1
|
Zhang T, Bai J, Chen G, Chen Z, Zeng S, Yang Y, Wu Z. 3-Acetyldeoxynivalenol induces apoptosis, barrier dysfunction and endoplasmic reticulum stress by inhibiting mTORC1-dependent autophagy in porcine enterocytes. Chem Biol Interact 2023; 384:110695. [PMID: 37659622 DOI: 10.1016/j.cbi.2023.110695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
3-Acetyldeoxynivalenol (3-Ac-DON), an acetylated form of deoxynivalenol, is widely present in mycotoxin-contaminated food, feed as well as in other natural sources. Ingestion of 3-Ac-DON may result in intestinal dysfunction, leading to gut diseases in humans and animals. Nevertheless, the molecular mechanism of 3-Ac-DON in intestinal epithelial cytotoxicity remains unclear. In this study, intestinal porcine epithelial cell line 1 (IPEC-1) cells were treated with different concentrations of 3-Ac-DON for 12 h or 24 h, respectively. The results showed that 3-Ac-DON caused decreased cell viability, cell cycle arrest in G1 phase and depolarization of mitochondrial membrane potential. Western blotting analysis showed that 3-Ac-DON significantly decreased the expression of tight junction proteins, inhibited autophagy and activated endoplasmic reticulum (ER) stress in IPEC-1 cells (P < 0.05). Further investigation demonstrated that 3-Ac-DON caused apoptosis, ER stress and barrier dysfunction were reversed after co-treatment with the autophagy activator rapamycin (100 nM), indicating that autophagy plays a key role in the process of 3-Ac-DON-induced cell damage. In addition, we demonstrated that 3-Ac-DON inhibits the occurrence of autophagy mediated by mTORC1 protein. In conclusion, our research indicated that the mTORC1 protein and autophagy played a key role in the 3-Ac-DON-induced cytotoxic in IPEC-1 cells, which would provide new therapeutic targets and ideas for 3-Ac-DON-mediated intestinal injury.
Collapse
Affiliation(s)
- Tongkun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China
| | - Jun Bai
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China
| | - Guangye Chen
- SILC Besiness School, Shanghai University, Shanghai, 200444, China
| | - Zhaohui Chen
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China
| | - Shenming Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Integration of Transcriptomics and Non-Targeted Metabolomics Reveals the Underlying Mechanism of Skeletal Muscle Development in Duck during Embryonic Stage. Int J Mol Sci 2023; 24:ijms24065214. [PMID: 36982289 PMCID: PMC10049352 DOI: 10.3390/ijms24065214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Skeletal muscle is an important economic trait in duck breeding; however, little is known about the molecular mechanisms of its embryonic development. Here, the transcriptomes and metabolomes of breast muscle of Pekin duck from 15 (E15_BM), 21 (E21_BM), and 27 (E27_BM) days of incubation were compared and analyzed. The metabolome results showed that the differentially accumulated metabolites (DAMs), including the up-regulated metabolites, l-glutamic acid, n-acetyl-1-aspartylglutamic acid, l-2-aminoadipic acid, 3-hydroxybutyric acid, bilirubin, and the significantly down-regulated metabolites, palmitic acid, 4-guanidinobutanoate, myristic acid, 3-dehydroxycarnitine, and s-adenosylmethioninamine, were mainly enriched in metabolic pathways, biosynthesis of secondary metabolites, biosynthesis of cofactors, protein digestion and absorption, and histidine metabolism, suggesting that these pathways may play important roles in the muscle development of duck during the embryonic stage. Moreover, a total of 2142 (1552 up-regulated and 590 down-regulated), 4873 (3810 up-regulated and 1063 down-regulated), and 2401 (1606 up-regulated and 795 down-regulated) DEGs were identified from E15_BM vs. E21_BM, E15_BM vs. E27_BM and E21_BM vs. E27_BM in the transcriptome, respectively. The significantly enriched GO terms from biological processes were positive regulation of cell proliferation, regulation of cell cycle, actin filament organization, and regulation of actin cytoskeleton organization, which were associated with muscle or cell growth and development. Seven significant pathways, highly enriched by FYN, PTK2, PXN, CRK, CRKL, PAK, RHOA, ROCK, INSR, PDPK1, and ARHGEF, were focal adhesion, regulation of actin cytoskeleton, wnt signaling pathway, insulin signaling pathway, extracellular matrix (ECM)-receptor interaction, cell cycle, and adherens junction, which participated in regulating the development of skeletal muscle in Pekin duck during the embryonic stage. KEGG pathway analysis of the integrated transcriptome and metabolome indicated that the pathways, including arginine and proline metabolism, protein digestion and absorption, and histidine metabolism, were involved in regulating skeletal muscle development in embryonic Pekin duck. These findings suggested that the candidate genes and metabolites involved in crucial biological pathways may regulate muscle development in the Pekin duck at the embryonic stage, and increased our understanding of the molecular mechanisms underlying the avian muscle development.
Collapse
|
3
|
Pan-Src kinase inhibitor treatment attenuates diabetic kidney injury via inhibition of Fyn kinase-mediated endoplasmic reticulum stress. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1086-1097. [PMID: 35918533 PMCID: PMC9440146 DOI: 10.1038/s12276-022-00810-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/13/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022]
Abstract
Src family kinases (SFKs) have been implicated in the pathogenesis of kidney fibrosis. However, the specific mechanism by which SFKs contribute to the progression of diabetic kidney disease (DKD) remains unclear. Our preliminary transcriptome analysis suggested that SFK expression was increased in diabetic kidneys and that the expression of Fyn (a member of the SFKs), along with genes related to unfolded protein responses from the endoplasmic reticulum (ER) stress signaling pathway, was upregulated in the tubules of human diabetic kidneys. Thus, we examined whether SFK-induced ER stress is associated with DKD progression. Mouse proximal tubular (mProx24) cells were transfected with Fyn or Lyn siRNA and exposed to high glucose and palmitate (HG-Pal). Streptozotocin-induced diabetic rats were treated with KF-1607, a novel pan-Src kinase inhibitor (SKI) with low toxicity. The effect of KF-1607 was compared to that of losartan, a standard treatment for patients with DKD. Among the SFK family members, the Fyn and Lyn kinases were upregulated under diabetic stress. HG-Pal induced p70S6 kinase and JNK/CHOP signaling and promoted tubular injury. Fyn knockdown but not Lyn knockdown inhibited this detrimental signaling pathway. In addition, diabetic rats treated with KF-1607 showed improved kidney function and decreased ER stress, inflammation, and fibrosis compared with those treated with losartan. Collectively, these findings indicate that Fyn kinase is a specific member of the SFKs implicated in ER stress activation leading to proximal tubular injury in the diabetic milieu and that pan-SKI treatment attenuates kidney injury in diabetic rats. These data highlight Fyn kinase as a viable target for the development of therapeutic agents for DKD. Insights into a signaling pathway that promotes diabetic kidney disease could lead to new therapies that protect against this major cause of kidney failure. Past studies have suggested that the various Src family kinase (SFK) signaling proteins play a part in the cell death and scar tissue formation associated with diabetic kidney disease. Hunjoo Ha of Ewha Womans University, Seoul, South Korea, and colleagues have now focused on one particular SFK, Fyn, as a direct driver of the kidney damage seen in mouse models of diabetes. Genetic interventions that selectively inhibit Fyn suppressed this damage, as did treatment with an oral drug that broadly inactivates SFKs. This experimental drug proved as effective as controlling inflammation and oxidative damage in the kidney as an already clinically approved treatment, confirming the significance of SFK signaling in this condition.
Collapse
|
4
|
Src Family Kinases: A Potential Therapeutic Target for Acute Kidney Injury. Biomolecules 2022; 12:biom12070984. [PMID: 35883540 PMCID: PMC9312434 DOI: 10.3390/biom12070984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Src family kinases (SFKs) are non-receptor tyrosine kinases and play a key role in regulating signal transduction. The mechanism of SFKs in various tumors has been widely studied, and there are more and more studies on its role in the kidney. Acute kidney injury (AKI) is a disease with complex pathogenesis, including oxidative stress (OS), inflammation, endoplasmic reticulum (ER) stress, autophagy, and apoptosis. In addition, fibrosis has a significant impact on the progression of AKI to developing chronic kidney disease (CKD). The mortality rate of this disease is very high, and there is no effective treatment drug at present. In recent years, some studies have found that SFKs, especially Src, Fyn, and Lyn, are involved in the pathogenesis of AKI. In this paper, the structure, function, and role of SFKs in AKI are discussed. SFKs play a crucial role in the occurrence and development of AKI, making them promising molecular targets for the treatment of AKI.
Collapse
|
5
|
Tan C, Liu X, Zhang X, Peng W, Wang H, Zhou W, Jiang J, Mo L, Chen Y, Chen L. Fyn kinase regulates dopaminergic neuronal apoptosis in animal and cell models of high glucose (HG) treatment. BMC Mol Cell Biol 2021; 22:58. [PMID: 34863087 PMCID: PMC8642997 DOI: 10.1186/s12860-021-00398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
Background High glucose (HG) is linked to dopaminergic neuron loss and related Parkinson’s disease (PD), but the mechanism is unclear. Results Rats and differentiated SH-SY5Y cells were used to investigate the effect of HG on dopaminergic neuronal apoptotic death. We found that a 40-day HG diet elevated cleaved caspase 3 levels and activated Fyn and mTOR/S6K signaling in the substantia nigra of rats. In vitro, 6 days of HG treatment activated Fyn, enhanced binding between Fyn and mTOR, activated mTOR/S6K signaling, and induced neuronal apoptotic death. The proapoptotic effect of HG was rescued by either the Fyn inhibitor PP1 or the mTOR inhibitor rapamycin. PP1 inhibited mTOR/S6K signaling, but rapamycin was unable to modulate Fyn activation. Conclusions HG induces dopaminergic neuronal apoptotic death via the Fyn/mTOR/S6K pathway.
Collapse
Affiliation(s)
- Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | | | - Wuxue Peng
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Hui Wang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Wen Zhou
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Jin Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
6
|
CO-Releasing Molecule-2 Prevents Acute Kidney Injury through Suppression of ROS-Fyn-ER Stress Signaling in Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9947772. [PMID: 34326922 PMCID: PMC8277502 DOI: 10.1155/2021/9947772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) most commonly appears in critically ill patients in hospitals. AKI is characterized as a quick deterioration of kidney function and has recently been identified to be tightly interlinked with chronic kidney diseases. The emerging major mediators of AKI include oxidative stress and endoplasmic reticulum (ER) stress. Carbon monoxide (CO) attenuates oxidative stress and ER stress in various cells, while Fyn, a member of the Src kinase family, is activated by oxidative stress and contributes to ER stress in skeletal muscle. Considering these, the objective of the current research was to determine (i) the involvement of Fyn in ER stress-mediated AKI and (ii) the effect of CO-releasing molecule-2 (CORM2) on reactive oxygen species- (ROS-) Fyn-ER stress-mediated AKI. Pretreatment with CORM2 (30 mg/kg) efficiently inhibited LPS (30 mg/kg)-induced oxidative stress, inflammation, and cellular apoptosis during AKI in C57BL/6J mice. Also, CORM2 efficiently suppressed the activation of Fyn and ER stress in AKI mice. Consistently, pretreatment with CORM2 inhibited oxidative stress, Fyn activation, ER stress, inflammation, and apoptosis in LPS- or H2O2-stimulated proximal epithelial tubular cells. Fyn inhibition using siRNA or an inhibitor (PP2) significantly attenuated ER stress responses in the cells. These data suggest that CORM2 may become a potential treatment option against ROS-Fyn-ER stress-mediated AKI.
Collapse
|
7
|
Ramírez-Jarquín UN, Shahani N, Pryor W, Usiello A, Subramaniam S. The mammalian target of rapamycin (mTOR) kinase mediates haloperidol-induced cataleptic behavior. Transl Psychiatry 2020; 10:336. [PMID: 33009372 PMCID: PMC7532208 DOI: 10.1038/s41398-020-01014-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/20/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a ubiquitously expressed serine/threonine kinase protein complex (mTORC1 or mTORC2) that orchestrates diverse functions ranging from embryonic development to aging. However, its brain tissue-specific roles remain less explored. Here, we have identified that the depletion of the mTOR gene in the mice striatum completely prevented the extrapyramidal motor side effects (catalepsy) induced by the dopamine 2 receptor (D2R) antagonist haloperidol, which is the most widely used typical antipsychotic drug. Conversely, a lack of striatal mTOR in mice did not affect catalepsy triggered by the dopamine 1 receptor (D1R) antagonist SCH23390. Along with the lack of cataleptic effects, the administration of haloperidol in mTOR mutants failed to increase striatal phosphorylation levels of ribosomal protein pS6 (S235/236) as seen in control animals. To confirm the observations of the genetic approach, we used a pharmacological method and determined that the mTORC1 inhibitor rapamycin has a profound influence upon post-synaptic D2R-dependent functions. We consistently found that pretreatment with rapamycin entirely prevented (in a time-dependent manner) the haloperidol-induced catalepsy, and pS6K (T389) and pS6 (S235/236) signaling upregulation, in wild-type mice. Collectively, our data indicate that striatal mTORC1 blockade may offer therapeutic benefits with regard to the prevention of D2R-dependent extrapyramidal motor side effects of haloperidol in psychiatric illness.
Collapse
Affiliation(s)
- Uri Nimrod Ramírez-Jarquín
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458 USA
| | - Neelam Shahani
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458 USA
| | - William Pryor
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458 USA
| | - Alessandro Usiello
- grid.9841.40000 0001 2200 8888Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy ,grid.4691.a0000 0001 0790 385XLaboratory of Behavioral Neuroscience, CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida, 33458, USA.
| |
Collapse
|
8
|
Uddin MJ, Dorotea D, Pak ES, Ha H. Fyn Kinase: A Potential Therapeutic Target in Acute Kidney Injury. Biomol Ther (Seoul) 2020; 28:213-221. [PMID: 32336052 PMCID: PMC7216742 DOI: 10.4062/biomolther.2019.214] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 01/29/2023] Open
Abstract
Acute kidney injury (AKI) is a common disease with a complex pathophysiology which significantly contributes to the development of chronic kidney disease and end stage kidney failure. Preventing AKI can consequently reduce mortality, morbidity, and healthcare burden. However, there are no effective drugs in use for either prevention or treatment of AKI. Developing therapeutic agents with pleiotropic effects covering multiple pathophysiological pathways are likely to be more effective in attenuating AKI. Fyn, a non-receptor tyrosine kinase, has been acknowledged to integrate multiple injurious stimuli in the kidney. Limited studies have shown increased Fyn transcription level and activation under experimental AKI. Activated Fyn kinase propagates various downstream signaling pathways associated to the progression of AKI, such as oxidative stress, inflammation, endoplasmic reticulum stress, as well as autophagy dysfunction. The versatility of Fyn kinase in mediating various pathophysiological pathways suggests that its inhibition can be a potential strategy in attenuating AKI.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Debra Dorotea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Eun Seon Pak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
9
|
Role of c-Jun N-terminal Kinase (JNK) in Obesity and Type 2 Diabetes. Cells 2020; 9:cells9030706. [PMID: 32183037 PMCID: PMC7140703 DOI: 10.3390/cells9030706] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/16/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been described as a global epidemic and is a low-grade chronic inflammatory disease that arises as a consequence of energy imbalance. Obesity increases the risk of type 2 diabetes (T2D), by mechanisms that are not entirely clarified. Elevated circulating pro-inflammatory cytokines and free fatty acids (FFA) during obesity cause insulin resistance and ß-cell dysfunction, the two main features of T2D, which are both aggravated with the progressive development of hyperglycemia. The inflammatory kinase c-jun N-terminal kinase (JNK) responds to various cellular stress signals activated by cytokines, free fatty acids and hyperglycemia, and is a key mediator in the transition between obesity and T2D. Specifically, JNK mediates both insulin resistance and ß-cell dysfunction, and is therefore a potential target for T2D therapy.
Collapse
|
10
|
Tang Y, Kwon H, Neel BA, Kasher-Meron M, Pessin JB, Yamada E, Pessin JE. The fructose-2,6-bisphosphatase TIGAR suppresses NF-κB signaling by directly inhibiting the linear ubiquitin assembly complex LUBAC. J Biol Chem 2018; 293:7578-7591. [PMID: 29650758 DOI: 10.1074/jbc.ra118.002727] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/05/2018] [Indexed: 12/28/2022] Open
Abstract
The systems integration of whole-body metabolism and immune signaling are central homeostatic mechanisms necessary for maintenance of normal physiology, and dysregulation of these processes leads to a variety of chronic disorders. However, the intracellular mechanisms responsible for cell-autonomous cross-talk between the inflammatory signaling pathways and metabolic flux have remained enigmatic. In this study, we discovered that the fructose-2,6-bisphosphatase TIGAR (Tp53-induced glycolysis and apoptosis regulator) critically regulates NF-κB activation. We found that TIGAR potently inhibits NF-κB-dependent gene expression by suppressing the upstream activation of IKKβ phosphorylation and kinase activation. This inhibition occurred through a direct binding competition between NEMO and TIGAR for association with the linear ubiquitination assembly complex (LUBAC). This competition prevented linear ubiquitination of NEMO, which is required for activation of IKKβ and other downstream targets. Furthermore, a TIGAR phosphatase activity-deficient mutant was equally effective as WT TIGAR in inhibiting NEMO linear ubiquitination, IKKβ phosphorylation/activation, and NF-κB signaling, indicating that TIGAR's effect on NF-κB signaling is due to its interaction with LUBAC. Physiologically, TIGAR knockout mice displayed enhanced adipose tissue NF-κB signaling, whereas adipocyte-specific overexpression of TIGAR suppressed adipose tissue NF-κB signaling. Together, these results demonstrate that TIGAR has a nonenzymatic molecular function that modulates the NF-κB signaling pathway by directly inhibiting the E3 ligase activity of LUBAC.
Collapse
Affiliation(s)
- Yan Tang
- From the Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Hyokjoon Kwon
- the Rutgers Robert Wood Johnson School of Medicine, Rutgers University, Piscataway, New Jersey 08854
| | | | - Michal Kasher-Meron
- From the Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jacob B Pessin
- From the Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Eijiro Yamada
- the Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan, and
| | - Jeffrey E Pessin
- From the Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, .,the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
11
|
Abstract
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR)-dependent pathway is one of the most integral pathways linked to cell metabolism, proliferation, differentiation, and survival. This pathway is dysregulated in a variety of diseases, including neoplasia, immune-mediated diseases, and fibroproliferative diseases such as pulmonary fibrosis. The mTOR kinase is frequently referred to as the master regulator of this pathway. Alterations in mTOR signaling are closely associated with dysregulation of autophagy, inflammation, and cell growth and survival, leading to the development of lung fibrosis. Inhibitors of mTOR have been widely studied in cancer therapy, as they may sensitize cancer cells to radiation therapy. Studies also suggest that mTOR inhibitors are promising modulators of fibroproliferative diseases such as idiopathic pulmonary fibrosis (IPF) and radiation-induced pulmonary fibrosis (RIPF). Therefore, mTOR represents an attractive and unique therapeutic target in pulmonary fibrosis. In this review, we discuss the pathological role of mTOR kinase in pulmonary fibrosis and examine how mTOR inhibitors may mitigate fibrotic progression.
Collapse
|
12
|
Chitranshi N, Dheer Y, Abbasi M, You Y, Graham SL, Gupta V. Glaucoma Pathogenesis and Neurotrophins: Focus on the Molecular and Genetic Basis for Therapeutic Prospects. Curr Neuropharmacol 2018; 16:1018-1035. [PMID: 29676228 PMCID: PMC6120108 DOI: 10.2174/1570159x16666180419121247] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Retinal ganglion cell (RGC) degeneration is a major feature of glaucoma pathology. Neuroprotective approaches that delay or halt the progression of RGC loss are needed to prevent vision loss which can occur even after conventional medical or surgical treatments to lower intraocular pressure. OBJECTIVE The aim of this review was to examine the progress in genetics and cellular mechanisms associated with endoplasmic reticulum (ER) stress, RGC dysfunction and cell death pathways in glaucoma. MATERIALS AND METHODS Here, we review the involvement of neurotrophins like brain derived neurotrophic factor (BDNF) and its high affinity receptor tropomyosin receptor kinase (TrkB) in glaucoma. The role of ER stress markers in human and animal retinas in health and disease conditions is also discussed. Further, we analysed the literature highlighting genetic linkage in the context of primary open angle glaucoma and suggested mechanistic insights into potential therapeutic options relevant to glaucoma management. RESULTS The literature review of the neurobiology underlying neurotrophin pathways, ER stress and gene associations provide critical insights into association of RGCs death in glaucoma. Alteration in signalling pathway is associated with increased risk of misfolded protein aggregation in ER promoting RGC apoptosis. Several genes that are linked with neurotrophin signalling pathways have been reported to be associated with glaucoma pathology. CONCLUSION Understanding genetic heterogeneity and involvement of neurotrophin biology in glaucoma could help to understand the complex pathophysiology of glaucoma. Identification of novel molecular targets will be critical for drug development and provide neuroprotection to the RGCs and optic nerve.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Address correspondence to this author at the Faculty of Medicine and Health Sciences, 75, Talavera Road, Macquarie University, Sydney, NSW 2109, Australia; Tel: +61-298502760; E-mail:
| | | | | | | | | | | |
Collapse
|
13
|
Sharlow ER, Leimgruber S, Lira A, McConnell MJ, Norambuena A, Bloom GS, Epperly MW, Greenberger JS, Lazo JS. A Small Molecule Screen Exposes mTOR Signaling Pathway Involvement in Radiation-Induced Apoptosis. ACS Chem Biol 2016; 11:1428-37. [PMID: 26938669 DOI: 10.1021/acschembio.5b00909] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Individuals are at risk of exposure to acute ionizing radiation (IR) from a nuclear accident or terrorism, but we lack effective therapies to mitigate the lethal IR effects. In the current study, we exploited an optimized, cell-based, high throughput screening assay to interrogate a small molecule library comprising 3437 known pharmacologically active compounds for mitigation against IR-induced apoptosis. Thirty-three library compounds significantly reduced apoptosis when administered 1 h after 4 Gy IR. Two- or three-dimensional computational structural analyses of the compounds indicated only one or two chemical clusters with most of the compounds being unique structures. The mechanistic target of rapamycin complex 1 (mTORC1) inhibitor, rapamycin, was the most potent compound, and it mitigated apoptosis by 50% at 200 ± 50 pM. Other mTOR inhibitors, namely everolimus, AZD8055, and torin 1, also suppressed apoptosis, providing additional pharmacological evidence for mTOR pathway involvement in regulating cell death after IR. Everolimus and torin 1 treatment after IR decreased the S phase population and enforced both G1 and G2 phase arrest. This prorogation of cell cycle progression was accompanied by decreased IR-induced DNA damage measured by γH2AX phosphorylation at Ser139. RNA interference-mediated knockdown of the respective mTORC1 and mTORC2 subunits, Raptor or Rictor, also mitigated IR-induced apoptosis. Collectively, this study suggests a central role for the mTOR signaling in the cytotoxic response to IR and offers a useful platform to probe for additional agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael W. Epperly
- Department
of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Joel S. Greenberger
- Department
of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | | |
Collapse
|