1
|
Thompson MJ, Mansoub Bekarkhanechi F, Ananchenko A, Nury H, Baenziger JE. A release of local subunit conformational heterogeneity underlies gating in a muscle nicotinic acetylcholine receptor. Nat Commun 2024; 15:1803. [PMID: 38413583 PMCID: PMC10899235 DOI: 10.1038/s41467-024-46028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Synaptic receptors respond to neurotransmitters by opening an ion channel across the post-synaptic membrane to elicit a cellular response. Here we use recent Torpedo acetylcholine receptor structures and functional measurements to delineate a key feature underlying allosteric communication between the agonist-binding extracellular and channel-gating transmembrane domains. Extensive mutagenesis at this inter-domain interface re-affirms a critical energetically coupled role for the principal α subunit β1-β2 and M2-M3 loops, with agonist binding re-positioning a key β1-β2 glutamate/valine to facilitate the outward motions of a conserved M2-M3 proline to open the channel gate. Notably, the analogous structures in non-α subunits adopt a locally active-like conformation in the apo state even though each L9' hydrophobic gate residue in each pore-lining M2 α-helix is closed. Agonist binding releases local conformational heterogeneity transitioning all five subunits into a conformationally symmetric open state. A release of conformational heterogeneity provides a framework for understanding allosteric communication in pentameric ligand-gated ion channels.
Collapse
Affiliation(s)
- Mackenzie J Thompson
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | | | - Anna Ananchenko
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Hugues Nury
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - John E Baenziger
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
2
|
De Rose DU, Ronci S, Caoci S, Maddaloni C, Diodato D, Catteruccia M, Fattori F, Bosco L, Pro S, Savarese I, Bersani I, Randi F, Trozzi M, Meucci D, Calzolari F, Salvatori G, Solinas A, Dotta A, Campi F. Vocal Cord Paralysis and Feeding Difficulties as Early Diagnostic Clues of Congenital Myasthenic Syndrome with Neonatal Onset: A Case Report and Review of Literature. J Pers Med 2023; 13:jpm13050798. [PMID: 37240968 DOI: 10.3390/jpm13050798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Herein, we present a newborn female with congenital vocal cord paralysis who required a tracheostomy in the neonatal period. She also presented with feeding difficulties. She was later diagnosed with a clinical picture of congenital myasthenia, associated with three variants of the MUSK gene: the 27-month follow-up was described. In particular, the c.565C>T variant is novel and has never been described in the literature; it causes the insertion of a premature stop codon (p.Arg189Ter) likely leading to a consequent formation of a truncated nonfunctioning protein. We also systematically collected and summarized information on patients' characteristics of previous cases of congenital myasthenia with neonatal onset reported in the literature to date, and we compared them to our case. The literature reported 155 neonatal cases before our case, from 1980 to March 2022. Of 156 neonates with CMS, nine (5.8%) had vocal cord paralysis, whereas 111 (71.2%) had feeding difficulties. Ocular features were evident in 99 infants (63.5%), whereas facial-bulbar symptoms were found in 115 infants (73.7%). In one hundred sixteen infants (74.4%), limbs were involved. Respiratory problems were displayed by 97 infants (62.2%). The combination of congenital stridor, particularly in the presence of an apparently idiopathic bilateral vocal cord paralysis, and poor coordination between sucking and swallowing may indicate an underlying congenital myasthenic syndrome (CMS). Therefore, we suggest testing infants with vocal cord paralysis and feeding difficulties for MUSK and related genes to avoid a late diagnosis of CMS and improve outcomes.
Collapse
Affiliation(s)
| | - Sara Ronci
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Stefano Caoci
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Chiara Maddaloni
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Daria Diodato
- Neuromuscular and Neurodegenerative Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Michela Catteruccia
- Neuromuscular and Neurodegenerative Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Fabiana Fattori
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy
| | - Luca Bosco
- Neuromuscular and Neurodegenerative Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Science, University Roma Tre, 00146 Rome, Italy
| | - Stefano Pro
- Developmental Neurology Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Immacolata Savarese
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Iliana Bersani
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Franco Randi
- Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Marilena Trozzi
- Airway Surgery Unit, Pediatric Surgery Department, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Duino Meucci
- Airway Surgery Unit, Pediatric Surgery Department, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Flaminia Calzolari
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Guglielmo Salvatori
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Agostina Solinas
- Neonatal Intensive Care Unit, Sant'Anna Hospital of Ferrara, 44124 Ferrara, Italy
| | - Andrea Dotta
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Francesca Campi
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
3
|
Brumos J, Bobay BG, Clark CA, Alonso JM, Stepanova AN. Structure-Function Analysis of Interallelic Complementation in ROOTY Transheterozygotes. PLANT PHYSIOLOGY 2020; 183:1110-1125. [PMID: 32350121 PMCID: PMC7333694 DOI: 10.1104/pp.20.00310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Auxin is a crucial plant growth regulator. Forward genetic screens for auxin-related mutants have led to the identification of key genes involved in auxin biosynthesis, transport, and signaling. Loss-of-function mutations in genes involved in glucosinolate biosynthesis, a metabolically related route that produces defense compounds, result in auxin overproduction. We identified an allelic series of fertile, hypomorphic Arabidopsis (Arabidopsis thaliana) mutants for the essential glucosinolate biosynthetic gene ROOTY (RTY) that exhibit a range of phenotypic defects characteristic of enhanced auxin production. Genetic characterization of these lines uncovered phenotypic suppression by cyp79b2 cyp79b3, wei2, and wei7 mutations and revealed the phenomenon of interallelic complementation in several RTY transheterozygotes. Structural modeling of RTY elucidated the relationships between structure and function in the RTY homo- and heterodimers, and unveiled the likely structural basis of interallelic complementation. This work underscores the importance of employing true null mutants in genetic complementation studies.
Collapse
Affiliation(s)
- Javier Brumos
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695-7614
| | - Benjamin G Bobay
- Duke University Nuclear Magnetic Resonance Center, Duke University Medical Center, Durham, North Carolina 27710
- Department of Biochemistry, Duke University, Durham, North Carolina 27710
- Department of Radiology, Duke University, Durham, North Carolina 27710
| | | | - Jose M Alonso
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695-7614
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695-7614
| |
Collapse
|
4
|
Troha Gergeli A, Neubauer D, Golli T, Butenko T, Loboda T, Maver A, Osredkar D. Prevalence and genetic subtypes of congenital myasthenic syndromes in the pediatric population of Slovenia. Eur J Paediatr Neurol 2020; 26:34-38. [PMID: 32070632 DOI: 10.1016/j.ejpn.2020.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/08/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022]
Abstract
AIM Congenital myasthenic syndromes (CMS) are rare, genetically and phenotypically diverse disorders of neuromuscular transmission. Data on prevalence among children are scarce. Whole exome sequencing facilitated discovery of novel CMS mutations and enabled targeted treatment. Our aim was to identify the prevalence, genetic subtypes and clinical characteristics of CMS in pediatric population of Slovenia. METHODS In this observational, national, cross-sectional study, medical records were retrospectively reviewed. Children with genetically confirmed CMS, referred over a 19 - year period (2000-2018) to the University Medical Centre, Ljubljana, Slovenia, were included in the study. Genetic and phenotypic characteristics were collected and prevalence of CMS in children was calculated. RESULTS Eight children with a confirmed genetic mutation in 5 different genes (CHRNE, CHRND, RAPSN, CHAT, MUSK) causative of the CMS were identified. Calculated prevalence of genetically confirmed CMS was 22.2 cases per 1.000.000 children at the end of 2018. INTERPRETATION The prevalence of genetically confirmed CMS in Slovenian children at the end of 2018 exceeds previously reported prevalence by more than two-fold, which suggests that prevalence in the literature is likely to be underestimated. Two extremely rarely detected mutations in MUSK and CHRND gene were detected and patient's clinical descriptions add important information on genotype-phenotype correlation.
Collapse
Affiliation(s)
- Anja Troha Gergeli
- Department of Child, Adolescent and Developmental Neurology, University Children's Hospital, University Medical Centre Ljubljana, Slovenia
| | - David Neubauer
- Department of Child, Adolescent and Developmental Neurology, University Children's Hospital, University Medical Centre Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia
| | - Tanja Golli
- Department of Child, Adolescent and Developmental Neurology, University Children's Hospital, University Medical Centre Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia
| | - Tita Butenko
- Department of Child, Adolescent and Developmental Neurology, University Children's Hospital, University Medical Centre Ljubljana, Slovenia
| | - Tanja Loboda
- Department of Child, Adolescent and Developmental Neurology, University Children's Hospital, University Medical Centre Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Slovenia
| | - Damjan Osredkar
- Department of Child, Adolescent and Developmental Neurology, University Children's Hospital, University Medical Centre Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia.
| |
Collapse
|
5
|
Munawar A, Ali SA, Akrem A, Betzel C. Snake Venom Peptides: Tools of Biodiscovery. Toxins (Basel) 2018; 10:toxins10110474. [PMID: 30441876 PMCID: PMC6266942 DOI: 10.3390/toxins10110474] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 01/09/2023] Open
Abstract
Nature endowed snakes with a lethal secretion known as venom, which has been fine-tuned over millions of years of evolution. Snakes utilize venom to subdue their prey and to survive in their natural habitat. Venom is known to be a very poisonous mixture, consisting of a variety of molecules, such as carbohydrates, nucleosides, amino acids, lipids, proteins and peptides. Proteins and peptides are the major constituents of the dry weight of snake venoms and are of main interest for scientific investigations as well as for various pharmacological applications. Snake venoms contain enzymatic and non-enzymatic proteins and peptides, which are grouped into different families based on their structure and function. Members of a single family display significant similarities in their primary, secondary and tertiary structures, but in many cases have distinct pharmacological functions and different bioactivities. The functional specificity of peptides belonging to the same family can be attributed to subtle variations in their amino acid sequences. Currently, complementary tools and techniques are utilized to isolate and characterize the peptides, and study their potential applications as molecular probes, and possible templates for drug discovery and design investigations.
Collapse
Affiliation(s)
- Aisha Munawar
- Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan.
| | - Syed Abid Ali
- H.E. J. Research Institute of Chemistry, (ICCBS), University of Karachi, Karachi 75270, Pakistan.
| | - Ahmed Akrem
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Christian Betzel
- Department of Chemistry, Institute of Biochemistry and Molecular Biology, University of Hamburg, 22607 Hamburg, Germany.
- Laboratory for Structural Biology of Infection and Inflammation, DESY, Build. 22a, Notkestr. 85, 22603 Hamburg, Germany.
| |
Collapse
|
6
|
Bouzat C, Mukhtasimova N. The nicotinic acetylcholine receptor as a molecular machine for neuromuscular transmission. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Shen XM, Brengman JM, Shen S, Durmus H, Preethish-Kumar V, Yuceyar N, Vengalil S, Nalini A, Deymeer F, Sine SM, Engel AG. Mutations causing congenital myasthenia reveal principal coupling pathway in the acetylcholine receptor ε-subunit. JCI Insight 2018; 3:97826. [PMID: 29367459 PMCID: PMC5821208 DOI: 10.1172/jci.insight.97826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/12/2017] [Indexed: 11/17/2022] Open
Abstract
We identify 2 homozygous mutations in the ε-subunit of the muscle acetylcholine receptor (AChR) in 3 patients with severe congenital myasthenia: εR218W in the pre-M1 region in 2 patients and εE184K in the β8-β9 linker in 1 patient. Arg218 is conserved in all eukaryotic members of the Cys-loop receptor superfamily, while Glu184 is conserved in the α-, δ-, and ε-subunits of AChRs from all species. εR218W reduces channel gating efficiency 338-fold and AChR expression on the cell surface 5-fold, whereas εE184K reduces channel gating efficiency 11-fold but does not alter AChR cell surface expression. Determinations of the effective channel gating rate constants, combined with mutant cycle analyses, demonstrate strong energetic coupling between εR218 and εE184, and between εR218 and εE45 from the β1-β2 linker, as also observed for equivalent residues in the principal coupling pathway of the α-subunit. Thus, efficient and rapid gating of the AChR channel is achieved not only by coupling between conserved residues within the principal coupling pathway of the α-subunit, but also between corresponding residues in the ε-subunit.
Collapse
Affiliation(s)
- Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Joan M. Brengman
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Shelley Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Hacer Durmus
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Veeramani Preethish-Kumar
- Department of Neurology and
- Clinical Neurosciences, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Nur Yuceyar
- Department of Neurology, Ege University, Izmir, Turkey
| | | | | | - Feza Deymeer
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Steven M. Sine
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
- Departments of Physiology and Biomedical Engineering and of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Degani-Katzav N, Gortler R, Weissman M, Paas Y. Mutational Analysis at Intersubunit Interfaces of an Anionic Glutamate Receptor Reveals a Key Interaction Important for Channel Gating by Ivermectin. Front Mol Neurosci 2017; 10:92. [PMID: 28428744 PMCID: PMC5382172 DOI: 10.3389/fnmol.2017.00092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/17/2017] [Indexed: 11/13/2022] Open
Abstract
The broad-spectrum anthelmintic drug ivermectin (IVM) activates and stabilizes an open-channel conformation of invertebrate chloride-selective glutamate receptors (GluClRs), thereby causing a continuous inflow of chloride ions and sustained membrane hyperpolarization. These effects suppress nervous impulses and vital physiological processes in parasitic nematodes. The GluClRs are pentamers. Homopentameric receptors assembled from the Caenorhabditis elegans (C. elegans) GluClα (GLC-1) subunit can inherently respond to IVM but not to glutamate (the neurotransmitter). In contrast, heteromeric GluClα/β (GLC-1/GLC-2) assemblies respond to both ligands, independently of each other. Glutamate and IVM bind at the interface between adjacent subunits, far away from each other; glutamate in the extracellular ligand-binding domain, and IVM in the ion-channel pore periphery. To understand the importance of putative intersubunit contacts located outside the glutamate and IVM binding sites, we introduced mutations at intersubunit interfaces, between these two binding-site types. Then, we determined the effect of these mutations on the activation of the heteromeric mutant receptors by glutamate and IVM. Amongst these mutations, we characterized an α-subunit point mutation located close to the putative IVM-binding pocket, in the extracellular end of the first transmembrane helix (M1). This mutation (αF276A) moderately reduced the sensitivity of the heteromeric GluClαF276A/βWT receptor to glutamate, and slightly decreased the receptor subunits’ cooperativity in response to glutamate. In contrast, the αF276A mutation drastically reduced the sensitivity of the receptor to IVM and significantly increased the receptor subunits’ cooperativity in response to IVM. We suggest that this mutation reduces the efficacy of channel gating, and impairs the integrity of the IVM-binding pocket, likely by disrupting important interactions between the tip of M1 and the M2-M3 loop of an adjacent subunit. We hypothesize that this physical contact between M1 and the M2-M3 loop tunes the relative orientation of the ion-channel transmembrane helices M1, M2 and M3 to optimize pore opening. Interestingly, pre-exposure of the GluClαF276A/βWT mutant receptor to subthreshold IVM concentration recovered the receptor sensitivity to glutamate. We infer that IVM likely retained its positive modulation activity by constraining the transmembrane helices in a preopen orientation sensitive to glutamate, with no need for the aforementioned disrupted interactions between M1 and the M2-M3 loop.
Collapse
Affiliation(s)
- Nurit Degani-Katzav
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan UniversityRamat Gan, Israel
| | - Revital Gortler
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan UniversityRamat Gan, Israel
| | - Marina Weissman
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan UniversityRamat Gan, Israel
| | - Yoav Paas
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan UniversityRamat Gan, Israel
| |
Collapse
|
9
|
Mukhtasimova N, daCosta CJB, Sine SM. Improved resolution of single channel dwell times reveals mechanisms of binding, priming, and gating in muscle AChR. J Gen Physiol 2016; 148:43-63. [PMID: 27353445 PMCID: PMC4924934 DOI: 10.1085/jgp.201611584] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/27/2016] [Indexed: 11/20/2022] Open
Abstract
The acetylcholine receptor (AChR) from vertebrate skeletal muscle initiates voluntary movement, and its kinetics of activation are crucial for maintaining the safety margin for neuromuscular transmission. Furthermore, the kinetic mechanism of the muscle AChR serves as an archetype for understanding activation mechanisms of related receptors from the Cys-loop superfamily. Here we record currents through single muscle AChR channels with improved temporal resolution approaching half an order of magnitude over our previous best. A range of concentrations of full and partial agonists are used to elicit currents from human wild-type and gain-of-function mutant AChRs. For each agonist-receptor combination, rate constants are estimated from maximum likelihood analysis using a kinetic scheme comprised of agonist binding, priming, and channel gating steps. The kinetic scheme and rate constants are tested by stochastic simulation, followed by incorporation of the experimental step response, sampling rate, background noise, and filter bandwidth. Analyses of the simulated data confirm all rate constants except those for channel gating, which are overestimated because of the established effect of noise on the briefest dwell times. Estimates of the gating rate constants were obtained through iterative simulation followed by kinetic fitting. The results reveal that the agonist association rate constants are independent of agonist occupancy but depend on receptor state, whereas those for agonist dissociation depend on occupancy but not on state. The priming rate and equilibrium constants increase with successive agonist occupancy, and for a full agonist, the forward rate constant increases more than the equilibrium constant; for a partial agonist, the forward rate and equilibrium constants increase equally. The gating rate and equilibrium constants also increase with successive agonist occupancy, but unlike priming, the equilibrium constants increase more than the forward rate constants. As observed for a full and a partial agonist, the gain-of-function mutation affects the relationship between rate and equilibrium constants for priming but not for channel gating. Thus, resolving brief single channel currents distinguishes priming from gating steps and reveals how the corresponding rate and equilibrium constants depend on agonist occupancy.
Collapse
Affiliation(s)
- Nuriya Mukhtasimova
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Corrie J B daCosta
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905 Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905 Department of Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|