1
|
Gong W, Wu T, Liu Y, Jiao S, Wang W, Yan W, Li Y, Liu Y, Zhang Y, Wang H. Insight into the photodynamic mechanism and protein binding of a nitrosyl iron-sulfur [Fe 2S 2(NO) 4] 2- cluster. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124603. [PMID: 38878720 DOI: 10.1016/j.saa.2024.124603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 07/08/2024]
Abstract
Iron-sulfur cluster conversion and nitrosyl modification are involved in regulating their functions and play critical roles in signaling for biological systems. Hereby, the photo-induced dynamic process of (Me4N)2[Fe2S2(NO)4] was monitored using time-resolved electron paramagnetic resonance (EPR) spectra, MS spectra and cellular imaging methods. Photo-irradiation and the solvent affect the reaction rates and products. Spectroscopic and kinetic studies have shown that the process involves at least three intermediates: spin-trapped NO free radical species with a gav at 2.040, and two other iron nitrosyl species, dinitrosyl iron units (DNICs) and mononitrosyl iron units (MNICs) with gav values at 2.031 and 2.024, respectively. Moreover, the [Fe2S2(NO)4]2- cluster could bind with ferritin and decompose gradually, and a binding state of dinitrosyl iron coordinated with Cys102 of the recombinant human heavy chain ferritin (rHuHF) was finally formed. This study provides insight into the photodynamic mechanism of nitrosyl iron - sulfur clusters to improve the understanding of physiological activity.
Collapse
Affiliation(s)
- Wenjun Gong
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Tao Wu
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yuhua Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Shuxiang Jiao
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wenjun Yan
- Institute of Coal Chemistry, Chinese Academy of Sciences,Taiyuan 030001, China
| | - Yanqiu Li
- Institute of Coal Chemistry, Chinese Academy of Sciences,Taiyuan 030001, China
| | - Yanhong Liu
- Techinical Institute of Physics & Chemistry, CAS, Beijing 100190, China
| | - Yun Zhang
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
2
|
Crack JC, Le Brun NE. Synergy of native mass spectrometry and other biophysical techniques in studies of iron‑sulfur cluster proteins and their assembly. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1872:119865. [PMID: 39442807 DOI: 10.1016/j.bbamcr.2024.119865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The application of mass spectrometric methodologies has revolutionised biological chemistry, from identification through to structural and conformational studies of proteins and other macromolecules. Native mass spectrometry (MS), in which proteins retain their native structure, is a rapidly growing field. This is particularly the case for studies of metalloproteins, where non-covalently bound cofactors remain bound following ionisation. Such metalloproteins include those that contain an iron‑sulfur (FeS) cluster and, despite their fragility and O2 sensitivity, they have been a particular focus for applications of native MS because of its capacity to accurately monitor mass changes that reveal chemical changes at the cluster. Here we review recent advances in these applications of native MS, which, together with data from more traditionally applied biophysical methods, have yielded a remarkable breadth of information about the FeS species present, and provided key mechanistic insight not only for FeS cluster proteins themselves, but also their assembly.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Nick E Le Brun
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK..
| |
Collapse
|
3
|
Crack JC, Le Brun NE. Binding of a single nitric oxide molecule is sufficient to disrupt DNA binding of the nitrosative stress regulator NsrR. Chem Sci 2024:d4sc04618h. [PMID: 39464610 PMCID: PMC11500311 DOI: 10.1039/d4sc04618h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
The regulatory protein NsrR, a member of the Rrf2 protein superfamily, plays a major role in the cellular response to nitrosative stress in many benign and pathogenic bacteria. The homodimeric protein binds a [4Fe-4S] cluster in each subunit (termed holo NsrR), and represses transcription of genes primarily involved in NO detoxification. Holo NsrR reacts rapidly with multiple NO molecules per [4Fe-4S] cluster, via a complex reaction, with loss of DNA binding and formation of NsrR-bound iron-nitrosyl species. However, the point at which DNA binding is lost is unknown. Here, we demonstrate using surface plasmon resonance (SPR) and native mass spectrometry (MS) that holo NsrR binds the promoter regions of NsrR-regulated genes with promoter-dependent nanomolar affinity, while hemi-apo NsrR (i.e. one cluster per dimer) binds >10-fold less tightly, and the cluster-free (apo) form not at all. Strikingly, native MS provided detailed information about the reaction of NO with the physiologically relevant form of NsrR, i.e. DNA-bound dimeric NsrR. Reaction with a single NO molecule per NsrR dimer is sufficient to abolish DNA binding. This exquisite sensitivity of DNA binding to NO is consistent with the importance of de-repressing NO detoxification systems at the earliest opportunity to minimise damage due to nitrosative stress. Furthermore, the data show that previously characterised iron-nitrosyls, which form at higher ratios of NO to [4Fe-4S], are not physiologically relevant for regulating the NsrR on/off switch.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy and Pharmacology, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy and Pharmacology, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
4
|
Dodd EL, Le Brun NE. Probing the mechanism of the dedicated NO sensor [4Fe-4S] NsrR: the effect of cluster ligand environment. J Inorg Biochem 2024; 252:112457. [PMID: 38176366 DOI: 10.1016/j.jinorgbio.2023.112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
NsrR from Streptomyces coelicolor is a bacterial nitric oxide (NO) sensor/nitrosative stress regulator as its primary function, and has been shown to have differential response at low, mid, and high levels of NO. These must correspond to discrete structural changes at the protein-bound [4Fe-4S] cluster in response to stepwise nitrosylation of the cluster. We have investigated the effect of the monohapto carboxylate ligand in the site differentiated [4Fe-4S] cluster cofactor of the protein NsrR on modulating its reactivity to NO with a focus on indentifying mechanistic intermediates. We have prepared a synthetic model [4Fe-4S] cluster complex with tripodal ligand and one single site differentiated site occupied by either thiolate or carboxylate ligand. We report here the mechanistic details of sequential steps of nitrosylation as observed by ESI MS and IR spectroscopy. Parallel non-denaturing mass spectrometry analyses were performed using site-differentiated variants of NsrR with the native aspartic acid, cysteine, or alanine in the position of the forth ligand to the cluster. A mono-nitrosylated synthetic [4Fe-4S] cluster was observed for the first time in a biologically-relevant thiolate-based coordination environment. Combined synthetic and protein data give unprecedented clarity in the modulation of nitrosylation of a [4Fe-4S] cluster.
Collapse
Affiliation(s)
- Erin L Dodd
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
5
|
Nitric Oxide Signaling for Aerial Mycelium Formation in Streptomyces coelicolor A3(2) M145. Appl Environ Microbiol 2022; 88:e0122222. [PMID: 36354316 PMCID: PMC9746327 DOI: 10.1128/aem.01222-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nitric oxide (NO) is a well-known signaling molecule in various organisms. Streptomyces undergoes complex morphological differentiation, similar to that of fungi. A recent study revealed a nitrogen oxide metabolic cycle that forms NO in Streptomyces coelicolor A3(2) M145. Further, endogenously produced NO serves as a signaling molecule. Here, we report that endogenously produced NO regulates cyclic 3',5'-diguanylate (c-di-GMP) levels and controls aerial mycelium formation through the c-di-GMP-binding transcriptional regulator BldD in S. coelicolor A3(2) M145. These observations provide important insights into the mechanisms regulating morphological differentiation. This is the first study to demonstrate a link between NO and c-di-GMP in S. coelicolor A3(2) M145. Morphological differentiation is closely linked to the initiation of secondary metabolism in actinomycetes. Thus, the NO signaling-based regulation of aerial mycelium formation has potential applications in the fermentation industry employing useful actinomycetes. IMPORTANCE Eukaryotic and prokaryotic cells utilize nitric oxide (NO) to regulate physiological functions. Besides its role as a producer of different bioactive substances, Streptomyces is suggested to be involved in mycelial development regulated by endogenously produced NO. However, the regulatory mechanisms are unclear. In this study, we proposed that NO signaling is involved in aerial mycelium formation in S. coelicolor A3(2) M145. NO serves as a signaling molecule for the regulation of intracellular cyclic 3',5'-diguanylate (c-di-GMP) levels, resulting in aerial mycelium formation controlled by a c-di-GMP receptor, BldD. As the abundant production of valuable secondary metabolites is closely related to the initiation of morphological differentiation in Streptomyces, NO may provide value for application in industrial fermentation by serving as a tool for regulating secondary metabolism.
Collapse
|
6
|
Kim Y, Sridharan A, Suess DLM. The Elusive Mononitrosylated [Fe 4 S 4 ] Cluster in Three Redox States. Angew Chem Int Ed Engl 2022; 61:e202213032. [PMID: 36194444 PMCID: PMC9669169 DOI: 10.1002/anie.202213032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Indexed: 11/06/2022]
Abstract
Iron-sulfur clusters are well-established targets in biological nitric oxide (NO) chemistry, but the key intermediate in these processes-a mononitrosylated [Fe4 S4 ] cluster-has not been fully characterized in a protein or a synthetic model thereof. Here, we report the synthesis of a three-member redox series of isostructural mononitrosylated [Fe4 S4 ] clusters. Mononitrosylation was achieved by binding NO to a 3 : 1 site-differentiated [Fe4 S4 ]+ cluster; subsequent oxidation and reduction afforded the other members of the series. All three clusters feature a local high-spin Fe3+ center antiferromagnetically coupled to 3 [NO]- . The observation of an anionic NO ligand suggests that NO binding is accompanied by formal electron transfer from the cluster to NO. Preliminary reactivity studies with the monocationic cluster demonstrate that exposure to excess NO degrades the cluster, supporting the intermediacy of mononitrosylated intermediates in NO sensing/signaling.
Collapse
Affiliation(s)
- Youngsuk Kim
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AveCambridgeMA 02139USA
- Department of ChemistryPusan National UniversityBusan46241Republic of Korea
| | - Arun Sridharan
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AveCambridgeMA 02139USA
| | - Daniel L. M. Suess
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AveCambridgeMA 02139USA
| |
Collapse
|
7
|
Rohac R, Crack JC, de Rosny E, Gigarel O, Le Brun NE, Fontecilla-Camps JC, Volbeda A. Structural determinants of DNA recognition by the NO sensor NsrR and related Rrf2-type [FeS]-transcription factors. Commun Biol 2022; 5:769. [PMID: 35908109 PMCID: PMC9338935 DOI: 10.1038/s42003-022-03745-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
Abstract
Several transcription factors of the Rrf2 family use an iron-sulfur cluster to regulate DNA binding through effectors such as nitric oxide (NO), cellular redox status and iron levels. [4Fe-4S]-NsrR from Streptomyces coelicolor (ScNsrR) modulates expression of three different genes via reaction and complex formation with variable amounts of NO, which results in detoxification of this gas. Here, we report the crystal structure of ScNsrR complexed with an hmpA1 gene operator fragment and compare it with those previously reported for [2Fe-2S]-RsrR/rsrR and apo-IscR/hyA complexes. Important structural differences reside in the variation of the DNA minor and major groove widths. In addition, different DNA curvatures and different interactions with the protein sensors are observed. We also report studies of NsrR binding to four hmpA1 variants, which indicate that flexibility in the central region is not a key binding determinant. Our study explores the promotor binding specificities of three closely related transcriptional regulators. The crystal structure of the iron-sulfur protein NsrR from Streptomyces coelicolor bound to a gene operator fragment is reported and compared with other structures, giving insight into the structural determinants of DNA recognition by the NO sensor.
Collapse
Affiliation(s)
- Roman Rohac
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Eve de Rosny
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France
| | - Océane Gigarel
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Juan C Fontecilla-Camps
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France
| | - Anne Volbeda
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France.
| |
Collapse
|
8
|
Crack JC, Balasiny BK, Bennett SP, Rolfe MD, Froes A, MacMillan F, Green J, Cole JA, Le Brun NE. The Di-Iron Protein YtfE Is a Nitric Oxide-Generating Nitrite Reductase Involved in the Management of Nitrosative Stress. J Am Chem Soc 2022; 144:7129-7145. [PMID: 35416044 PMCID: PMC9052748 DOI: 10.1021/jacs.1c12407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 01/09/2023]
Abstract
Previously characterized nitrite reductases fall into three classes: siroheme-containing enzymes (NirBD), cytochrome c hemoproteins (NrfA and NirS), and copper-containing enzymes (NirK). We show here that the di-iron protein YtfE represents a physiologically relevant new class of nitrite reductases. Several functions have been previously proposed for YtfE, including donating iron for the repair of iron-sulfur clusters that have been damaged by nitrosative stress, releasing nitric oxide (NO) from nitrosylated iron, and reducing NO to nitrous oxide (N2O). Here, in vivo reporter assays confirmed that Escherichia coli YtfE increased cytoplasmic NO production from nitrite. Spectroscopic and mass spectrometric investigations revealed that the di-iron site of YtfE exists in a mixture of forms, including nitrosylated and nitrite-bound, when isolated from nitrite-supplemented, but not nitrate-supplemented, cultures. Addition of nitrite to di-ferrous YtfE resulted in nitrosylated YtfE and the release of NO. Kinetics of nitrite reduction were dependent on the nature of the reductant; the lowest Km, measured for the di-ferrous form, was ∼90 μM, well within the intracellular nitrite concentration range. The vicinal di-cysteine motif, located in the N-terminal domain of YtfE, was shown to function in the delivery of electrons to the di-iron center. Notably, YtfE exhibited very low NO reductase activity and was only able to act as an iron donor for reconstitution of apo-ferredoxin under conditions that damaged its di-iron center. Thus, YtfE is a high-affinity, low-capacity nitrite reductase that we propose functions to relieve nitrosative stress by acting in combination with the co-regulated NO-consuming enzymes Hmp and Hcp.
Collapse
Affiliation(s)
- Jason C. Crack
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Basema K. Balasiny
- Institute
of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Sophie P. Bennett
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Matthew D. Rolfe
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Afonso Froes
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Fraser MacMillan
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Jeffrey Green
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Jeffrey A. Cole
- Institute
of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Nick E. Le Brun
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
9
|
|
10
|
Truzzi DR, Medeiros NM, Augusto O, Ford PC. Dinitrosyl Iron Complexes (DNICs). From Spontaneous Assembly to Biological Roles. Inorg Chem 2021; 60:15835-15845. [PMID: 34014639 DOI: 10.1021/acs.inorgchem.1c00823] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dinitrosyl iron complexes (DNICs) are spontaneously and rapidly generated in cells. Their assembly requires nitric oxide (NO), biothiols, and nonheme iron, either labile iron or iron-sulfur clusters. Despite ubiquitous detection by electron paramagnetic resonance in NO-producing cells, the DNIC's chemical biology remains only partially understood. In this Forum Article, we address the reaction mechanisms for endogenous DNIC formation, with a focus on a labile iron pool as the iron source. The capability of DNICs to promote S-nitrosation is discussed in terms of S-nitrosothiol generation associated with the formation and chemical reactivity of DNICs. We also highlight how elucidation of the chemical reactivity and the dynamics of DNICs combined with the development of detection/quantification methods can provide further information regarding their participation in physiological and pathological processes.
Collapse
Affiliation(s)
- Daniela R Truzzi
- Departamento de Bioquímica, Instituto de Química de São Paulo, Universidade de São Paulo, Caixa Postal 26077, CEP05513-970 São Paulo, São Paulo, Brazil
| | - Nathalia M Medeiros
- Departamento de Bioquímica, Instituto de Química de São Paulo, Universidade de São Paulo, Caixa Postal 26077, CEP05513-970 São Paulo, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica, Instituto de Química de São Paulo, Universidade de São Paulo, Caixa Postal 26077, CEP05513-970 São Paulo, São Paulo, Brazil
| | - Peter C Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
11
|
Crack JC, Gray E, Le Brun NE. Sensing mechanisms of iron-sulfur cluster regulatory proteins elucidated using native mass spectrometry. Dalton Trans 2021; 50:7887-7897. [PMID: 34037038 PMCID: PMC8204329 DOI: 10.1039/d1dt00993a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022]
Abstract
The ability to sense and respond to various key environmental cues is important for the survival and adaptability of many bacteria, including pathogens. The particular sensitivity of iron-sulfur (Fe-S) clusters is exploited in nature, such that multiple sensor-regulator proteins, which coordinate the detection of analytes with a (in many cases) global transcriptional response, are Fe-S cluster proteins. The fragility and sensitivity of these Fe-S clusters make studying such proteins difficult, and gaining insight of what they sense, and how they sense it and transduce the signal to affect transcription, is a major challenge. While mass spectrometry is very widely used in biological research, it is normally employed under denaturing conditions where non-covalently attached cofactors are lost. However, mass spectrometry under conditions where the protein retains its native structure and, thus, cofactors, is now itself a flourishing field, and the application of such 'native' mass spectrometry to study metalloproteins is now relatively widespread. Here we describe recent advances in using native MS to study Fe-S cluster proteins. Through its ability to accurately measure mass changes that reflect chemistry occurring at the cluster, this approach has yielded a remarkable richness of information that is not accessible by other, more traditional techniques.
Collapse
Affiliation(s)
- Jason C. Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research ParkNorwichNR4 7TJUK
| | - Elizabeth Gray
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research ParkNorwichNR4 7TJUK
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research ParkNorwichNR4 7TJUK
| |
Collapse
|
12
|
Cole JA. Anaerobic bacterial response to nitric oxide stress: Widespread misconceptions and physiologically relevant responses. Mol Microbiol 2021; 116:29-40. [PMID: 33706420 DOI: 10.1111/mmi.14713] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/27/2022]
Abstract
How anaerobic bacteria protect themselves against nitric oxide-induced stress is controversial, not least because far higher levels of stress were used in the experiments on which most of the literature is based than bacteria experience in their natural environments. This results in chemical damage to enzymes that inactivates their physiological function. This review illustrates how transcription control mechanisms reveal physiological roles of the encoded gene products. Evidence that the hybrid cluster protein, Hcp, is a major high affinity NO reductase in anaerobic bacteria is reviewed: if so, its trans-nitrosation activity is a nonspecific secondary consequence of chemical inactivation. Whether the flavorubredoxin, NorV, is equally effective at such low [NO] is unknown. YtfE is proposed to be an enzyme rather than a source of iron for the repair of iron-sulfur proteins damaged by nitrosative stress. Any reaction catalyzed by YtfE needs to be revealed. The concentration of NO that accumulates in the cytoplasm of anaerobic bacteria is unknown, but indirect evidence indicates that it is in the pM to low nM range. Also unknown are the functions of the NO-inducible cytoplasmic proteins YgbA, YeaR, or YoaG. Experiments to resolve some of these questions are proposed.
Collapse
Affiliation(s)
- J A Cole
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| |
Collapse
|
13
|
Abstract
Iron-sulfur clusters constitute a large and widely distributed group of protein cofactors that play key roles in a wide range of metabolic processes. The inherent reactivity of iron-sulfur clusters toward small molecules, for example, O2, NO, or free Fe, makes them ideal for sensing changes in the cellular environment. Nondenaturing, or native, MS is unique in its ability to preserve the noncovalent interactions of many (if not all) species, including stable intermediates, while providing accurate mass measurements in both thermodynamic and kinetic experimental regimes. Here, we provide practical guidance for the study of iron-sulfur proteins by native MS, illustrated by examples where it has been used to unambiguously determine the type of cluster coordinated to the protein framework. We also describe the use of time-resolved native MS to follow the kinetics of cluster conversion, allowing the elucidation of the precise series of molecular events for all species involved. Finally, we provide advice on a unique approach to a typical thermodynamic titration, uncovering early, quasi-stable, intermediates in the reaction of a cluster with nitric oxide, resulting in cluster nitrosylation.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, UK.
| |
Collapse
|
14
|
Jing Q, Liu L, Zhang Y, Xie L, Song L, Wang W, Liu Y, Zhao X, Wang H. Structure, photodynamic reaction and DNA photocleavage properties of a nitrosyl iron-sulfur cluster (Me 4N) 2[Fe 2S 2(NO) 4]: A DFT calculation and experimental study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118401. [PMID: 32408226 DOI: 10.1016/j.saa.2020.118401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Density functional theory calculations were performed on the structure of the nitrosyl iron-sulfur cluster (Me4N)2[Fe2S2(NO)4]. The IR spectra were assigned and the electronic ground-state properties in different solvents were analyzed. Dynamic conversion of [Fe2S2(NO)4]2- was analyzed quantitatively using the time-resolved IR spectra in different solvents. Photo irradiation and polarity of solvent obviously affect the reaction rates, which are faster in CH3CN and CH3OH than those in DMSO and water. The calculated orbital energies of HOMOs are higher and those of LUMO-HOMO gap are smaller in CH3CN and CH3OH than those in DMSO and water, which is consistent with the reaction rate and explains the experimental observation. Moreover, the photo-induced nitric oxide (NO) release and cluster conversion was identified using EPR spectra. The photocleavage of pBR322 DNA was observed, both NO and oxygen related free radicals play key roles in the process. The study provides an effective method to monitor the photodynamic reactions for better understanding of the physiological activity of nitrosyl iron-sulfur clusters.
Collapse
Affiliation(s)
- Qi Jing
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Lifang Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yu Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Leilei Xie
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Luna Song
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yanhong Liu
- Technical Institute of Physics & Chemistry, CAS, Beijing 100190, China
| | - Xuan Zhao
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
15
|
Ganesh I, Gwon DA, Lee JW. Gas-Sensing Transcriptional Regulators. Biotechnol J 2020; 15:e1900345. [PMID: 32362055 DOI: 10.1002/biot.201900345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Indexed: 11/10/2022]
Abstract
Gas molecules are ubiquitous in the environment and are used as nutrient and energy sources for living organisms. Many organisms, therefore, have developed gas-sensing systems to respond efficiently to changes in the atmospheric environment. In microorganisms and plants, two-component systems (TCSs) and transcription factors (TFs) are two primary mechanisms to sense gas molecules. In this review, gas-sensing transcriptional regulators, TCSs, and TFs, focusing on protein structures, mechanisms of gas molecule interaction, DNA binding regions of transcriptional regulators, signal transduction mechanisms, and gene expression regulation are discussed. At first, transcriptional regulators that directly sense gas molecules with the help of a prosthetic group is described and then gas-sensing systems that indirectly recognize the presence of gas molecules is explained. Overall, this review provides a comprehensive understanding of gas-sensing transcriptional regulators in microorganisms and plants, and proposes a future perspective on the use of gas-sensing transcriptional regulators.
Collapse
Affiliation(s)
- Irisappan Ganesh
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Da-Ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
16
|
Vanin AF. What is the Mechanism of Nitric Oxide Conversion into Nitrosonium Ions Ensuring S-Nitrosating Processes in Living Organisms. Cell Biochem Biophys 2019; 77:279-292. [PMID: 31586291 DOI: 10.1007/s12013-019-00886-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/12/2019] [Indexed: 12/29/2022]
Abstract
Here, I present the data testifying that the conversion of free radical NO molecules to nitrosonium ions (NO+), which are necessary for the realization of one of NO biological effects (S-nitrosation), may occur in living organisms after binding NO molecules to loosely bound iron (Fe2+ ions) with the subsequent mutual one-electron oxidation-reduction of NO molecules (their disproportionation). Inclusion of thiol-containing substances as iron ligands into this process prevents hydrolysis of NO+ ions bound to iron thus providing the formation of stable dinitrosyl iron complexes (DNIC) with thiol ligands. Such complexes act in living organisms as donors of NO and NO+, providing stabilization and transfer of these agents via the autocrine and paracrine pathways. Without loosely bound iron (labile iron pool) and thiols participating in the DNIC formation, NO functioning as one of universal regulators of diverse metabolic processes would be impossible.
Collapse
Affiliation(s)
- Anatoly F Vanin
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences; Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Kosygin Str.4, Moscow, 119991, Russia.
| |
Collapse
|
17
|
Crack JC, Le Brun NE. Mass Spectrometric Identification of [4Fe–4S](NO)
x
Intermediates of Nitric Oxide Sensing by Regulatory Iron–Sulfur Cluster Proteins. Chemistry 2019; 25:3675-3684. [DOI: 10.1002/chem.201806113] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Jason C. Crack
- Centre for Molecular and Structural BiochemistrySchool of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Nick E. Le Brun
- Centre for Molecular and Structural BiochemistrySchool of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
18
|
Grabarczyk DB, Ash PA, Myers WK, Dodd EL, Vincent KA. Dioxygen controls the nitrosylation reactions of a protein-bound [4Fe4S] cluster. Dalton Trans 2019; 48:13960-13970. [DOI: 10.1039/c9dt00924h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Iron–sulfur clusters are exceptionally tuneable protein cofactors, and as one of their many roles they are involved in biological responses to nitrosative stress.
Collapse
Affiliation(s)
- Daniel B. Grabarczyk
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Philip A. Ash
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - William K. Myers
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Erin L. Dodd
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Kylie A. Vincent
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| |
Collapse
|
19
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out multiple functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters with small/redox-active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial reprogramming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances: Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high-resolution structural data. Although this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
20
|
Do nitric oxide, carbon monoxide and hydrogen sulfide really qualify as 'gasotransmitters' in bacteria? Biochem Soc Trans 2018; 46:1107-1118. [PMID: 30190328 PMCID: PMC6195638 DOI: 10.1042/bst20170311] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 01/04/2023]
Abstract
A gasotransmitter is defined as a small, generally reactive, gaseous molecule that, in solution, is generated endogenously in an organism and exerts important signalling roles. It is noteworthy that these molecules are also toxic and antimicrobial. We ask: is this definition of a gasotransmitter appropriate in the cases of nitric oxide, carbon monoxide and hydrogen sulfide (H2S) in microbes? Recent advances show that, not only do bacteria synthesise each of these gases, but the molecules also have important signalling or messenger roles in addition to their toxic effects. However, strict application of the criteria proposed for a gasotransmitter leads us to conclude that the term ‘small molecule signalling agent’, as proposed by Fukuto and others, is preferable terminology.
Collapse
|
21
|
Crack JC, Hamilton CJ, Le Brun NE. Mass spectrometric detection of iron nitrosyls, sulfide oxidation and mycothiolation during nitrosylation of the NO sensor [4Fe-4S] NsrR. Chem Commun (Camb) 2018; 54:5992-5995. [PMID: 29790499 PMCID: PMC5994877 DOI: 10.1039/c8cc01339j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Identification of RRE-type iron-nitrosyl species formed upon nitrosylation of [4Fe–4S] NsrR.
The bacterial nitric oxide (NO)-sensing transcriptional regulator NsrR binds a [4Fe–4S] cluster that enables DNA-binding and thus repression of the cell's NO stress response. Upon exposure to NO, the cluster undergoes a complex nitrosylation reaction resulting in a mixture of iron-nitrosyl species, which spectroscopic studies have indicated are similar to well characterized low molecular weight dinitrosyl iron complex (DNIC), Roussin's Red Ester (RRE) and Roussin's Black Salt (RBS). Here we report mass spectrometric studies that enable the unambiguous identification of NsrR-bound RRE-type species, including a persulfide bound form that results from the oxidation of cluster sulfide. In the presence of the low molecular weight thiols glutathione and mycothiol, glutathionylated and mycothiolated forms of NsrR were readily formed.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | | | | |
Collapse
|
22
|
Abstract
This chapter provides an overview of current knowledge of how anaerobic bacteria protect themselves against nitrosative stress. Nitric oxide (NO) is the primary source of this stress. Aerobically its removal is an oxidative process, whereas reduction is required anaerobically. Mechanisms required to protect aerobic and anaerobic bacteria are therefore different. Several themes recur in the review. First, how gene expression is regulated often provides clues to the physiological function of the gene products. Second, the physiological significance of reports based upon experiments under extreme conditions that bacteria do not encounter in their natural environment requires reassessment. Third, responses to the primary source of stress need to be distinguished from secondary consequences of chemical damage due to failure of repair mechanisms to cope with extreme conditions. NO is generated by many mechanisms, some of which remain undefined. An example is the recent demonstration that the hybrid cluster protein combines with YtfE (or RIC protein, for repair of iron centres damaged by nitrosative stress) in a new pathway to repair key iron-sulphur proteins damaged by nitrosative stress. The functions of many genes expressed in response to nitrosative stress remain either controversial or are completely unknown. The concentration of NO that accumulates in the bacterial cytoplasm is essentially unknown, so dogmatic statements cannot be made that damage to transcription factors (Fur, FNR, SoxRS, MelR, OxyR) occurs naturally as part of a physiologically relevant signalling mechanism. Such doubts can be resolved by simple experiments to meet six proposed criteria.
Collapse
|
23
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out a wide range of functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters towards small/redox active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial re-programming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances. Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high resolution structural data. Though this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry , University of East Anglia , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| | - Nick E Le Brun
- University of East Anglia, School of Chemistry , University plain , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| |
Collapse
|
24
|
Crystal structures of the NO sensor NsrR reveal how its iron-sulfur cluster modulates DNA binding. Nat Commun 2017; 8:15052. [PMID: 28425466 PMCID: PMC5411485 DOI: 10.1038/ncomms15052] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/23/2017] [Indexed: 12/17/2022] Open
Abstract
NsrR from Streptomyces coelicolor (Sc) regulates the expression of three genes through the progressive degradation of its [4Fe–4S] cluster on nitric oxide (NO) exposure. We report the 1.95 Å resolution crystal structure of dimeric holo-ScNsrR and show that the cluster is coordinated by the three invariant Cys residues from one monomer and, unexpectedly, Asp8 from the other. A cavity map suggests that NO displaces Asp8 as a cluster ligand and, while D8A and D8C variants remain NO sensitive, DNA binding is affected. A structural comparison of holo-ScNsrR with an apo-IscR-DNA complex shows that the [4Fe–4S] cluster stabilizes a turn between ScNsrR Cys93 and Cys99 properly oriented to interact with the DNA backbone. In addition, an apo ScNsrR structure suggests that Asn97 from this turn, along with Arg12, which forms a salt-bridge with Asp8, are instrumental in modulating the position of the DNA recognition helix region relative to its major groove. NsrR is a bacterial transcriptional regulator that acts as a nitric oxide (NO) sensor. Here, the authors present the crystal structure of NsrR, which reveals an unusual Fe-S cluster coordination and explains how NO exposure leads to the degradation of the cluster.
Collapse
|
25
|
Abstract
About 2,500 papers dated 2014–2016 were recovered by searching the PubMed database for
Streptomyces, which are the richest known source of antibiotics. This review integrates around 100 of these papers in sections dealing with evolution, ecology, pathogenicity, growth and development, stress responses and secondary metabolism, gene expression, and technical advances. Genomic approaches have greatly accelerated progress. For example, it has been definitively shown that interspecies recombination of conserved genes has occurred during evolution, in addition to exchanges of some of the tens of thousands of non-conserved accessory genes. The closeness of the association of
Streptomyces with plants, fungi, and insects has become clear and is reflected in the importance of regulators of cellulose and chitin utilisation in overall
Streptomyces biology. Interestingly, endogenous cellulose-like glycans are also proving important in hyphal growth and in the clumping that affects industrial fermentations. Nucleotide secondary messengers, including cyclic di-GMP, have been shown to provide key input into developmental processes such as germination and reproductive growth, while late morphological changes during sporulation involve control by phosphorylation. The discovery that nitric oxide is produced endogenously puts a new face on speculative models in which regulatory Wbl proteins (peculiar to actinobacteria) respond to nitric oxide produced in stressful physiological transitions. Some dramatic insights have come from a new model system for
Streptomyces developmental biology,
Streptomyces venezuelae, including molecular evidence of very close interplay in each of two pairs of regulatory proteins. An extra dimension has been added to the many complexities of the regulation of secondary metabolism by findings of regulatory crosstalk within and between pathways, and even between species, mediated by end products. Among many outcomes from the application of chromosome immunoprecipitation sequencing (ChIP-seq) analysis and other methods based on “next-generation sequencing” has been the finding that 21% of
Streptomyces mRNA species lack leader sequences and conventional ribosome binding sites. Further technical advances now emerging should lead to continued acceleration of knowledge, and more effective exploitation, of these astonishing and critically important organisms.
Collapse
Affiliation(s)
- Keith F Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| |
Collapse
|
26
|
Serrano PN, Wang H, Crack JC, Prior C, Hutchings MI, Thomson AJ, Kamali S, Yoda Y, Zhao J, Hu MY, Alp EE, Oganesyan VS, Le Brun NE, Cramer SP. Nitrosylation of Nitric-Oxide-Sensing Regulatory Proteins Containing [4Fe-4S] Clusters Gives Rise to Multiple Iron-Nitrosyl Complexes. Angew Chem Int Ed Engl 2016; 55:14575-14579. [PMID: 27778474 PMCID: PMC5204455 DOI: 10.1002/anie.201607033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/05/2016] [Indexed: 12/13/2022]
Abstract
The reaction of protein-bound iron-sulfur (Fe-S) clusters with nitric oxide (NO) plays key roles in NO-mediated toxicity and signaling. Elucidation of the mechanism of the reaction of NO with DNA regulatory proteins that contain Fe-S clusters has been hampered by a lack of information about the nature of the iron-nitrosyl products formed. Herein, we report nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) calculations that identify NO reaction products in WhiD and NsrR, regulatory proteins that use a [4Fe-4S] cluster to sense NO. This work reveals that nitrosylation yields multiple products structurally related to Roussin's Red Ester (RRE, [Fe2 (NO)4 (Cys)2 ]) and Roussin's Black Salt (RBS, [Fe4 (NO)7 S3 ]. In the latter case, the absence of 32 S/34 S shifts in the Fe-S region of the NRVS spectra suggest that a new species, Roussin's Black Ester (RBE), may be formed, in which one or more of the sulfide ligands is replaced by Cys thiolates.
Collapse
Affiliation(s)
| | - Hongxin Wang
- Department of ChemistryUniversity of CaliforniaDavisCA95616USA
- Physical Biosciences DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Jason C. Crack
- Centre for Molecular and Structural BiochemistrySchool of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Christopher Prior
- Centre for Molecular and Structural BiochemistrySchool of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | | | - Andrew J. Thomson
- Centre for Molecular and Structural BiochemistrySchool of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Saeed Kamali
- University of Tennessee Space InstituteTullahomeTN37388-9700USA
| | - Yoshitaka Yoda
- Research and Utilization DivisionSPring-8/JASRI1-1-1 Kouto, SayoHyogo679-5198Japan
| | - Jiyong Zhao
- Advanced Photon SourceArgonne National LaboratoryArgonneIL60439USA
| | - Michael Y. Hu
- Advanced Photon SourceArgonne National LaboratoryArgonneIL60439USA
| | - Ercan E. Alp
- Advanced Photon SourceArgonne National LaboratoryArgonneIL60439USA
| | - Vasily S. Oganesyan
- Centre for Molecular and Structural BiochemistrySchool of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Nick E. Le Brun
- Centre for Molecular and Structural BiochemistrySchool of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Stephen P. Cramer
- Department of ChemistryUniversity of CaliforniaDavisCA95616USA
- Physical Biosciences DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| |
Collapse
|
27
|
Serrano PN, Wang H, Crack JC, Prior C, Hutchings MI, Thomson AJ, Kamali S, Yoda Y, Zhao J, Hu MY, Alp EE, Oganesyan VS, Le Brun NE, Cramer SP. Nitrosylation of Nitric-Oxide-Sensing Regulatory Proteins Containing [4Fe-4S] Clusters Gives Rise to Multiple Iron-Nitrosyl Complexes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Hongxin Wang
- Department of Chemistry; University of California; Davis CA 95616 USA
- Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720 USA
| | - Jason C. Crack
- Centre for Molecular and Structural Biochemistry; School of Chemistry; University of East Anglia; Norwich Research Park Norwich NR4 7TJ UK
| | - Christopher Prior
- Centre for Molecular and Structural Biochemistry; School of Chemistry; University of East Anglia; Norwich Research Park Norwich NR4 7TJ UK
| | | | - Andrew J. Thomson
- Centre for Molecular and Structural Biochemistry; School of Chemistry; University of East Anglia; Norwich Research Park Norwich NR4 7TJ UK
| | - Saeed Kamali
- University of Tennessee Space Institute; Tullahome TN 37388-9700 USA
| | - Yoshitaka Yoda
- Research and Utilization Division; SPring-8/JASRI; 1-1-1 Kouto, Sayo Hyogo 679-5198 Japan
| | - Jiyong Zhao
- Advanced Photon Source; Argonne National Laboratory; Argonne IL 60439 USA
| | - Michael Y. Hu
- Advanced Photon Source; Argonne National Laboratory; Argonne IL 60439 USA
| | - Ercan E. Alp
- Advanced Photon Source; Argonne National Laboratory; Argonne IL 60439 USA
| | - Vasily S. Oganesyan
- Centre for Molecular and Structural Biochemistry; School of Chemistry; University of East Anglia; Norwich Research Park Norwich NR4 7TJ UK
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry; School of Chemistry; University of East Anglia; Norwich Research Park Norwich NR4 7TJ UK
| | - Stephen P. Cramer
- Department of Chemistry; University of California; Davis CA 95616 USA
- Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720 USA
| |
Collapse
|
28
|
Characterization of a putative NsrR homologue in Streptomyces venezuelae reveals a new member of the Rrf2 superfamily. Sci Rep 2016; 6:31597. [PMID: 27605472 PMCID: PMC5015018 DOI: 10.1038/srep31597] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/25/2016] [Indexed: 01/06/2023] Open
Abstract
Members of the Rrf2 superfamily of transcription factors are widespread in bacteria but their functions are largely unexplored. The few that have been characterized in detail sense nitric oxide (NsrR), iron limitation (RirA), cysteine availability (CymR) and the iron sulfur (Fe-S) cluster status of the cell (IscR). In this study we combined ChIP- and dRNA-seq with in vitro biochemistry to characterize a putative NsrR homologue in Streptomyces venezuelae. ChIP-seq analysis revealed that rather than regulating the nitrosative stress response like Streptomyces coelicolor NsrR, Sven6563 binds to a conserved motif at a different, much larger set of genes with a diverse range of functions, including a number of regulators, genes required for glutamine synthesis, NADH/NAD(P)H metabolism, as well as general DNA/RNA and amino acid/protein turn over. Our biochemical experiments further show that Sven6563 has a [2Fe-2S] cluster and that the switch between oxidized and reduced cluster controls its DNA binding activity in vitro. To our knowledge, both the sensing domain and the putative target genes are novel for an Rrf2 protein, suggesting Sven6563 represents a new member of the Rrf2 superfamily. Given the redox sensitivity of its Fe-S cluster we have tentatively named the protein RsrR for Redox sensitive response Regulator.
Collapse
|