1
|
Zhou R, Pan J, Zhang WB, Li XD. Myosin-5a facilitates stress granule formation by interacting with G3BP1. Cell Mol Life Sci 2024; 81:430. [PMID: 39387926 PMCID: PMC11467138 DOI: 10.1007/s00018-024-05468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Stress granules (SGs) are non-membranous organelles composed of mRNA and proteins that assemble in the cytosol when the cell is under stress. Although the composition of mammalian SGs is both cell-type and stress-dependent, they consistently contain core components, such as Ras GTPase activating protein SH3 domain binding protein 1 (G3BP1). Upon stress, living cells rapidly assemble micrometric SGs, sometimes within a few minutes, suggesting that SG components may be actively transported by the microtubule and/or actin cytoskeleton. Indeed, SG assembly has been shown to depend on the microtubule cytoskeleton and the associated motor proteins. However, the role of the actin cytoskeleton and associated myosin motor proteins remains controversial. Here, we identified G3BP1 as a novel binding protein of unconventional myosin-5a (Myo5a). G3BP1 uses its C-terminal RNA-binding domain to interact with the middle portion of Myo5a tail domain (Myo5a-MTD). Suppressing Myo5a function in mammalian cells, either by overexpressing Myo5a-MTD, eliminating Myo5a gene expression, or treatment with myosin-5 inhibitor, inhibits the arsenite-induced formation of both small and large SGs. This is different from the effect of microtubule disruption, which abolishes the formation of large SGs but enhances the formation of small SGs under stress conditions. We therefore propose that, under stress conditions, Myo5a facilitates the formation of SGs at an earlier stage than the microtubule-dependent process.
Collapse
Affiliation(s)
- Rui Zhou
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiabin Pan
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Bo Zhang
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang-Dong Li
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Kengyel A, Palarz PM, Krohn J, Marquardt A, Greve JN, Heiringhoff R, Jörns A, Manstein DJ. Motor properties of Myosin 5c are modulated by tropomyosin isoforms and inhibited by pentabromopseudilin. Front Physiol 2024; 15:1394040. [PMID: 38606007 PMCID: PMC11008601 DOI: 10.3389/fphys.2024.1394040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Myosin 5c (Myo5c) is a motor protein that is produced in epithelial and glandular tissues, where it plays an important role in secretory processes. Myo5c is composed of two heavy chains, each containing a generic motor domain, an elongated neck domain consisting of a single α-helix with six IQ motifs, each of which binds to a calmodulin (CaM) or a myosin light chain from the EF-hand protein family, a coiled-coil dimer-forming region and a carboxyl-terminal globular tail domain. Although Myo5c is a low duty cycle motor, when two or more Myo5c-heavy meromyosin (HMM) molecules are linked together, they move processively along actin filaments. We describe the purification and functional characterization of human Myo5c-HMM co-produced either with CaM alone or with CaM and the essential and regulatory light chains Myl6 and Myl12b. We describe the extent to which cofilaments of actin and Tpm1.6, Tpm1.8 or Tpm3.1 alter the maximum actin-activated ATPase and motile activity of the recombinant Myo5c constructs. The small allosteric effector pentabromopseudilin (PBP), which is predicted to bind in a groove close to the actin and nucleotide binding site with a calculated ΔG of -18.44 kcal/mol, inhibits the motor function of Myo5c with a half-maximal concentration of 280 nM. Using immunohistochemical staining, we determined the distribution and exact localization of Myo5c in endothelial and endocrine cells from rat and human tissue. Particular high levels of Myo5c were observed in insulin-producing β-cells located within the pancreatic islets of Langerhans.
Collapse
Affiliation(s)
- András Kengyel
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- Department of Biophysics, University of Pécs Medical School, Pécs, Hungary
| | - Philip M. Palarz
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Jacqueline Krohn
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Anja Marquardt
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Johannes N. Greve
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Robin Heiringhoff
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Niu F, Liu Y, Sun K, Xu S, Dong J, Yu C, Yan K, Wei Z. Autoinhibition and activation mechanisms revealed by the triangular-shaped structure of myosin Va. SCIENCE ADVANCES 2022; 8:eadd4187. [PMID: 36490350 PMCID: PMC9733927 DOI: 10.1126/sciadv.add4187] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
As the prototype of unconventional myosin motor family, myosin Va (MyoVa) transport cellular cargos along actin filaments in diverse cellular processes. The off-duty MyoVa adopts a closed and autoinhibited state, which can be relieved by cargo binding. The molecular mechanisms governing the autoinhibition and activation of MyoVa remain unclear. Here, we report the cryo-electron microscopy structure of the two full-length, closed MyoVa heavy chains in complex with 12 calmodulin light chains at 4.78-Å resolution. The MyoVa adopts a triangular structure with multiple intra- and interpolypeptide chain interactions in establishing the closed state with cargo binding and adenosine triphosphatase activity inhibited. Structural, biochemical, and cellular analyses uncover an asymmetric autoinhibition mechanism, in which the cargo-binding sites in the two MyoVa heavy chains are differently protected. Thus, specific and efficient MyoVa activation requires coincident binding of multiple cargo adaptors, revealing an intricate and elegant activity regulation of the motor in response to cargos.
Collapse
Affiliation(s)
- Fengfeng Niu
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yong Liu
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- SUSTech-HIT Joint PhD Program, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Kang Sun
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shun Xu
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiayuan Dong
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Cong Yu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, China
| | - Kaige Yan
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhiyi Wei
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Zhang N, Zhou S, Ji HH, Li XD. Effects of the IQ1 motif of Drosophila myosin-5 on the calcium interaction of calmodulin. Cell Calcium 2022; 103:102549. [DOI: 10.1016/j.ceca.2022.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
|
5
|
Chavez DE, Gronau I, Hains T, Kliver S, Koepfli KP, Wayne RK. Comparative genomics provides new insights into the remarkable adaptations of the African wild dog (Lycaon pictus). Sci Rep 2019; 9:8329. [PMID: 31171819 PMCID: PMC6554312 DOI: 10.1038/s41598-019-44772-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/22/2019] [Indexed: 12/02/2022] Open
Abstract
Within the Canidae, the African wild dog (Lycaon pictus) is the most specialized with regards to cursorial adaptations (specialized for running), having only four digits on their forefeet. In addition, this species is one of the few canids considered to be an obligate meat-eater, possessing a robust dentition for taking down large prey, and displays one of the most variable coat colorations amongst mammals. Here, we used comparative genomic analysis to investigate the evolutionary history and genetic basis for adaptations associated with cursoriality, hypercanivory, and coat color variation in African wild dogs. Genome-wide scans revealed unique amino acid deletions that suggest a mode of evolutionary digit loss through expanded apoptosis in the developing first digit. African wild dog-specific signals of positive selection also uncovered a putative mechanism of molar cusp modification through changes in genes associated with the sonic hedgehog (SHH) signaling pathway, required for spatial patterning of teeth, and three genes associated with pigmentation. Divergence time analyses suggest the suite of genomic changes we identified evolved ~1.7 Mya, coinciding with the diversification of large-bodied ungulates. Our results show that comparative genomics is a powerful tool for identifying the genetic basis of evolutionary changes in Canidae.
Collapse
Affiliation(s)
- Daniel E Chavez
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA.
| | - Ilan Gronau
- Efi Arazi School of Computer Science, Herzliya Interdisciplinary Center (IDC), Herzliya, 46150, Israel
| | - Taylor Hains
- Environmental Science and Policy, Johns Hopkins University, Washington, D.C., 20036, USA
| | - Sergei Kliver
- Institute of Molecular and Cellular Biology, Novosibirsk, 630090, Russian Federation
| | - Klaus-Peter Koepfli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, D.C., 20008, USA
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
| |
Collapse
|
6
|
Regulation of Myosin-5b by Rab11a and the Rab11 family interacting protein 2. Biosci Rep 2019; 39:BSR20181252. [PMID: 30545898 PMCID: PMC6328864 DOI: 10.1042/bsr20181252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022] Open
Abstract
Mammalian myosin-5b (Myo5b) plays a critical role in the recycling of endosomes to the plasma membrane via the interactions with Rab11a and the Rab11 family interacting protein 2 (FIP2). However, it remains unclear on how Rab11a and FIP2 are coordinated in tethering Myo5b with the vesicles and activating the motor function of Myo5b. In the present study, we show that Rab11a binds to the globular tail domain (GTD) of Myo5b and this binding abolishes the head–GTD interaction of Myo5b, thus activating the motor function of Myo5b. On the other hand, FIP2 directly interacts with both Rab11a and the tail of Myo5b, and the binding of FIP2 to Myo5b does not affect Myo5b motor function. Moreover, Rab11a displays higher affinity to FIP2 than to Myo5b, suggesting that Rab11a binds preferentially to FIP2 than to Myo5b. Based on the current findings, we propose that the association of Myo5b with vesicles is mediated by FIP2, which bridges Myo5b and the membrane-bound Rab11a, whereas the motor function of Myo5b is regulated by Rab11a.
Collapse
|
7
|
Zhang N, Yao LL, Li XD. Regulation of class V myosin. Cell Mol Life Sci 2018; 75:261-273. [PMID: 28730277 PMCID: PMC11105390 DOI: 10.1007/s00018-017-2599-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/27/2017] [Accepted: 07/17/2017] [Indexed: 01/26/2023]
Abstract
Class V myosin (myosin-5) is a molecular motor that functions as an organelle transporter. The activation of myosin-5's motor function has long been known to be associated with a transition from the folded conformation in the off-state to the extended conformation in the on-state, but only recently have we begun to understand the underlying mechanism. The globular tail domain (GTD) of myosin-5 has been identified as the inhibitory domain and has recently been shown to function as a dimer in regulating the motor function. The folded off-state of myosin-5 is stabilized by multiple intramolecular interactions, including head-GTD interactions, GTD-GTD interactions, and interactions between the GTD and the C-terminus of the first coiled-coil segment. Any cellular factor that affects these intramolecular interactions and thus the stability of the folded conformation of myosin-5 would be expected to regulate myosin-5 motor function. Both the adaptor proteins of myosin-5 and Ca2+ are potential regulators of myosin-5 motor function, because they can destabilize its folded conformation. A combination of these regulators provides a versatile scheme in regulating myosin-5 motor function in the cell.
Collapse
Affiliation(s)
- Ning Zhang
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin-Lin Yao
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang-Dong Li
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Zhang WB, Yao LL, Li XD. The Globular Tail Domain of Myosin-5a Functions as a Dimer in Regulating the Motor Activity. J Biol Chem 2016; 291:13571-9. [PMID: 27129208 DOI: 10.1074/jbc.m116.724328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 11/06/2022] Open
Abstract
Myosin-5a contains two heavy chains, which are dimerized via the coiled-coil regions. Thus, myosin-5a comprises two heads and two globular tail domains (GTDs). The GTD is the inhibitory domain that binds to the head and inhibits its motor function. Although the two-headed structure is essential for the processive movement of myosin-5a along actin filaments, little is known about the role of GTD dimerization. Here, we investigated the effect of GTD dimerization on its inhibitory activity. We found that the potent inhibitory activity of the GTD is dependent on its dimerization by the preceding coiled-coil regions, indicating synergistic interactions between the two GTDs and the two heads of myosin-5a. Moreover, we found that alanine mutations of the two conserved basic residues at N-terminal extension of the GTD not only weaken the inhibitory activity of the GTD but also enhance the activation of myosin-5a by its cargo-binding protein melanophilin (Mlph). These results are consistent with the GTD forming a head to head dimer, in which the N-terminal extension of the GTD interacts with the Mlph-binding site in the counterpart GTD. The Mlph-binding site at the GTD-GTD interface must be exposed prior to the binding of Mlph. We therefore propose that the inhibited Myo5a is equilibrated between the folded state, in which the Mlph-binding site is buried, and the preactivated state, in which the Mlph-binding site is exposed, and that Mlph is able to bind to the Myo5a in preactivated state and activates its motor function.
Collapse
Affiliation(s)
- Wen-Bo Zhang
- From the Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China and the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin-Lin Yao
- From the Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China and
| | - Xiang-Dong Li
- From the Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China and
| |
Collapse
|