhang Z, Zhang Q, Li K, Zhang S, Shi X, Wang Z, Liu L, Zhao Y, Yang Y, Duan K, Ye W, Wang Y, Dong S, Wang Y, Ma Z, Wang Y. AlphaFold-guided redesign of a plant pectin methylesterase inhibitor for broad-spectrum disease resistance. MOLECULAR PLANT 2024; 17:1344-1368. [PMID: 39030909 DOI: 10.1016/j.molp.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024]
Abstract
Plant cell walls are a critical site where plants and pathogens continuously struggle for physiological dominance. Here we show that dynamic remodeling of pectin methylesterification of plant cell walls is a component of the physiological and co-evolutionary struggles between hosts and pathogens. A pectin methylesterase (PsPME1) secreted by Phytophthora sojae decreases the degree of pectin methylesterification, thus synergizing with an endo-polygalacturonase (PsPG1) to weaken plant cell walls. To counter PsPME1-mediated susceptibility, a plant-derived pectin methylesterase inhibitor protein, GmPMI1, protects pectin to maintain a high methylesterification status. GmPMI1 protects plant cell walls from enzymatic degradation by inhibiting both soybean and P. sojae pectin methylesterases during infection. However, constitutive expression of GmPMI1 disrupted the trade-off between host growth and defense responses. We therefore used AlphaFold structure tools to design a modified form of GmPMI1 (GmPMI1R) that specifically targets and inhibits pectin methylesterases secreted from pathogens but not from plants. Transient expression of GmPMI1R enhanced plant resistance to oomycete and fungal pathogens. In summary, our work highlights the biochemical modification of the cell wall as an important focal point in the physiological and co-evolutionary conflict between hosts and microbes, providing an important proof of concept that AI-driven structure-based tools can accelerate the development of new strategies for plant protection.
Collapse
Affiliation(s)
- Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guangzheng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Junhua Xiao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xinyi He
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Haibin Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kainan Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sicong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuechao Shi
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhaoyun Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Lin Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yao Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuheng Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kaixuan Duan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yiming Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
2
|
Hocq L, Habrylo O, Sénéchal F, Voxeur A, Pau-Roblot C, Safran J, Fournet F, Bassard S, Battu V, Demailly H, Tovar JC, Pilard S, Marcelo P, Savary BJ, Mercadante D, Njo MF, Beeckman T, Boudaoud A, Gutierrez L, Pelloux J, Lefebvre V. Mutation of AtPME2, a pH-Dependent Pectin Methylesterase, Affects Cell Wall Structure and Hypocotyl Elongation. PLANT & CELL PHYSIOLOGY 2024; 65:301-318. [PMID: 38190549 DOI: 10.1093/pcp/pcad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Pectin methylesterases (PMEs) modify homogalacturonan's chemistry and play a key role in regulating primary cell wall mechanical properties. Here, we report on Arabidopsis AtPME2, which we found to be highly expressed during lateral root emergence and dark-grown hypocotyl elongation. We showed that dark-grown hypocotyl elongation was reduced in knock-out mutant lines as compared to the control. The latter was related to the decreased total PME activity as well as increased stiffness of the cell wall in the apical part of the hypocotyl. To relate phenotypic analyses to the biochemical specificity of the enzyme, we produced the mature active enzyme using heterologous expression in Pichia pastoris and characterized it through the use of a generic plant PME antiserum. AtPME2 is more active at neutral compared to acidic pH, on pectins with a degree of 55-70% methylesterification. We further showed that the mode of action of AtPME2 can vary according to pH, from high processivity (at pH8) to low processivity (at pH5), and relate these observations to the differences in electrostatic potential of the protein. Our study brings insights into how the pH-dependent regulation by PME activity could affect the pectin structure and associated cell wall mechanical properties.
Collapse
Affiliation(s)
- Ludivine Hocq
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Olivier Habrylo
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Fabien Sénéchal
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Aline Voxeur
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Corinne Pau-Roblot
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Josip Safran
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Françoise Fournet
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Solène Bassard
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Virginie Battu
- Plant Reproduction and Development Laboratory, ENS de Lyon UMR 5667, BP 7000, Lyon cedex 07 69342, France
| | - Hervé Demailly
- Molecular Biology Platform (CRRBM), University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - José C Tovar
- Arkansas Biosciences Institute, Arkansas State University, PO Box 600, Jonesboro, AR 72467, USA
| | - Serge Pilard
- Analytical Platform (PFA), University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Paulo Marcelo
- Cellular imaging and protein analysis platform (ICAP), University of Picardie, Avenue Laënnec,CHU Sud, CURS, Amiens cedex 1 80054, France
| | - Brett J Savary
- Arkansas Biosciences Institute, Arkansas State University, PO Box 600, Jonesboro, AR 72467, USA
| | - Davide Mercadante
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Maria Fransiska Njo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Arezki Boudaoud
- Hydrodynamics Laboratory, Ecole Polytechnique, Route de Saclay, Palaiseau 91128, France
| | - Laurent Gutierrez
- Molecular Biology Platform (CRRBM), University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Jérôme Pelloux
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Valérie Lefebvre
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| |
Collapse
|
3
|
Rocha VDD, Dal'Sasso TCDS, Dal-Bianco M, Oliveira LOD. Genome-wide survey and evolutionary history of the pectin methylesterase (PME) gene family in the Dothideomycetes class of fungi. Fungal Genet Biol 2023; 169:103841. [PMID: 37797717 DOI: 10.1016/j.fgb.2023.103841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/06/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
Once deposited in the plant cell wall, pectin undergoes demethylesterification by endogenous pectin methylesterases (PMEs), which play various roles in growth and development, including defense against pathogen attacks. Pathogen PMEs can alter pectin's methylesterification pattern, increasing its susceptibility to degradation by other fungal pectinases and thus playing a critical role as virulence factors during early infection stages. To investigate the evolutionary history of PMEs in the Dothideomycetes class of fungi, we obtained genomic data from 15 orders (79 species) and added genomic data from 61 isolates of Corynespora cassiicola. Our analyses involved maximum likelihood phylogenies, gene genealogies, and selection analyses. Additionally, we measured PME gene expression levels of C. cassiicola using soybean as a host through RT-qPCR assays. We recovered 145 putative effector PMEs and 57 putative non-effector PMEs from across the Dothideomycetes. The PME gene family exhibits a small size (up to 5 members per genome) and comprises three major clades. The evolutionary patterns of the PME1 and PME2 clades were largely shaped by duplications and recurring gene retention events, while biased gene loss characterized the small-sized PME3 clade. The presence of five members in the PME gene family of C. cassiicola suggests that the family may play a key role in the evolutionary success of C. cassiicola as a polyphagous plant pathogen. The haplogroups Cc_PME1.1 and Cc_PME1.2 exhibited an accelerated rate of evolution, whereas Cc_PME2.1, Cc_PME2.2, and Cc_PME2.3 seem to be under strong purifying selective constraints. All five PME genes were expressed during infection of soybean leaves, with the highest levels during from six to eight days post-inoculation. The highest relative expression level was measured for CC_29_g7533, a member of the Cc_PME2.3 clade, while the remaining four genes had relatively lower levels of expression.
Collapse
Affiliation(s)
| | | | - Maximiller Dal-Bianco
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Luiz Orlando de Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil.
| |
Collapse
|
4
|
Carbone V, Reilly K, Sang C, Schofield LR, Ronimus RS, Kelly WJ, Attwood GT, Palevich N. Crystal Structures of Bacterial Pectin Methylesterases Pme8A and PmeC2 from Rumen Butyrivibrio. Int J Mol Sci 2023; 24:13738. [PMID: 37762041 PMCID: PMC10530356 DOI: 10.3390/ijms241813738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Pectin is a complex polysaccharide that forms a substantial proportion of the plant's middle lamella of forage ingested by grazing ruminants. Methanol in the rumen is derived mainly from methoxy groups released from pectin by the action of pectin methylesterase (PME) and is subsequently used by rumen methylotrophic methanogens that reduce methanol to produce methane (CH4). Members of the genus Butyrivibrio are key pectin-degrading rumen bacteria that contribute to methanol formation and have important roles in fibre breakdown, protein digestion, and the biohydrogenation of fatty acids. Therefore, methanol release from pectin degradation in the rumen is a potential target for CH4 mitigation technologies. Here, we present the crystal structures of PMEs belonging to the carbohydrate esterase family 8 (CE8) from Butyrivibrio proteoclasticus and Butyrivibrio fibrisolvens, determined to a resolution of 2.30 Å. These enzymes, like other PMEs, are right-handed β-helical proteins with a well-defined catalytic site and reaction mechanisms previously defined in insect, plant, and other bacterial pectin methylesterases. Potential substrate binding domains are also defined for the enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nikola Palevich
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; (V.C.); (K.R.); (C.S.); (L.R.S.); (R.S.R.); (W.J.K.); (G.T.A.)
| |
Collapse
|
5
|
Wang Y, Zhang D, Huang L, Zhang Z, Shi Q, Hu J, He G, Guo X, Shi H, Liang L. Uncovering the interactions between PME and PMEI at the gene and protein levels: Implications for the design of specific PMEI. J Mol Model 2023; 29:286. [PMID: 37610510 DOI: 10.1007/s00894-023-05644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023]
Abstract
CONTEXT Pectin methylesterase inhibitor (PMEI) can specifically bind and inhibit the activity of pectin methylesterase (PME), which has been widely used in fruit and vegetable juice processing. However, the limited three-dimensional structure, unclear action mechanism, low thermal stability and biological activity of PMEI severely limited its application. In this work, molecular recognition and conformational changes of PME and PMEI were analyzed by various molecular simulation methods. Then suggestions were proposed for improving thermal stability and affinity maturation of PMEI through semi-rational design. METHODS Phylogenetic trees of PME and PMEI were established using the Maximum likelihood (ML) method. The results show that PME and PMEI have good sequence and structure conservation in various plants, and the simulated data can be widely adopted. In this work, MD simulations were performed using AMBER20 package and ff14SB force field. Protein interaction analysis indicates that H-bonds, van der Waals forces, and the salt bridge formed of K224 with ID116 are the main driving forces for mutual molecular recognition of PME and PMEI. According to the analyses of free energy landscape (FEL), conformational cluster, and motion, the association with PMEI greatly disrupts PME's dispersed functional motion mode and biological function. By monitoring the changes of residue contact number and binding free energy, IG35M/ IG35R: IT93F and IT113W/ IT113W: ID116W mutations contribute to thermal stability and affinity maturation of the PME-PMEI complex system, respectively. This work reveals the interaction between PME and PMEI at the gene and protein levels and provides options for modifying specific PMEI.
Collapse
Affiliation(s)
- Yueteng Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Derong Zhang
- School of Marxism, Chengdu Vocational & Technical College of Industry, Chengdu, 610081, China
| | - Lifen Huang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Zelan Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Quanshan Shi
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Gang He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Xiaoqiang Guo
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Hang Shi
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China.
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
6
|
Kumar R, Meghwanshi GK, Marcianò D, Ullah SF, Bulone V, Toffolatti SL, Srivastava V. Sequence, structure and functionality of pectin methylesterases and their use in sustainable carbohydrate bioproducts: A review. Int J Biol Macromol 2023; 244:125385. [PMID: 37330097 DOI: 10.1016/j.ijbiomac.2023.125385] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Pectin methylesterases (PMEs) are enzymes that play a critical role in modifying pectins, a class of complex polysaccharides in plant cell walls. These enzymes catalyze the removal of methyl ester groups from pectins, resulting in a change in the degree of esterification and consequently, the physicochemical properties of the polymers. PMEs are found in various plant tissues and organs, and their activity is tightly regulated in response to developmental and environmental factors. In addition to the biochemical modification of pectins, PMEs have been implicated in various biological processes, including fruit ripening, defense against pathogens, and cell wall remodelling. This review presents updated information on PMEs, including their sources, sequences and structural diversity, biochemical properties and function in plant development. The article also explores the mechanisms of PME action and the factors influencing enzyme activity. In addition, the review highlights the potential applications of PMEs in various industrial sectors related to biomass exploitation, food, and textile industries, with a focus on development of bioproducts based on eco-friendly and efficient industrial processes.
Collapse
Affiliation(s)
- Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | | | - Demetrio Marcianò
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | - Sadia Fida Ullah
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden; College of Medicine and Public Health, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Silvia Laura Toffolatti
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden.
| |
Collapse
|
7
|
Kumar R, Kumar S, Bulone V, Srivastava V. Biochemical Characterization and Molecular Insights into Substrate Recognition of Pectin Methylesterase from Phytophthora Infestans. Comput Struct Biotechnol J 2022; 20:6023-6032. [PMID: 36382180 PMCID: PMC9647417 DOI: 10.1016/j.csbj.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Pectin methylesterases (PMEs) are a class of carbohydrate-active enzymes that act on the O6-methyl ester groups of the homogalacturonan component of pectins, resulting in de-esterification of the substrate polymers and formation of pectate and methanol. PMEs occur in higher plants and microorganisms, including fungi, oomycetes, bacteria, and archaea. Microbial PMEs play a crucial role in pathogens’ invasion of plant tissues. Here, we have determined the structural and functional properties of Pi-PME, a PME from the oomycete plant pathogen Phytophthora infestans. This enzyme exhibits maximum activity at alkaline pH (8.5) and is active over a wide temperature range (25–50 °C). In silico determination of the structure of Pi-PME reveals that the protein consists essentially of three parallel β-sheets interconnected by loops that adopt an overall β-helix organization. The loop regions in the vicinity of the active site are extended compared to plant and fungal PMEs, but they are shorter than the corresponding bacterial and insect regions. Molecular dynamic simulations revealed that Pi-PME interacts most strongly with partially de-methylated homogalacturonans, suggesting that it preferentially uses this type of substrates. The results are compared and discussed with other known PMEs from different organisms, highlighting the specific features of Pi-PME.
Collapse
Affiliation(s)
- Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Sanjiv Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
- College of Medicine and Public Health, Flinders University, Bedford Park Campus, Sturt Road, South Australia 5042, Australia
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
- Corresponding author.
| |
Collapse
|
8
|
Gigli-Bisceglia N, van Zelm E, Huo W, Lamers J, Testerink C. Arabidopsis root responses to salinity depend on pectin modification and cell wall sensing. Development 2022; 149:275422. [PMID: 35574987 PMCID: PMC9270968 DOI: 10.1242/dev.200363] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/29/2022] [Indexed: 12/21/2022]
Abstract
Owing to its detrimental effect on plant growth, salinity is an increasing worldwide problem for agriculture. To understand the molecular mechanisms activated in response to salt in Arabidopsis thaliana, we investigated the Catharanthus roseus receptor-like kinase 1-like family, which contains sensors that were previously shown to be involved in sensing the structural integrity of the cell walls. We found that herk1 the1-4 double mutants, lacking the function of HERKULES1 (HERK1) and combined with a gain-of-function allele of THESEUS1 (THE1), strongly respond to salt application, resulting in an intense activation of stress responses, similarly to plants lacking FERONIA (FER) function. We report that salt triggers pectin methyl esterase (PME) activation and show its requirement for the activation of several salt-dependent responses. Because chemical inhibition of PMEs alleviates these salt-induced responses, we hypothesize a model in which salt directly leads to cell wall modifications through the activation of PMEs. Responses to salt partly require the functionality of FER alone or HERK1/THE1 to attenuate salt effects, highlighting the complexity of the salt-sensing mechanisms that rely on cell wall integrity. Summary: Salt-triggered activation of pectin methyl esterase changes pectin in Arabidopsis, inducing at least two pathways: a CrRLK1L-dependent pathway downregulating salt stress responses and a CrRLK1L-independent pathway that activates downstream signaling.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Eva van Zelm
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Wenying Huo
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Jasper Lamers
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| |
Collapse
|
9
|
Synergistic action of thermophilic pectinases for pectin bioconversion into D-galacturonic acid. Enzyme Microb Technol 2022; 160:110071. [DOI: 10.1016/j.enzmictec.2022.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/19/2022]
|
10
|
Xu Y, Huang H, Lu H, Wu M, Lin M, Zhang C, Zhao Z, Li W, Zhang C, Li X, Sun B. Characterization of an Aspergillus niger for Efficient Fatty Acid Ethyl Ester Synthesis in Aqueous Phase and the Molecular Mechanism. Front Microbiol 2022; 12:820380. [PMID: 35265050 PMCID: PMC8899536 DOI: 10.3389/fmicb.2021.820380] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022] Open
Abstract
Fatty acid ethyl esters are important flavor chemicals in strong-flavor baijiu. Microorganisms are the main contributors to ester synthesis during baijiu manufacture. However, the ester synthesis was unstable between batches. This was owing to a limited knowledge of the mechanisms for ester synthesis by microorganisms. In this work, a fatty acid ethyl ester synthesizing Aspergillus niger strain CGMCC (China General Microbiological Culture Collection) 3.4309 was identified. The conversion ratios of ethyl valerate, ethyl caproate, ethyl caprylate, and ethyl caprate were 7.87, 29.20, 94.80, and 85.20%, respectively, under the optimized conditions. A comparison of transcriptomes under the initial and optimized ester synthetic conditions indicated that 23 genes were upregulated in transcription level and encoded enzymes with potential abilities for ester synthesis. Eleven of the enzymes were expressed, and three of them, numbered An605, An1097, and An3131, showed the ability to catalyze fatty acid ethyl ester synthesis under aqueous phase, with capric acid as the preferred substrate. The possible enzymatic catalytic mechanism was proposed based on homology modeling and molecular docking. This study reported for the first time that A. niger showed the ability to efficiently catalyze the synthesis of short- and medium-chain fatty acid ethyl esters in aqueous phase, identified the key enzymes, and analyzed the basic enzymatic properties. This is helpful to promote the application of related microorganisms and enzyme resources in the baijiu industry.
Collapse
Affiliation(s)
- Youqiang Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Huiqin Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Hongyun Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Mengqin Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Mengwei Lin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | | | - Zhigang Zhao
- Chengde Qianlongzui Distillery Company, Hebei, China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
11
|
Larsen LR, van der Weem J, Caspers-Weiffenbach R, Schieber A, Weber F. Effects of ultrasound on the enzymatic degradation of pectin. ULTRASONICS SONOCHEMISTRY 2021; 72:105465. [PMID: 33497958 PMCID: PMC7838710 DOI: 10.1016/j.ultsonch.2021.105465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 05/09/2023]
Abstract
Ultrasound-assisted enzymatic maceration (UAEM) has gained considerable interest in the fruit juice industry, owing to its potential to increase juice yield and content of polyphenols while simultaneously saving time and energy. In this study, the effects of UAEM (ultrasonic probe, 20 kHz, 21 W*cm-2 and 33 W*cm-2) on pectin degradation in a continuous circulation system were investigated over 60 and 90 min. Main pectinolytic enzymes activities of (polygalacturonase, pectin lyase and pectin methylesterase) of a commercial enzyme preparation were examined for individual synergistic effects with US. Pectin hydrolysis by UAEM differed significantly compared to treatment with ultrasound or enzymes alone regarding the profile of degradation products compared to treatment with ultrasound or enzymes alone. Ultrasound fragmented pectin to less branched oligomers of medium molecular weight (Mp approx. 150 kDa), which were further degraded by pectinolytic activities. The low molecular weight fraction (<30 kDa), which is known to be beneficial for juice-quality by adding nutritional value and stabilizing polyphenols, was enriched in small oligomers of homogalacturonan-derived, rhamnogalacturonan I-derived, and rhamnogalacturonan II-derived residues. Synergistic effects of ultrasound application enhanced the effective activities of polygalacturonase and pectin lyase and even prolonged their performance over 90 min, whereas the effective activity of pectin methylesterase was not affected. Final marker concentrations determined by each enzyme assay revealed a considerable higher total process output after UAEM treatment at reduced temperature (30 °C) comparable to the output after conventional batch maceration at 50 °C. The obtained results demonstrate the high potential of UAEM to produce high-quality juice by controlling pectin degradation while reducing process temperature and equally highlight the matrix and enzyme specific effects of a simultaneous US treatment.
Collapse
Affiliation(s)
- Lena Rebecca Larsen
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich Hirzebruch Allee 7, D-53115 Bonn, Germany
| | - Judith van der Weem
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich Hirzebruch Allee 7, D-53115 Bonn, Germany
| | - Rita Caspers-Weiffenbach
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich Hirzebruch Allee 7, D-53115 Bonn, Germany
| | - Andreas Schieber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich Hirzebruch Allee 7, D-53115 Bonn, Germany
| | - Fabian Weber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich Hirzebruch Allee 7, D-53115 Bonn, Germany.
| |
Collapse
|
12
|
Safran J, Habrylo O, Cherkaoui M, Lecomte S, Voxeur A, Pilard S, Bassard S, Pau-Roblot C, Mercadante D, Pelloux J, Sénéchal F. New insights into the specificity and processivity of two novel pectinases from Verticillium dahliae. Int J Biol Macromol 2021; 176:165-176. [PMID: 33561463 DOI: 10.1016/j.ijbiomac.2021.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 02/02/2023]
Abstract
Pectin, the major non-cellulosic component of primary cell wall can be degraded by polygalacturonases (PGs) and pectin methylesterases (PMEs) during pathogen attack on plants. We characterized two novel enzymes, VdPG2 and VdPME1, from the fungal plant pathogen Verticillium dahliae. VdPME1 was most active on citrus methylesterified pectin (55-70%) at pH 6 and a temperature of 40 °C, while VdPG2 was most active on polygalacturonic acid at pH 5 and a temperature of 50 °C. Using LC-MS/MS oligoprofiling, and various pectins, the mode of action of VdPME1 and VdPG2 were determined. VdPME1 was shown to be processive, in accordance with the electrostatic potential of the enzyme. VdPG2 was identified as endo-PG releasing both methylesterified and non-methylesterified oligogalacturonides (OGs). Additionally, when flax roots were used as substrate, acetylated OGs were detected. The comparisons of OGs released from Verticillium-susceptible and partially resistant flax cultivars identified new possible elicitor of plant defence responses.
Collapse
Affiliation(s)
- Josip Safran
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Olivier Habrylo
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France; Current address: Groupe Soufflet, 10400 Nogent-sur-Seine, France
| | - Mehdi Cherkaoui
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France; Current address: UR 1258 BIA Biopolymères Interactions Assemblages, INRAE, 44316 Nantes Cedex 3, France
| | - Sylvain Lecomte
- Linéa Semences, 20 Avenue Saget, 60210 Grandvilliers, France
| | - Aline Voxeur
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Serge Pilard
- Plateforme Analytique, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Solène Bassard
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Corinne Pau-Roblot
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Davide Mercadante
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jérôme Pelloux
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Fabien Sénéchal
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France.
| |
Collapse
|
13
|
Zhong L, Wang X, Fan L, Ye X, Li Z, Cui Z, Huang Y. Characterization of an acidic pectin methylesterase from Paenibacillus xylanexedens and its application in fruit processing. Protein Expr Purif 2020; 179:105798. [PMID: 33232801 DOI: 10.1016/j.pep.2020.105798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
A pectinase-producing bacterial isolate, identified as Paenibacillus xylanexedens SZ 29, was screened by using the soil dilution plate with citrus pectin and congo red. A pectin methylesterase gene (Pxpme) was cloned and expressed in Escherichia coli. The gene coded for a protein with 334 amino acids and a calculated molecular mass of 36.76 kDa. PxPME showed the highest identity of 32.4% with the characterized carbohydrate esterase family 8 pectin methylesterase from Daucus carota. The recombined PxPME showed a specific activity with 39.38 U/mg against citrus pectin with >65% methylesterification. The optimal pH and temperature for PxPME activity were 5.0 and 45 °C. Its Km and Vmax value were determined to be 1.43 mg/mL and 71.5 μmol/mg·min, respectively. Moreover, PxPME could increase the firmness of pineapple cubes by 114% when combined with CaCl2. The acidic and mesophilic properties make PxPME a potential candidate for application in the fruit processing.
Collapse
Affiliation(s)
- Lingli Zhong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaowen Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Fan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Microbial Resource Collection and Preservation, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
14
|
Cheng Z, Xian L, Chen D, Lu J, Wei Y, Du L, Wang Q, Chen Y, Lu B, Bi D, Zhang Z, Huang R. Development of an Innovative Process for High-Temperature Fruit Juice Extraction Using a Novel Thermophilic Endo-Polygalacturonase From Penicillium oxalicum. Front Microbiol 2020; 11:1200. [PMID: 32595621 PMCID: PMC7303257 DOI: 10.3389/fmicb.2020.01200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/12/2020] [Indexed: 11/30/2022] Open
Abstract
Efficient and cost-effective production of thermophilic endo-polygalacturonase is desirable for industrial fruit juice production, because its application could shorten the processing time and lower the production cost, by eliminating the separate step of pectin degradation. However, no endo-polygalacturonase that both functions well at sufficiently high temperature and can be manufactured economically, has been reported previously. In this study, the cDNA encoding a thermophilic endo-polygalacturonase from Penicillium oxalicum CZ1028, was cloned and over-expressed in Pichia pastoris GS115 and Escherichia coli BL21(DE3). The recombinant proteins PoxaEnPG28B-Pp (from P. pastoris) and PoxaEnPG28B-Ec (from E. coli) were isolated and purified. PoxaEnPG28B-Pp was sufficiently thermostable for potential industrial use, but PoxaEnPG28B-Ec was not. The optimal pH and temperature of PoxaEnPG28B-Pp were pH 5.0 and 65°C, respectively. The enzyme had a low Km of 1.82 g/L and a high Vmax of 77882.2 U/mg, with polygalacturonic acid (PGA) as substrate. The performance of PoxaEnPG28B-Pp in depectinization of papaya, plantain and banana juices at 65°C for 15 min was superior to that of a reported mesophilic endo-polygalacturonase. PoxaEnPG28B-Pp is the first endo-polygalacturonase reported to show excellent performance at high temperature. An innovative process, including a step of simultaneous heat-treatment and depectinization of fruit pulps with PoxaEnPG28B-Pp, is reported for the first time.
Collapse
Affiliation(s)
- Zhong Cheng
- College of Mechatronic and Quality Technology Engineering, Nanning University, Nanning, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Liang Xian
- National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Dong Chen
- National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Jian Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yutuo Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Liqin Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Qingyan Wang
- National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Yunlai Chen
- School of Environment and Life Science, Nanning Normal University, Nanning, China
| | - Bo Lu
- National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Dewu Bi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China.,National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Zhikai Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China.,National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Ribo Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China.,National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
15
|
Kanungo A, Bag BP. Structural insights into the molecular mechanisms of pectinolytic enzymes. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42485-019-00027-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Rai DK, Gurusaran M, Urban V, Aran K, Ma L, Li P, Qian S, Narayanan TN, Ajayan PM, Liepmann D, Sekar K, Álvarez-Cao ME, Escuder-Rodríguez JJ, Cerdán ME, González-Siso MI, Viswanathan S, Paulmurugan R, Renugopalakrishnan V. Structural determination of Enzyme-Graphene Nanocomposite Sensor Material. Sci Rep 2019; 9:15519. [PMID: 31664095 PMCID: PMC6820869 DOI: 10.1038/s41598-019-51882-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/28/2019] [Indexed: 11/09/2022] Open
Abstract
State-of-the-art ultra-sensitive blood glucose-monitoring biosensors, based on glucose oxidase (GOx) covalently linked to a single layer graphene (SLG), will be a valuable next generation diagnostic tool for personal glycemic level management. We report here our observations of sensor matrix structure obtained using a multi-physics approach towards analysis of small-angle neutron scattering (SANS) on graphene-based biosensor functionalized with GOx under different pH conditions for various hierarchical GOx assemblies within SLG. We developed a methodology to separately extract the average shape of GOx molecules within the hierarchical assemblies. The modeling is able to resolve differences in the average GOx dimer structure and shows that treatment under different pH conditions lead to differences within the GOx at the dimer contact region with SLG. The coupling of different analysis methods and modeling approaches we developed in this study provides a universal approach to obtain detailed structural quantifications, for establishing robust structure-property relationships. This is an essential step to obtain an insight into the structure and function of the GOx-SLG interface for optimizing sensor performance.
Collapse
Affiliation(s)
- Durgesh K Rai
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York, 14853, USA.
| | - Manickam Gurusaran
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne-NE1 7RU, UK
| | - Volker Urban
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA.
| | - Kiana Aran
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94709, USA
| | - Lulu Ma
- Department of Mechanical Engineering and Materials Science, Rice University, Houston, Texas, 77005, USA
| | - Pingzuo Li
- Center for Life Sciences, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Tharangattu N Narayanan
- Tata Institute of Fundamental Research - Center for Interdisciplinary Sciences, Hyderabad, 500107, India
| | - Pulickel M Ajayan
- Department of Mechanical Engineering and Materials Science, Rice University, Houston, Texas, 77005, USA
| | - Dorian Liepmann
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94709, USA
| | - Kanagaraj Sekar
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - María-Efigenia Álvarez-Cao
- Universidade da Coruña, Grupo EXPRELA, F. Ciencias & Centro de Investigacións Científicas Avanzadas (CICA) & Instituto de Investigación Biomédica A Coruña (INIBIC), A Coruña, 15011, Spain
| | - Juan-José Escuder-Rodríguez
- Universidade da Coruña, Grupo EXPRELA, F. Ciencias & Centro de Investigacións Científicas Avanzadas (CICA) & Instituto de Investigación Biomédica A Coruña (INIBIC), A Coruña, 15011, Spain
| | - María-Esperanza Cerdán
- Universidade da Coruña, Grupo EXPRELA, F. Ciencias & Centro de Investigacións Científicas Avanzadas (CICA) & Instituto de Investigación Biomédica A Coruña (INIBIC), A Coruña, 15011, Spain
| | - María-Isabel González-Siso
- Universidade da Coruña, Grupo EXPRELA, F. Ciencias & Centro de Investigacións Científicas Avanzadas (CICA) & Instituto de Investigación Biomédica A Coruña (INIBIC), A Coruña, 15011, Spain
| | - Sowmya Viswanathan
- Newton Wellesley Hospital/Partners Healthcare System, Newton, Massachusetts, 02462, USA
| | - Ramasamy Paulmurugan
- Cellular Pathway Imaging Laboratory (CPIL), Dept. of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Suite 2236, Palo Alto, California, 94304, USA
| | - Venkatesan Renugopalakrishnan
- Center for Life Sciences, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA.
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
17
|
Dal Magro L, Kornecki JF, Klein MP, Rodrigues RC, Fernandez‐Lafuente R. Stability/activity features of the main enzyme components of rohapect 10L. Biotechnol Prog 2019; 35:e2877. [DOI: 10.1002/btpr.2877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Lucas Dal Magro
- Department of Biocatalysis, ICP‐CSICCampus UAM‐CSIC, Cantoblanco Madrid ZC Spain
- Biotechnology, Bioprocess and Biocatalysis GroupInstitute of Food Science and Technology, Federal University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Jakub F. Kornecki
- Department of Biocatalysis, ICP‐CSICCampus UAM‐CSIC, Cantoblanco Madrid ZC Spain
| | - Manuela P. Klein
- Department of NutritionFederal University of Health Sciences of Porto Alegre (UFCSPA) Porto Alegre RS Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess and Biocatalysis GroupInstitute of Food Science and Technology, Federal University of Rio Grande do Sul Porto Alegre RS Brazil
| | | |
Collapse
|
18
|
Mansel BW, Irani AH, Ryan TM, McGillivray DJ, Chen HL, Williams MAK. Resolving solution conformations of the model semi-flexible polyelectrolyte homogalacturonan using molecular dynamics simulations and small-angle x-ray scattering. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:19. [PMID: 30788674 DOI: 10.1140/epje/i2019-11776-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/04/2019] [Indexed: 05/27/2023]
Abstract
The conformation of polyelectrolytes in the solution state has long been of interest in polymer science. Herein we utilize all atom molecular dynamics simulations (MD) and small-angle x-ray scattering experiments (SAXS) to elucidate the molecular structure of the model polyelectrolyte homogalacturonan. Several degrees of polymerization were studied and in addition partial methylesterification of the otherwise charge-carrying carboxyl groups was used in order to generate samples with varying intra-chain charge distributions. It is shown that at length scales above around 1nm the conformation of isolated chains has surprisingly little dependence on the charge distribution or the concentration of attendant monovalent salts, reflective of the intrinsic stiffness of the saccharide rings and the dynamical constraints of the glycosidic linkage. Indeed the conformation of isolated chains over all accessible length scales is well described by the atomic coordinates available from fibre diffraction studies. Furthermore, in more concentrated systems it is shown that, after careful analysis of the SAXS data, the form of the inter-particle effects heralded by the emergence of a so-called polyelectrolyte peak, can be extracted, and that this phenomena can be reproduced by multiple chain MD simulations.
Collapse
Affiliation(s)
- Bradley W Mansel
- Department of Chemical Engineering, National Tsing Hua University, 30013, Hsinchu, Taiwan.
| | - Amir Hossein Irani
- Institute of Fundamental Sciences, Massey University, 4474, Palmerston North, New Zealand
| | | | - Duncan J McGillivray
- School of Chemical Sciences, University of Auckland, Private Bag 90219, Auckland, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, 6140, Wellington, New Zealand
| | - Hsin-Lung Chen
- Department of Chemical Engineering, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Martin A K Williams
- Institute of Fundamental Sciences, Massey University, 4474, Palmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, 6140, Wellington, New Zealand
- Riddet Institute, Massey University, 4474, Palmerston North, New Zealand
| |
Collapse
|
19
|
Irani AH, Mercadante D, Williams MAK. On the electrophoretic mobilities of partially charged oligosaccharides as a function of charge patterning and degree of polymerization. Electrophoresis 2018; 39:1497-1503. [PMID: 29603292 DOI: 10.1002/elps.201800050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/03/2018] [Accepted: 03/04/2018] [Indexed: 11/11/2022]
Abstract
Fully or partially charged oligosaccharide molecules play a key role in many areas of biology, where their fine structures are crucial in determining their functionality. However, the separation of specific charged oligosaccharides from similar moieties that typically coexist in extracted samples, even for those that are unbranched, and in cases where each saccharide moiety can only carry a single charge or not, is far from trivial. Typically such molecules are characterized by a degree of polymerization n and a number m (and distribution) of charged residues, and must be separated from a plethora of similar species possessing different combinations of n and m. Furthermore, the separation of the possible n!/m!(n-m)! isomers of each species of fixed n and m is a formidable challenge to analytical chemists. Herein, we report the results of molecular dynamics simulations that have been performed in order to calculate the free solution electrophoretic mobilities of galacturonides and charged oligosaccharides derived from digests of the important plant cell-wall polysaccharide pectin. The simulations are compared with an experiment and are found to correctly predict the loss of resolution of fully charged species above a critical degree of polymerization n and the ionic strength dependence of the electrophoretic mobilities of different partially charged oligosaccharides. It is expected that having a predictive tool for the calculation of the electrophoretic mobilities of differently charged oligosaccharide species in hand will allow experimental conditions that optimize the resolution of particular species to be ascertained and understood.
Collapse
Affiliation(s)
- Amir H Irani
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | - Martin A K Williams
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
20
|
Structural and functional effects of manipulating the degree of methylesterification in a model homogalacturonan with a pseudo-random fungal pectin methylesterase followed by a processive methylesterase. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Abstract
Carbohydrate esterases are a group of enzymes which release acyl or alkyl groups attached by ester linkage to carbohydrates. The CAZy database, which classifies enzymes that assemble, modify, and break down carbohydrates and glycoconjugates, classifies all carbohydrate esterases into 16 families. This chapter is an overview of the research for nearly 50 years around the main groups of carbohydrate esterases dealing with the degradation of polysaccharides, their main biochemical and molecular traits, as well as its application for the synthesis of high added value esters.
Collapse
|
22
|
Owen J, Kent L, Ralet MC, Cameron R, Williams M. A tale of two pectins: Diverse fine structures can result from identical processive PME treatments on similar high DM substrates. Carbohydr Polym 2017; 168:365-373. [DOI: 10.1016/j.carbpol.2017.03.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/06/2017] [Accepted: 03/11/2017] [Indexed: 10/20/2022]
|
23
|
Identification of an acidic endo-polygalacturonase from Penicillium oxalicum CZ1028 and its broad use in major tropical and subtropical fruit juices production. J Biosci Bioeng 2017; 123:665-672. [DOI: 10.1016/j.jbiosc.2017.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/19/2017] [Indexed: 02/05/2023]
|
24
|
Rajulapati V, Goyal A. Molecular Cloning, Expression and Characterization of Pectin Methylesterase (CtPME) from Clostridium thermocellum. Mol Biotechnol 2017; 59:128-140. [DOI: 10.1007/s12033-017-9997-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Irani AH, Owen JL, Mercadante D, Williams MAK. Molecular Dynamics Simulations Illuminate the Role of Counterion Condensation in the Electrophoretic Transport of Homogalacturonans. Biomacromolecules 2017; 18:505-516. [DOI: 10.1021/acs.biomac.6b01599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Amir H. Irani
- Institute
of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Jessie L. Owen
- Institute
of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | - Martin A. K. Williams
- Institute
of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- The MacDiarmid Institute
of Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
26
|
|