1
|
Grossman AS, Lei L, Botting JM, Liu J, Nahar N, Souza JGS, Liu J, McLean JS, He X, Bor B. Saccharibacteria deploy two distinct Type IV pili, driving episymbiosis, host competition, and twitching motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.624915. [PMID: 39651235 PMCID: PMC11623550 DOI: 10.1101/2024.11.25.624915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
All cultivated Patescibacteria, or CPR, exist as obligate episymbionts on other microbes. Despite being ubiquitous in mammals and environmentally, molecular mechanisms of host identification and binding amongst ultrasmall bacterial episymbionts are largely unknown. Type 4 pili (T4P) are well conserved in this group and predicted to facilitate symbiotic interactions. To test this, we targeted T4P pilin genes in Saccharibacteria Nanosynbacter lyticus strain TM7x to assess their essentiality and roles in symbiosis. Our results revealed that N. lyticus assembles two distinct T4P, a non-essential thin pili that has the smallest diameter of any T4P and contributes to host-binding, episymbiont growth, and competitive fitness relative to other Saccharibacteria, and an essential thick pili whose functions include twitching motility. Identification of lectin-like minor pilins and modification of host cell walls suggest glycan binding mechanisms. Collectively our findings demonstrate that Saccharibacteria encode unique extracellular pili that are vital mediators of their underexplored episymbiotic lifestyle.
Collapse
Affiliation(s)
- Alex S Grossman
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| | - Lei Lei
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
- West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, 610093, China
| | - Jack M Botting
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven CT, 06536, United States
- New Haven Microbial Sciences Institute, Yale University, West Haven CT, 06516, United States
| | - Jett Liu
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
| | - Nusrat Nahar
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| | - João Gabriel S Souza
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, Guarulhos, São Paulo 07023-070, Brazil
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven CT, 06536, United States
- New Haven Microbial Sciences Institute, Yale University, West Haven CT, 06516, United States
| | - Jeffrey S McLean
- Department of Microbiology, University of Washington, Seattle WA, 98109, USA
- Department of Periodontics, University of Washington, Seattle WA, 98195, USA
- Department of Oral Health Sciences, University of Washington, Seattle WA, 98195, USA
| | - Xuesong He
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| | - Batbileg Bor
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| |
Collapse
|
2
|
Nivetha R, Meenakumari M, Peroor Mahi Dev A, Janarthanan S. Fucose-binding lectins: purification, characterization and potential biomedical applications. Mol Biol Rep 2023; 50:10589-10603. [PMID: 37934371 DOI: 10.1007/s11033-023-08896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
The property of lectins to specifically recognize and bind carbohydrates makes them an excellent candidate in biomedical research. Among them are fucose-binding lectins possessing the capacity to bind fucose are taxonomically, evolutionarily and ecologically significant class of lectins that are identified in a wide range of taxa. Purification of fucose-binding lectins dates back to 1967 when L-fucose binding protein from Lotus tetragonolobus was isolated using a dye that contained three α-L-fucopyranosyl residues. Beginning with that, several FBLs were purified from various animals as well as plant sources that were structurally and functionally characterised. This review focuses on fucose-binding lectins, their occurrence and purification with special emphasis on various strategies adopted to purify them followed by molecular and functional characterization. The exclusive ability to recognize and bind to fucose-containing glycans endows these lectins with the potential to act as anti-cancer agents, diagnostic markers and mitogens for immune cells. Though they have been in research focus for more than half a century with their occurrence reported in various taxa, they still need to be explored for their prospective functions to develop them as a biological tool in biomedical research.
Collapse
Affiliation(s)
- Ramanathan Nivetha
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - Mani Meenakumari
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, India
| | | | - Sundaram Janarthanan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, India.
| |
Collapse
|
3
|
Orłowska M, Barua D, Piłsyk S, Muszewska A. Fucose as a nutrient ligand for Dikarya and a building block of early diverging lineages. IMA Fungus 2023; 14:17. [PMID: 37670396 PMCID: PMC10481521 DOI: 10.1186/s43008-023-00123-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Fucose is a deoxyhexose sugar present and studied in mammals. The process of fucosylation has been the primary focus in studies relating to fucose in animals due to the presence of fucose in Lewis antigens. Very few studies have reported its presence in Fungi, mostly in Mucoromycotina. The constitution of 25% and 12% of this sugar in the carbohydrates of cell wall in the respective Umbelopsis and Mucorales strains boosts the need to bridge the gap of knowledge on fucose metabolism across the fungal tree of life. In the absence of a network map involving fucose proteins, we carried out an in-silico approach to construct the fucose metabolic map in Fungi. We analyzed the taxonomic distribution of 85 protein families in Fungi including diverse early diverging fungal lineages. The expression of fucose-related protein-coding genes proteins was validated with the help of transcriptomic data originating from representatives of early diverging fungi. We found proteins involved in several metabolic activities apart from fucosylation such as synthesis, transport and binding. Most of the identified protein families are shared with Metazoa suggesting an ancestral origin in Opisthokonta. However, the overall complexity of fucose metabolism is greater in Metazoa than in Fungi. Massive gene loss has shaped the evolutionary history of these metabolic pathways, leading to a repeated reduction of these pathways in most yeast-forming lineages. Our results point to a distinctive mode of utilization of fucose among fungi belonging to Dikarya and the early diverging lineages. We speculate that, while Dikarya used fucose as a source of nutrients for metabolism, the early diverging group of fungi depended on fucose as a building block and signaling compound.
Collapse
Affiliation(s)
- Małgorzata Orłowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland.
| | - Drishtee Barua
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
4
|
Vasta GR, Amzel LM. In Structural Glycobiology, Deuterium provides the Details. Structure 2021; 29:937-939. [PMID: 34478636 DOI: 10.1016/j.str.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this issue of Structure, Gadjos et al. (2021b) determine the structure of a bacterial lectin in complex with L-fucose by neutron diffraction of both perdeuterated protein and carbohydrate ligand. The structure provides insight into lectin-ligand interactions, opening avenues for drug design targeting bacterial lectins for intervention in infectious disease.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, and Institute of Marine and Environmental Technology, Baltimore, MD 21202, USA.
| | - L Mario Amzel
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Gajdos L, Blakeley MP, Kumar A, Wimmerová M, Haertlein M, Forsyth VT, Imberty A, Devos JM. Visualization of hydrogen atoms in a perdeuterated lectin-fucose complex reveals key details of protein-carbohydrate interactions. Structure 2021; 29:1003-1013.e4. [PMID: 33765407 DOI: 10.1016/j.str.2021.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/01/2021] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
Carbohydrate-binding proteins from pathogenic bacteria and fungi have been shown to be implicated in various pathological processes, where they interact with glycans present on the surface of the host cells. These interactions are part of the initial processes of infection of the host and are very important to study at the atomic level. Here, we report the room temperature neutron structures of PLL lectin from Photorhabdus laumondii in its apo form and in complex with deuterated L-fucose, which is, to our knowledge, the first neutron structure of a carbohydrate-binding protein in complex with a fully deuterated carbohydrate ligand. A detailed structural analysis of the lectin-carbohydrate interactions provides information on the hydrogen bond network, the role of water molecules, and the extent of the CH-π stacking interactions between fucose and the aromatic amino acids in the binding site.
Collapse
Affiliation(s)
- Lukas Gajdos
- Life Sciences Group, Institut Laue-Langevin, 38000 Grenoble, France; Partnership for Structural Biology (PSB), 38000 Grenoble, France; Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Matthew P Blakeley
- Large Scale Structures Group, Institut Laue-Langevin, 38000 Grenoble, France
| | - Atul Kumar
- CEITEC, Masaryk University, 625 00 Brno, Czech Republic; NCBR, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Michaela Wimmerová
- CEITEC, Masaryk University, 625 00 Brno, Czech Republic; NCBR, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Michael Haertlein
- Life Sciences Group, Institut Laue-Langevin, 38000 Grenoble, France; Partnership for Structural Biology (PSB), 38000 Grenoble, France
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue-Langevin, 38000 Grenoble, France; Partnership for Structural Biology (PSB), 38000 Grenoble, France; Faculty of Natural Sciences, Keele University, ST5 5BG Staffordshire, UK
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.
| | - Juliette M Devos
- Life Sciences Group, Institut Laue-Langevin, 38000 Grenoble, France; Partnership for Structural Biology (PSB), 38000 Grenoble, France.
| |
Collapse
|
6
|
Mylemans B, Voet AR, Tame JR. The Taming of the Screw: the natural and artificial development of β-propeller proteins. Curr Opin Struct Biol 2020; 68:48-54. [PMID: 33373773 DOI: 10.1016/j.sbi.2020.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/09/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022]
Abstract
Many proteins are found to possess repeated structural elements, which hint at ancient evolutionary origins and ongoing evolutionary processes. β-propeller proteins are a large family of such proteins, and a popular focus of structural analysis. This review highlights recent work to understand how they arose, and how they have developed into one of the most successful of all protein folds.
Collapse
Affiliation(s)
- Bram Mylemans
- Laboraotry for biomolecular modelling and design, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium
| | - Arnout Rd Voet
- Protein Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Suehiro 1-7-29, Tsurumi, Yokohama 230-0045, Japan
| | - Jeremy Rh Tame
- Protein Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Suehiro 1-7-29, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
7
|
Liu M, Cheng X, Wang J, Tian D, Tang K, Xu T, Zhang M, Wang Y, Wang M. Structural insights into the fungi-nematodes interaction mediated by fucose-specific lectin AofleA from Arthrobotrys oligospora. Int J Biol Macromol 2020; 164:783-793. [PMID: 32698064 DOI: 10.1016/j.ijbiomac.2020.07.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022]
Abstract
Fungal lectin can bind specific carbohydrate structures of the host and work in recognition and adhesion or as a toxic factor. AofleA, as a fucose-specific lectin from widely studied nematode predatory fungus Arthrobotrys oligospora, possibly plays a key role in the event of capturing nematodes, but the mechanism remains unknown. Here we report the crystal structure of AofleA, which exists as a homodimer with each subunit folds as a six-bladed β-propeller. Our structural and biological results revealed that three of the six putative binding sites of AofleA had fucose-binding abilities. In addition, we found that AofleA could bind to the pharynx and intestine of the nematode in a fucose-binding-dependent manner. Our results facilitate the understanding of the mechanism that fucose-specific lectin mediates fungi-nematodes interaction, and provide structural information for the development of potential applications of AofleA.
Collapse
Affiliation(s)
- Mingjie Liu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Xiaowen Cheng
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China
| | - Junchao Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Dongrui Tian
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Kaijing Tang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Ting Xu
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Min Zhang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Mingzhu Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
8
|
Fujdiarová E, Houser J, Dobeš P, Paulíková G, Kondakov N, Kononov L, Hyršl P, Wimmerová M. Heptabladed β‐propeller lectins PLL2 and PHL from
Photorhabdus
spp. recognize
O
‐methylated sugars and influence the host immune system. FEBS J 2020; 288:1343-1365. [DOI: 10.1111/febs.15457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/19/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Eva Fujdiarová
- Central European Institute of Technology (CEITEC) Masaryk University Brno Czech Republic
- National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
| | - Josef Houser
- Central European Institute of Technology (CEITEC) Masaryk University Brno Czech Republic
- National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
| | - Pavel Dobeš
- National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
- Section of Animal Physiology and Immunology Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
| | - Gita Paulíková
- Central European Institute of Technology (CEITEC) Masaryk University Brno Czech Republic
- National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
| | - Nikolay Kondakov
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moscow Russia
| | - Leonid Kononov
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moscow Russia
| | - Pavel Hyršl
- Section of Animal Physiology and Immunology Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
| | - Michaela Wimmerová
- Central European Institute of Technology (CEITEC) Masaryk University Brno Czech Republic
- National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
- Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| |
Collapse
|
9
|
Sýkorová P, Novotná J, Demo G, Pompidor G, Dubská E, Komárek J, Fujdiarová E, Houser J, Hároníková L, Varrot A, Shilova N, Imberty A, Bovin N, Pokorná M, Wimmerová M. Characterization of novel lectins from Burkholderia pseudomallei and Chromobacterium violaceum with seven-bladed β-propeller fold. Int J Biol Macromol 2020; 152:1113-1124. [DOI: 10.1016/j.ijbiomac.2019.10.200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023]
|
10
|
Notova S, Bonnardel F, Lisacek F, Varrot A, Imberty A. Structure and engineering of tandem repeat lectins. Curr Opin Struct Biol 2019; 62:39-47. [PMID: 31841833 DOI: 10.1016/j.sbi.2019.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/28/2022]
Abstract
Through their ability to bind complex glycoconjugates, lectins have unique specificity and potential for biomedical and biotechnological applications. In particular, lectins with short repeated peptides forming carbohydrate-binding domains are not only of high interest for understanding protein evolution but can also be used as scaffold for engineering novel receptors. Synthetic glycobiology now provides the tools for engineering the specificity of lectins as well as their structure, multivalency and topologies. This review focuses on the structure and diversity of two families of tandem-repeat lectins, that is, β-trefoils and β-propellers, demonstrated as the most promising scaffold for engineering novel lectins.
Collapse
Affiliation(s)
- Simona Notova
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - François Bonnardel
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France; SIB Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland; Computer Science Department, UniGe, CH-1227 Geneva, Switzerland
| | - Frédérique Lisacek
- SIB Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland; Computer Science Department, UniGe, CH-1227 Geneva, Switzerland; Section of Biology, UniGe, CH-1205 Geneva, Switzerland
| | | | - Anne Imberty
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.
| |
Collapse
|
11
|
Faltinek L, Fujdiarová E, Melicher F, Houser J, Kašáková M, Kondakov N, Kononov L, Parkan K, Vidal S, Wimmerová M. Lectin PLL3, a Novel Monomeric Member of the Seven-Bladed β-Propeller Lectin Family. Molecules 2019; 24:E4540. [PMID: 31835851 PMCID: PMC6943638 DOI: 10.3390/molecules24244540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 01/23/2023] Open
Abstract
The Photorhabdus species is a Gram-negative bacteria of the family Morganellaceae that is known for its mutualistic relationship with Heterorhabditis nematodes and pathogenicity toward insects. This study is focused on the characterization of the recombinant lectin PLL3 with an origin in P. laumondii subsp. laumondii. PLL3 belongs to the PLL family of lectins with a seven-bladed β-propeller fold. The binding properties of PLL3 were tested by hemagglutination assay, glycan array, isothermal titration calorimetry, and surface plasmon resonance, and its structure was determined by X-ray crystallography. Obtained data revealed that PLL3 binds similar carbohydrates to those that the other PLL family members bind, with some differences in the binding properties. PLL3 exhibited the highest affinity toward l-fucose and its derivatives but was also able to interact with O-methylated glycans and other ligands. Unlike the other members of this family, PLL3 was discovered to be a monomer, which might correspond to a weaker avidity effect compared to homologous lectins. Based on the similarity to the related lectins and their proposed biological function, PLL3 might accompany them during the interaction of P. laumondii with both the nematode partner and the insect host.
Collapse
Affiliation(s)
- Lukáš Faltinek
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic;
| | - Eva Fujdiarová
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (E.F.); (F.M.); (J.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Filip Melicher
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (E.F.); (F.M.); (J.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Josef Houser
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (E.F.); (F.M.); (J.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Martina Kašáková
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague (UCTP), Technická 5, 166 28 Prague, Czech Republic; (M.K.); (K.P.)
| | - Nikolay Kondakov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119 415, Russia; (N.K.); (L.K.)
| | - Leonid Kononov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119 415, Russia; (N.K.); (L.K.)
| | - Kamil Parkan
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague (UCTP), Technická 5, 166 28 Prague, Czech Republic; (M.K.); (K.P.)
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CO2-Glyco, UMR 5246, CNRS, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 6922 Villeurbanne, France;
| | - Michaela Wimmerová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic;
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (E.F.); (F.M.); (J.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
12
|
Lectin antagonists in infection, immunity, and inflammation. Curr Opin Chem Biol 2019; 53:51-67. [DOI: 10.1016/j.cbpa.2019.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022]
|
13
|
Fucosylated inhibitors of recently identified bangle lectin from Photorhabdus asymbiotica. Sci Rep 2019; 9:14904. [PMID: 31624296 PMCID: PMC6797808 DOI: 10.1038/s41598-019-51357-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
A recently described bangle lectin (PHL) from the bacterium Photorhabdus asymbiotica was identified as a mainly fucose-binding protein that could play an important role in the host-pathogen interaction and in the modulation of host immune response. Structural studies showed that PHL is a homo-dimer that contains up to seven l-fucose-specific binding sites per monomer. For these reasons, potential ligands of the PHL lectin: α-l-fucopyranosyl-containing mono-, di-, tetra-, hexa- and dodecavalent ligands were tested. Two types of polyvalent structures were investigated – calix[4]arenes and dendrimers. The shared feature of all these structures was a C-glycosidic bond instead of the more common but physiologically unstable O-glycosidic bond. The inhibition potential of the tested structures was assessed using different techniques – hemagglutination, surface plasmon resonance, isothermal titration calorimetry, and cell cross-linking. All the ligands proved to be better than free l-fucose. The most active hexavalent dendrimer exhibited affinity three orders of magnitude higher than that of standard l-fucose. To determine the binding mode of some ligands, crystal complex PHL/fucosides 2 – 4 were prepared and studied using X-ray crystallography. The electron density in complexes proved the presence of the compounds in 6 out of 7 fucose-binding sites.
Collapse
|
14
|
Bonnardel F, Kumar A, Wimmerova M, Lahmann M, Perez S, Varrot A, Lisacek F, Imberty A. Architecture and Evolution of Blade Assembly in β-propeller Lectins. Structure 2019; 27:764-775.e3. [PMID: 30853410 DOI: 10.1016/j.str.2019.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/10/2019] [Accepted: 02/04/2019] [Indexed: 12/25/2022]
Abstract
Lectins with a β-propeller fold bind glycans on the cell surface through multivalent binding sites and appropriate directionality. These proteins are formed by repeats of short domains, raising questions about evolutionary duplication. However, these repeats are difficult to detect in translated genomes and seldom correctly annotated in sequence databases. To address these issues, we defined the blade signature of the five types of β-propellers using 3D-structural data. With these templates, we predicted 3,887 β-propeller lectins in 1,889 species and organized this information in a searchable online database. The data reveal a widespread distribution of β-propeller lectins across species. Prediction also emphasizes multiple architectures and led to the discovery of a β-propeller assembly scenario. This was confirmed by producing and characterizing a predicted protein coded in the genome of Kordia zhangzhouensis. The crystal structure uncovers an intermediate in the evolution of β-propeller assembly and demonstrates the power of our tools.
Collapse
Affiliation(s)
- François Bonnardel
- University of Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France; Swiss Institute of Bioinformatics, 1227 Geneva, Switzerland; Computer Science Department, UniGe, 1227 Geneva, Switzerland
| | - Atul Kumar
- University of Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France; CEITEC, Masaryk University, 625 00 Brno, Czech Republic
| | - Michaela Wimmerova
- CEITEC, Masaryk University, 625 00 Brno, Czech Republic; NCBR, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Martina Lahmann
- School of Chemistry, University of Bangor, LL57 2UW Bangor, UK
| | - Serge Perez
- University of Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France
| | - Annabelle Varrot
- University of Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Frédérique Lisacek
- Swiss Institute of Bioinformatics, 1227 Geneva, Switzerland; Computer Science Department, UniGe, 1227 Geneva, Switzerland; Section of Biology, UniGe, 1205 Geneva, Switzerland.
| | - Anne Imberty
- University of Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.
| |
Collapse
|
15
|
Barre A, Bourne Y, Van Damme EJM, Rougé P. Overview of the Structure⁻Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. Int J Mol Sci 2019; 20:E254. [PMID: 30634645 PMCID: PMC6359319 DOI: 10.3390/ijms20020254] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 01/05/2023] Open
Abstract
To date, a number of mannose-binding lectins have been isolated and characterized from plants and fungi. These proteins are composed of different structural scaffold structures which harbor a single or multiple carbohydrate-binding sites involved in the specific recognition of mannose-containing glycans. Generally, the mannose-binding site consists of a small, central, carbohydrate-binding pocket responsible for the "broad sugar-binding specificity" toward a single mannose molecule, surrounded by a more extended binding area responsible for the specific recognition of larger mannose-containing N-glycan chains. Accordingly, the mannose-binding specificity of the so-called mannose-binding lectins towards complex mannose-containing N-glycans depends largely on the topography of their mannose-binding site(s). This structure⁻function relationship introduces a high degree of specificity in the apparently homogeneous group of mannose-binding lectins, with respect to the specific recognition of high-mannose and complex N-glycans. Because of the high specificity towards mannose these lectins are valuable tools for deciphering and characterizing the complex mannose-containing glycans that decorate both normal and transformed cells, e.g., the altered high-mannose N-glycans that often occur at the surface of various cancer cells.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| | - Yves Bourne
- Centre National de la Recherche Scientifique, Aix-Marseille Univ, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
16
|
Eleftherianos I, Yadav S, Kenney E, Cooper D, Ozakman Y, Patrnogic J. Role of Endosymbionts in Insect-Parasitic Nematode Interactions. Trends Parasitol 2017; 34:430-444. [PMID: 29150386 DOI: 10.1016/j.pt.2017.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/12/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022]
Abstract
Endosymbiotic bacteria exist in many animals where they develop relationships that affect certain physiological processes in the host. Insects and their nematode parasites form great models for understanding the genetic and molecular basis of immune and parasitic processes. Both organisms contain endosymbionts that possess the ability to interfere with certain mechanisms of immune function and pathogenicity. This review summarizes recent information on the involvement of insect endosymbionts in the response to parasitic nematode infections, and the influence of nematode endosymbionts on specific aspects of the insect immune system. Analyzing this information will be particularly useful for devising endosymbiont-based strategies to intervene in insect immunity or nematode parasitism for the efficient management of noxious insects in the field.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA.
| | - Shruti Yadav
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Eric Kenney
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Dustin Cooper
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Yaprak Ozakman
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Jelena Patrnogic
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| |
Collapse
|
17
|
Beshr G, Sikandar A, Jemiller EM, Klymiuk N, Hauck D, Wagner S, Wolf E, Koehnke J, Titz A. Photorhabdus luminescens lectin A (PllA): A new probe for detecting α-galactoside-terminating glycoconjugates. J Biol Chem 2017; 292:19935-19951. [PMID: 28972138 DOI: 10.1074/jbc.m117.812792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/25/2017] [Indexed: 11/06/2022] Open
Abstract
Lectins play important roles in infections by pathogenic bacteria, for example, in host colonization, persistence, and biofilm formation. The Gram-negative entomopathogenic bacterium Photorhabdus luminescens symbiotically lives in insect-infecting Heterorhabditis nematodes and kills the insect host upon invasion by the nematode. The P. luminescens genome harbors the gene plu2096, coding for a novel lectin that we named PllA. We analyzed the binding properties of purified PllA with a glycan array and a binding assay in solution. Both assays revealed a strict specificity of PllA for α-galactoside-terminating glycoconjugates. The crystal structures of apo PllA and complexes with three different ligands revealed the molecular basis for the strict specificity of this lectin. Furthermore, we found that a 90° twist in subunit orientation leads to a peculiar quaternary structure compared with that of its ortholog LecA from Pseudomonas aeruginosa We also investigated the utility of PllA as a probe for detecting α-galactosides. The α-Gal epitope is present on wild-type pig cells and is the main reason for hyperacute organ rejection in pig to primate xenotransplantation. We noted that PllA specifically recognizes this epitope on the glycan array and demonstrated that PllA can be used as a fluorescent probe to detect this epitope on primary porcine cells in vitro In summary, our biochemical and structural analyses of the P. luminescens lectin PllA have disclosed the structural basis for PllA's high specificity for α-galactoside-containing ligands, and we show that PllA can be used to visualize the α-Gal epitope on porcine tissues.
Collapse
Affiliation(s)
- Ghamdan Beshr
- From the Divisions of Chemical Biology of Carbohydrates and.,the Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig.,the Department of Pharmacy, Saarland University, 66123 Saarbrücken, and
| | - Asfandyar Sikandar
- the Department of Pharmacy, Saarland University, 66123 Saarbrücken, and.,Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken
| | - Eva-Maria Jemiller
- the Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Nikolai Klymiuk
- the Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Dirk Hauck
- From the Divisions of Chemical Biology of Carbohydrates and.,the Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig
| | - Stefanie Wagner
- From the Divisions of Chemical Biology of Carbohydrates and.,the Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig
| | - Eckhard Wolf
- the Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Jesko Koehnke
- the Department of Pharmacy, Saarland University, 66123 Saarbrücken, and .,Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken
| | - Alexander Titz
- From the Divisions of Chemical Biology of Carbohydrates and .,the Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig.,the Department of Pharmacy, Saarland University, 66123 Saarbrücken, and
| |
Collapse
|
18
|
Jančaříková G, Houser J, Dobeš P, Demo G, Hyršl P, Wimmerová M. Characterization of novel bangle lectin from Photorhabdus asymbiotica with dual sugar-binding specificity and its effect on host immunity. PLoS Pathog 2017; 13:e1006564. [PMID: 28806750 PMCID: PMC5584973 DOI: 10.1371/journal.ppat.1006564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 09/05/2017] [Accepted: 07/31/2017] [Indexed: 01/08/2023] Open
Abstract
Photorhabdus asymbiotica is one of the three recognized species of the Photorhabdus genus, which consists of gram-negative bioluminescent bacteria belonging to the family Morganellaceae. These bacteria live in a symbiotic relationship with nematodes from the genus Heterorhabditis, together forming a complex that is highly pathogenic for insects. Unlike other Photorhabdus species, which are strictly entomopathogenic, P. asymbiotica is unique in its ability to act as an emerging human pathogen. Analysis of the P. asymbiotica genome identified a novel fucose-binding lectin designated PHL with a strong sequence similarity to the recently described P. luminescens lectin PLL. Recombinant PHL exhibited high affinity for fucosylated carbohydrates and the unusual disaccharide 3,6-O-Me2-Glcβ1-4(2,3-O-Me2)Rhaα-O-(p-C6H4)-OCH2CH2NH2 from Mycobacterium leprae. Based on its crystal structure, PHL forms a seven-bladed β-propeller assembling into a homo-dimer with an inter-subunit disulfide bridge. Investigating complexes with different ligands revealed the existence of two sets of binding sites per monomer-the first type prefers l-fucose and its derivatives, whereas the second type can bind d-galactose. Based on the sequence analysis, PHL could contain up to twelve binding sites per monomer. PHL was shown to interact with all types of red blood cells and insect haemocytes. Interestingly, PHL inhibited the production of reactive oxygen species induced by zymosan A in human blood and antimicrobial activity both in human blood, serum and insect haemolymph. Concurrently, PHL increased the constitutive level of oxidants in the blood and induced melanisation in haemolymph. Our results suggest that PHL might play a crucial role in the interaction of P. asymbiotica with both human and insect hosts.
Collapse
Affiliation(s)
- Gita Jančaříková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Josef Houser
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Dobeš
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Gabriel Demo
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Hyršl
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michaela Wimmerová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
19
|
Pérez S, de Sanctis D. Glycoscience@Synchrotron: Synchrotron radiation applied to structural glycoscience. Beilstein J Org Chem 2017; 13:1145-1167. [PMID: 28684994 PMCID: PMC5480326 DOI: 10.3762/bjoc.13.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/17/2017] [Indexed: 11/29/2022] Open
Abstract
Synchrotron radiation is the most versatile way to explore biological materials in different states: monocrystalline, polycrystalline, solution, colloids and multiscale architectures. Steady improvements in instrumentation have made synchrotrons the most flexible intense X-ray source. The wide range of applications of synchrotron radiation is commensurate with the structural diversity and complexity of the molecules and macromolecules that form the collection of substrates investigated by glycoscience. The present review illustrates how synchrotron-based experiments have contributed to our understanding in the field of structural glycobiology. Structural characterization of protein–carbohydrate interactions of the families of most glycan-interacting proteins (including glycosyl transferases and hydrolases, lectins, antibodies and GAG-binding proteins) are presented. Examples concerned with glycolipids and colloids are also covered as well as some dealing with the structures and multiscale architectures of polysaccharides. Insights into the kinetics of catalytic events observed in the crystalline state are also presented as well as some aspects of structure determination of protein in solution.
Collapse
Affiliation(s)
- Serge Pérez
- Department of Molecular Pharmacochemistry, CNRS-University Grenoble Alpes, France
| | | |
Collapse
|