1
|
Rathi G, Shamkuwar PB, Rathi K, Ranazunjare R, Kulkarni S. Contemporary and prospective use of azathioprine (AZA) in viral, rheumatic, and dermatological disorders: a review of pharmacogenomic and nanotechnology applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03569-8. [PMID: 39495265 DOI: 10.1007/s00210-024-03569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Azathioprine (AZA) has been extensively used for immunomodulatory effects in autoimmune disorders and transplantation. This article is proposed to review the contemporary and prospective use of AZA in viral, rheumatic, and dermatological disorders. The primary objective is to draw attention to possible developments in regards to AZA application in recent years, with an emphasis on the use of pharmacogenomics and nanotechnology to improve its efficacy in practice. This study reveals that AZA, having the active metabolites 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG), may be useful in the treatment of systemic lupus erythematosus (SLE), pemphigus vulgaris, and psoriasis. Pharmacogenomic testing of thiopurine methyltransferase (TPMT) and Nudix hydrolase 15 (NUDT15) genotypes minimizes the occurrence of myelosuppression. Furthermore, new formulations of AZA using biocompatible polymers and nanoparticles for drug delivery were reported to improve its efficacy and lower systemic toxicity. This paper aims to establish the multifunctional nature of AZA in modern medicine, thus emphasizing its potential for other applications. Through the combination of pharmacogenomic analysis along with nanotechnology application, AZA makes the promise of enhancing patients' treatment efficacy and extending the stock of medical information available. These advancements offer new possibilities for application of precision medicine and improvements in the use of AZA therapy.
Collapse
Affiliation(s)
- Gulshan Rathi
- Department of Pharmaceutics, VSS Institute of Pharmacy, Badnapur, Maharashtra, India.
| | - Prashant B Shamkuwar
- Department of Pharmacognosy, Government College of Pharmacy, Chhatrapati Sambhajinagar, Maharashtra, India
| | - Karishma Rathi
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| | - Ruchita Ranazunjare
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| | - Soham Kulkarni
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| |
Collapse
|
2
|
Chadli Z, Hannachi I, Ben Belgacem M, Guediche A, Ben Romdhane H, Kerkeni E, Hamdi L, Slama A, Chaabane A, Ben Fredj N, Boughattas NA, Safer L, Aouam K. Effects of genetic and clinical factors on thiopurine drugs pharmacokinetics in Tunisian patients. Pharmacogenomics 2024; 25:441-450. [PMID: 39382000 PMCID: PMC11492722 DOI: 10.1080/14622416.2024.2406739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Aim: Thiopurine drugs are used in the treatment of various diseases including inflammatory bowel disease. Thiopurine-S-methyltransferase (TPMT) and inosine triphosphate pyrophosphatase (ITPA) are the crucial enzymes involved in thiopurines metabolism. The present study aims to investigate in Tunisian patients, the influence of genetic and nongenetic factors on thiopurine drugs pharmacokinetics.Experimental approach: We have included patients having received thiopurine drugs and have undergone 6-thioguanine nucleotides (6-TGN) concentration monitoring. The identification of TPMT and ITPA polymorphisms was performed using the polymerase chain reaction-restriction fragment length polymorphism method. The impact of both genetic and nongenetic factors on the variability of the 6-TGN C/D ratio was analyzed through a stepwise multiple regression model.Key results: One hundred and twenty-three patients were included in the study. For TPMT, the most frequent variant allele was TPMT*3B (3.3%). For ITPA, the predominant polymorphism was the c.IVS2 + 21A> C (7%). We have demonstrated that only gender, the TPMT*3A and TPMT*3C alleles are significantly involved on the variability of thiopurines pharmacokinetics.Conclusion: Our study is the first to evaluate, in African patients, the impact of both genetic and nongenetic factors on the thiopurine drugs pharmacokinetics. Considering the narrow therapeutic range of these drugs, TPMT genotyping combined with 6-TGN blood concentration monitoring may enhance their efficacy and safety.
Collapse
Affiliation(s)
- Zohra Chadli
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Ibtissem Hannachi
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Manel Ben Belgacem
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Arwa Guediche
- Gastroenterology Department, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Haifa Ben Romdhane
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Emna Kerkeni
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Lamia Hamdi
- Laboratory of Hematology, University Hospital of Monastir, Tunisia
| | - Ahlem Slama
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Amel Chaabane
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Nadia Ben Fredj
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Naceur A Boughattas
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Leila Safer
- Gastroenterology Department, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Karim Aouam
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| |
Collapse
|
3
|
Cowell E, Jaber H, Kris LP, Fitzgerald MG, Sanders VM, Norbury AJ, Eyre NS, Carr JM. Vav proteins do not influence dengue virus replication but are associated with induction of phospho-ERK, IL-6, and viperin mRNA following DENV infection in vitro. Microbiol Spectr 2024; 12:e0239123. [PMID: 38054722 PMCID: PMC10782993 DOI: 10.1128/spectrum.02391-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Dengue disease is characterized by an inflammatory-mediated immunopathology, with elevated levels of circulating factors including TNF-α and IL-6. If the damaging inflammatory pathways could be blocked without loss of antiviral responses or exacerbating viral replication, then this would be of potential therapeutic benefit. The study here has investigated the Vav guanine exchange factors as a potential alternative signaling pathway that may drive dengue virus (DENV)-induced inflammatory responses, with a focus on Vav1 and 2. While Vav proteins were positively associated with mRNA for inflammatory cytokines, blocking Vav signaling didn't affect DENV replication but prevented DENV-induction of p-ERK and enhanced IL-6 (inflammatory) and viperin (antiviral) mRNA. These initial data suggest that Vav proteins could be a target that does not compromise control of viral replication and should be investigated further for broader impact on host inflammatory responses, in settings such as antibody-dependent enhancement of infection and in different cell types.
Collapse
Affiliation(s)
- Evangeline Cowell
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Hawraa Jaber
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Luke P. Kris
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Madeleine G. Fitzgerald
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Valeria M. Sanders
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Aidan J. Norbury
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Nicholas S. Eyre
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Jillian M. Carr
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Franca R, Stocco G, Kiren V, Tessitore A, Fagioli F, Quarello P, Bertorello N, Rizzari C, Colombini A, Bettini LR, Locatelli F, Vinti L, Girardi K, Silvestri D, Valsecchi MG, Decorti G, Rabusin M. Impact of Mercaptopurine Metabolites on Disease Outcome in the AIEOP-BFM ALL 2009 Protocol for Acute Lymphoblastic Leukemia. Clin Pharmacol Ther 2023; 114:1082-1092. [PMID: 37550838 DOI: 10.1002/cpt.3022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
In the maintenance phase of Associazione Italiana di Ematologia e Oncologia Pediatrica (AIEOP)- Berlin-Frankfurt-Muenster (BFM) acute lymphoblastic leukemia (ALL) 2009 protocol, mercaptopurine (MP) is given at the planned dose of 50 mg/m2 /day; however, dose adjustments are routinely performed to target patients' white blood cells to the optimal range of 2,000-3,000 cells/μL. Pediatric patients with ALL (n = 290, age: median (1st-3rd quartile): 4.8 (3.0-8.1) years; boys: 56.9%) were enrolled mainly in 4 medium-large Italian pediatric hospitals; 14.1% of patients relapsed after a median (1st-3rd quartile) follow-up time of 4.43 (3.82-5.46) years from maintenance beginning. MP metabolites (thionucleotide (TGN) and methyl-derivatives (MMPN)) were measured in the erythrocytes of 387 blood samples of 200 patients by high performance liquid chromatography with ultraviolet detection. Single-nucleotide polymorphisms (SNPs; (rs1800462, rs1800460, and rs1142345 in TPMT gene, rs116855232 in NUDT15, rs1127354, rs7270101, rs6051702 in ITPA, and rs2413739 in PACSIN2) were characterized by Taqman SNP genotyping assays. Cox proportional hazard models did not show an impact of TGN levels and variability on relapse. In contrast, after multivariate analysis, relapse hazard ratio (HR) increased in children with ALL of the intermediate risk arm compared with those in standard risk arm (3.44, 95% confidence interval (CI), 1.31-9.05, P = 0.012), and in carriers of the PACSIN2 rs2413739 T allele compared with those with the CC genotype (heterozygotes CT: HR, 2.32, 95% CI, 0.90-5.97, P = 0.081; and homozygous TT: HR, 4.14, 95% CI, 1.54-11.11, P = 0.005). Future studies are needed to confirm the lack of impact of TGN levels and variability on relapse in the AIEOP-BFM ALL trials, and to clarify the mechanism of PACSIN2 rs2413739 on outcome.
Collapse
Affiliation(s)
- Raffaella Franca
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Valentina Kiren
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Antimo Tessitore
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Franca Fagioli
- Paediatric Onco-Haematology Department, Regina Margherita Children's Hospital, Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Paola Quarello
- Paediatric Onco-Haematology Department, Regina Margherita Children's Hospital, Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Nicoletta Bertorello
- Paediatric Onco-Haematology Department, Regina Margherita Children's Hospital, Turin, Italy
| | - Carmelo Rizzari
- University of Milano-Bicocca, Milan, Italy
- Pediatric Hematology Oncology Unit, MBBM Foundation, ASST Monza, Monza, Italy
| | - Antonella Colombini
- Pediatric Hematology Oncology Unit, MBBM Foundation, ASST Monza, Monza, Italy
| | - Laura Rachele Bettini
- University of Milano-Bicocca, Milan, Italy
- Pediatric Hematology Oncology Unit, MBBM Foundation, ASST Monza, Monza, Italy
| | - Franco Locatelli
- Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambin Gesù, Rome, Italy
| | - Luciana Vinti
- Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambin Gesù, Rome, Italy
| | - Katia Girardi
- Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambin Gesù, Rome, Italy
| | - Daniela Silvestri
- Pediatric Hematology Oncology Unit, MBBM Foundation, ASST Monza, Monza, Italy
| | - Maria Grazia Valsecchi
- Bicocca Centre of Bioinformatics, Biostatistics and Bioimaging, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giuliana Decorti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Marco Rabusin
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
5
|
Wang D, Wang W, Wang P, Wang C, Niu J, Liu Y, Chen Y. Research progress of colon-targeted oral hydrogel system based on natural polysaccharides. Int J Pharm 2023; 643:123222. [PMID: 37454829 DOI: 10.1016/j.ijpharm.2023.123222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
The quality of life is significantly impacted by colon-related diseases. There have been a lot of interest in the oral colon-specific drug delivery system (OCDDS) as a potential carrier to decrease systemic side effects and protect drugs from degradation in the upper gastrointestinal tract (GIT). Hydrogels are effective oral colon-targeted drug delivery carriers due to their high biodegradability, substantial drug loading, and great biocompatibility. Natural polysaccharides give the hydrogel system unique structure and function to effectively respond to the complex environment of the GIT and deliver drugs to the colon. In this paper, the physiological factors of colonic drug delivery and the pathological characteristics of common colonic diseases are summarized, and the latest advances in the design, preparation and characterization of natural polysaccharide hydrogels are reviewed, which are expected to provide new references for colon-targeted oral hydrogel systems using natural polysaccharides as raw materials.
Collapse
Affiliation(s)
- Dingding Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weibo Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ping Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chuang Wang
- Shenyang Pharmaceutical University, Shenyang, China
| | - Juntao Niu
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Hospital, Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
6
|
Elitzur S, Vora A, Burkhardt B, Inaba H, Attarbaschi A, Baruchel A, Escherich G, Gibson B, Liu HC, Loh M, Moorman AV, Möricke A, Pieters R, Uyttebroeck A, Baird S, Bartram J, Barzilai-Birenboim S, Batra S, Ben-Harosh M, Bertrand Y, Buitenkamp T, Caldwell K, Drut R, Geerlinks AV, Gilad G, Grainger J, Haouy S, Heaney N, Huang M, Ingham D, Krenova Z, Kuhlen M, Lehrnbecher T, Manabe A, Niggli F, Paris C, Revel-Vilk S, Rohrlich P, Sinno MG, Szczepanski T, Tamesberger M, Warrier R, Wolfl M, Nirel R, Izraeli S, Borkhardt A, Schmiegelow K. EBV-driven lymphoid neoplasms associated with pediatric ALL maintenance therapy. Blood 2023; 141:743-755. [PMID: 36332176 DOI: 10.1182/blood.2022016975] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
The development of a second malignancy after the diagnosis of childhood acute lymphoblastic leukemia (ALL) is a rare event. Certain second malignancies have been linked with specific elements of leukemia therapy, yet the etiology of most second neoplasms remains obscure and their optimal management strategies are unclear. This is a first comprehensive report of non-Hodgkin lymphomas (NHLs) following pediatric ALL therapy, excluding stem-cell transplantation. We analyzed data of patients who developed NHL following ALL diagnosis and were enrolled in 12 collaborative pediatric ALL trials between 1980-2018. Eighty-five patients developed NHL, with mature B-cell lymphoproliferations as the dominant subtype (56 of 85 cases). Forty-six of these 56 cases (82%) occurred during or within 6 months of maintenance therapy. The majority exhibited histopathological characteristics associated with immunodeficiency (65%), predominantly evidence of Epstein-Barr virus-driven lymphoproliferation. We investigated 66 cases of post-ALL immunodeficiency-associated lymphoid neoplasms, 52 from our study and 14 additional cases from a literature search. With a median follow-up of 4.9 years, the 5-year overall survival for the 66 patients with immunodeficiency-associated lymphoid neoplasms was 67.4% (95% confidence interval [CI], 56-81). Five-year cumulative risks of lymphoid neoplasm- and leukemia-related mortality were 20% (95% CI, 10.2-30) and 12.4% (95% CI, 2.7-22), respectively. Concurrent hemophagocytic lymphohistiocytosis was associated with increased mortality (hazard ratio, 7.32; 95% CI, 1.62-32.98; P = .01). A large proportion of post-ALL lymphoid neoplasms are associated with an immunodeficient state, likely precipitated by ALL maintenance therapy. Awareness of this underrecognized entity and pertinent diagnostic tests are crucial for early diagnosis and optimal therapy.
Collapse
Affiliation(s)
- Sarah Elitzur
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ajay Vora
- Department of Paediatric Haematology, Great Ormond Street Hospital, London, United Kingdom
| | - Birgit Burkhardt
- Pediatric Hematology and Oncology, University Hospital Münster, Münster, Germany
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Andre Baruchel
- Department of Pediatric Hematology, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Gabriele Escherich
- Department of Pediatric Hematology and Oncoogy, University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany
| | - Brenda Gibson
- Department of Paediatric Haematology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Hsi-Che Liu
- Division of Pediatric Hematology/Oncology, Mackay Children's Hospital and Mackay Medical College, Taipei, Taiwan
| | - Mignon Loh
- Division of Pediatric Hematology, Oncology, Bone Marrow Transplant and Cellular Therapy, Seattle Children's Hospital and the Ben Towne Center for Childhood Cancer Research, University of Washington, Seattle, WA
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Wolfson Childhood Cancer Centre, Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anja Möricke
- Department of Pediatrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Anne Uyttebroeck
- Department of Paediatric Haematology and Oncology, University Hospital Leuven, Leuven, Leuven, Belgium
| | - Susan Baird
- Department of Haematology, Royal Hospital for Children and Young People, Edinburgh, United Kingdom
| | - Jack Bartram
- Department of Paediatric Haematology, Great Ormond Street Hospital, London, United Kingdom
| | - Shlomit Barzilai-Birenboim
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Sandeep Batra
- Pediatric Hematology/Oncology, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN
| | - Miriam Ben-Harosh
- Department of Pediatric Hemato-Oncology, Soroka Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yves Bertrand
- Institut d'Hematologie et d'Oncologie Pediatrique, Hospices Civils de Lyon, Lyon, France
| | - Trudy Buitenkamp
- Amsterdam Academic Medical Center, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Kenneth Caldwell
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St Petersburg, FL
| | - Ricardo Drut
- Department of Pathology, School of Medicine, La Plata National University, La Plata, Argentina
| | | | - Gil Gilad
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - John Grainger
- Faculty of Medical & Human Sciences, University of Manchester and Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Stephanie Haouy
- Department of Pediatric Oncology, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Nicholas Heaney
- Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Mary Huang
- Department of Pediatric Hematology Oncology, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA
| | - Danielle Ingham
- Paediatric Oncology, Leeds Children's Hospital, Leeds, United Kingdom
| | - Zdenka Krenova
- Department of Pediatric Oncology and Department of Pediatrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michaela Kuhlen
- Pediatrics and Adolescent Medicine, University of Augsburg, Augsburg, Germany
| | - Thomas Lehrnbecher
- Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University, Graduate School of Medicine, Sapporo, Japan
| | - Felix Niggli
- Department of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - Claudia Paris
- Department of Pediatric Oncology and Hematology, Hospital Luis Calvo Mackenna, Santiago, Chile
| | - Shoshana Revel-Vilk
- Shaare Zedek Medical Centre and The Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | | | - Mohamad G Sinno
- Phoenix Children's Hospital, Center for Cancer and Blood Disorders, Phoenix, AZ
| | - Tomasz Szczepanski
- Department of Pediatric Hematology and Oncology, Zabrze and Medical University of Silesia, Katowice, Poland
| | - Melanie Tamesberger
- Department of Pediatrics and Adolescent Medicine, Kepler University Clinic, Linz, Austria
| | | | - Matthias Wolfl
- Pediatric Oncology, Hematology and Stem Cell Transplantation Program, University Children's Hospital Würzburg, Würzburg, Germany
| | - Ronit Nirel
- Department of Statistics and Data Science, Hebrew University, Jerusalem, Israel
| | - Shai Izraeli
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Arndt Borkhardt
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, The University Hospital, Rigshospitalet, and Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Sikorski PM, Kusner LL, Kaminski HJ. Myasthenia Gravis. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Labib BA, Chigbu DI. Clinical Management of Herpes Simplex Virus Keratitis. Diagnostics (Basel) 2022; 12:diagnostics12102368. [PMID: 36292060 PMCID: PMC9600940 DOI: 10.3390/diagnostics12102368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
Herpes simplex virus (HSV) keratitis is one of the leading causes of blindness worldwide. Additionally, up to 90% of the population in some countries is seropositive for HSV. HSV can cause a wide spectrum of ocular disease ranging from blepharitis to retinitis. Although the initial clinical expressions of HSV-1 and HSV-2 are similar, HSV-2 has been reported more frequently in association with recurrent HSV disease. Besides irreversible vision loss from keratitis, HSV also causes encephalitis and genital forms of the disease. Despite these statistics, there remains no vaccine against HSV. Current treatment therapies for related ocular diseases include the use of oral and topical antivirals and topical corticosteroids. While effective in many cases, they fail to address the latency and elimination of the virus, making it ineffective in addressing recurrences, a factor which increases the risk of vision loss. As such, there is a need for continued research of other potential therapeutic targets. This review utilized several published articles regarding the manifestations of HSV keratitis, antiviral immune responses to HSV infection, and clinical management of HSV keratitis. This review will summarize the current knowledge on the host–virus interaction in HSV infections, as well as highlighting the current and potential antiviral therapeutics.
Collapse
|
9
|
Thiopurines inhibit coronavirus Spike protein processing and incorporation into progeny virions. PLoS Pathog 2022; 18:e1010832. [PMID: 36121863 PMCID: PMC9522307 DOI: 10.1371/journal.ppat.1010832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/29/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022] Open
Abstract
There is an outstanding need for broadly acting antiviral drugs to combat emerging viral diseases. Here, we report that thiopurines inhibit the replication of the betacoronaviruses HCoV-OC43 and SARS-CoV-2. 6-Thioguanine (6-TG) disrupted early stages of infection, limiting accumulation of full-length viral genomes, subgenomic RNAs and structural proteins. In ectopic expression models, we observed that 6-TG increased the electrophoretic mobility of Spike from diverse betacoronaviruses, matching the effects of enzymatic removal of N-linked oligosaccharides from Spike in vitro. SARS-CoV-2 virus-like particles (VLPs) harvested from 6-TG-treated cells were deficient in Spike. 6-TG treatment had a similar effect on production of lentiviruses pseudotyped with SARS-CoV-2 Spike, yielding pseudoviruses deficient in Spike and unable to infect ACE2-expressing cells. Together, these findings from complementary ectopic expression and infection models strongly indicate that defective Spike trafficking and processing is an outcome of 6-TG treatment. Using biochemical and genetic approaches we demonstrated that 6-TG is a pro-drug that must be converted to the nucleotide form by hypoxanthine phosphoribosyltransferase 1 (HPRT1) to achieve antiviral activity. This nucleotide form has been shown to inhibit small GTPases Rac1, RhoA, and CDC42; however, we observed that selective chemical inhibitors of these GTPases had no effect on Spike processing or accumulation. By contrast, the broad GTPase agonist ML099 countered the effects of 6-TG, suggesting that the antiviral activity of 6-TG requires the targeting of an unknown GTPase. Overall, these findings suggest that small GTPases are promising targets for host-targeted antivirals. The COVID-19 pandemic has ignited efforts to repurpose existing drugs as safe and effective antivirals. Rather than directly inhibiting viral enzymes, host-targeted antivirals inhibit host cell processes to indirectly impede viral replication and/or stimulate antiviral responses. Here, we describe a new antiviral mechanism of action for an FDA-approved thiopurine known as 6-thioguanine (6-TG). We demonstrate that 6-TG is a pro-drug that must be metabolized by host enzymes to gain antiviral activity. We show that it can inhibit the replication of human coronaviruses, including SARS-CoV-2, at least in part by interfering with the processing and accumulation of Spike glycoproteins, thereby impeding assembly of infectious progeny viruses. We provide evidence implicating host cell GTPase enzymes in the antiviral mechanism of action.
Collapse
|
10
|
Gomes-Carneiro MR, de Carvalho RR, do Amaral TF, Xavier De-Oliveira ACA, Paumgartten FJR. Evaluation of the maternal and developmental toxicity of 6-methylmercaptopurine riboside in rats. Reprod Toxicol 2022; 111:158-165. [PMID: 35662571 DOI: 10.1016/j.reprotox.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
Thiopurine prodrugs (azathioprine, AZA, and 6-mercaptopurine, 6MP) are embryotoxic to rodents and rabbits. Little is known about the developmental toxicity of 6-methylmercaptopurine riboside (6MMPr), a thiopurine drug metabolite that is thought to mediate its liver toxicity. A limb bud assay found that 6MMPr impairs the in vitro morphogenetic differentiation of mouse limb extremities, being more potent than 6MP in the assay. This study evaluated the embryotoxicity of 6MMPr (0, 7.5, 15, 30mg/kg bw sc) in rats after single-dose exposure in mid organogenesis (GD10). One group of pregnant rats was similarly treated with 6MP (15mg/kg bw sc). After C-section (GD21), fetuses were weighed, and examined for external abnormalities. One third of each litter was examined for soft-tissue abnormalities while the remaining fetuses were cleared and stained for skeleton evaluation. 6MMPr caused a dose-dependent maternal weight loss followed by recovery before term pregnancy. Except for a nonsignificant increase in embryolethality and slight reduction in fetal weight at 30mg/kg bw, no indication of embryotoxicity was noted at this dose or at lower doses of 6MMPr. In contrast, 6MP led to nearly 98% of post-implantation losses in the presence of slight-to-mild maternal toxicity. These results are consistent with the notion that maternal treatment with 6MMPr affects embryo development, causing a nonsignificant increase in embryolethality and a slight reduction in fetal weight at 30mg/kg bw. However, there was no increase in abnormalities at this dose, which was severely toxic to the dams, as reflected in the maternal weight gain data.
Collapse
Affiliation(s)
- Maria Regina Gomes-Carneiro
- Laboratory of Environmental Toxicology, National School of Public Health,Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Rosângela Ribeiro de Carvalho
- Laboratory of Environmental Toxicology, National School of Public Health,Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Thamyris Figueiredo do Amaral
- Laboratory of Environmental Toxicology, National School of Public Health,Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-361, Brazil
| | | | - Francisco José Roma Paumgartten
- Laboratory of Environmental Toxicology, National School of Public Health,Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-361, Brazil.
| |
Collapse
|
11
|
Cai Z, Wang S, Li J. Treatment of Inflammatory Bowel Disease: A Comprehensive Review. Front Med (Lausanne) 2021; 8:765474. [PMID: 34988090 PMCID: PMC8720971 DOI: 10.3389/fmed.2021.765474] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD), as a global disease, has attracted much research interest. Constant research has led to a better understanding of the disease condition and further promoted its management. We here reviewed the conventional and the novel drugs and therapies, as well as the potential ones, which have shown promise in preclinical studies and are likely to be effective future therapies. The conventional treatments aim at controlling symptoms through pharmacotherapy, including aminosalicylates, corticosteroids, immunomodulators, and biologics, with other general measures and/or surgical resection if necessary. However, a considerable fraction of patients do not respond to available treatments or lose response, which calls for new therapeutic strategies. Diverse therapeutic options are emerging, involving small molecules, apheresis therapy, improved intestinal microecology, cell therapy, and exosome therapy. In addition, patient education partly upgrades the efficacy of IBD treatment. Recent advances in the management of IBD have led to a paradigm shift in the treatment goals, from targeting symptom-free daily life to shooting for mucosal healing. In this review, the latest progress in IBD treatment is summarized to understand the advantages, pitfalls, and research prospects of different drugs and therapies and to provide a basis for the clinical decision and further research of IBD.
Collapse
Affiliation(s)
- Zhaobei Cai
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
- Department of Gastroenterology and Hepatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shu Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Abstract
Herpes simplex virus 1 (HSV-1) infects eye corneal tissues leading to herpetic stromal keratitis (HSK), which is one of the leading causes of blindness. Here in our study, we found that 6-thioguanine (6-TG), a once clinically approved medication for child acute myelogenous leukemia, inhibited multiple strains of HSV-1 infection in vitro and in vivo. 6-TG is more potent than acyclovir (ACV) and ganciclovir (GCV), with the 50% inhibitory concentration (IC50) of 6-TG at 0.104 μM with high stimulation index (SI) (SI = 6,475.48) compared to the IC50 of ACV at 1.253 μM and the IC50 of GCV at 1.257 μM. In addition, 6-TG at 500 μM topically applied to the eyes with HSV-1 infection significantly inhibits HSV-1 replication, alleviates virus-induced HSK pathogenesis, and improves eye conditions. More importantly, 6-TG is effective against ACV-resistant HSV-1 strains, including HSV-1/153 and HSV-1/blue. Knockdown of Rac1 with small interfering RNA (siRNA) negatively affected HSV-1 replication, suggesting that Rac1 facilitated HSV-1 replication. Following HSV-1 infection of human corneal epithelial cells (HCECs), endogenous Rac1 activity was upregulated by glutathione S-transferase (GST) pulldown assay. We further found that Rac1 was highly expressed in the corneal tissue of HSK patients compared to normal individuals. Mechanistic study showed that 6-TG inhibited HSV-1 replication by targeting Rac1 activity in HSV-1 infected cells, and the Rac1 is critical in the pathogenesis of HSK. Our results indicated that 6-TG is a promising therapeutic molecule for the treatment of HSK. IMPORTANCE We reported the discovery of 6-TG inhibition of HSV-1 infection and its inhibitory roles in HSK both in vitro and in vivo. 6-TG was shown to possess at least 10× more potent inhibitory activity against HSV-1 than ACV and GCV and, more importantly, inhibit ACV/GCV-resistant mutant viruses. Animal model studies showed that gel-formulated 6-TG topically applied to eyes locally infected with HSV-1 could significantly inhibit HSV-1 replication, alleviate virus-induced HSK pathogenesis, and improve eye conditions. Further study showed that HSV-1 infection upregulated Rac1 expression, and knockdown of Rac1 using siRNA markedly restricted HSV-1 replication, suggesting that Rac1 is required for HSV-1 replication. In addition, we also documented that Rac1 is highly expressed in corneal tissues from HSK patients, indicating that Rac1 is associated with HSK pathogenesis. In view of the high potency of 6-TG, low cytotoxicity, targeting a distinct therapeutic target, we suggest that 6-TG is a potential candidate for development as a therapeutic agent for HSK therapy.
Collapse
|
13
|
Franca R, Braidotti S, Stocco G, Decorti G. Understanding thiopurine methyltransferase polymorphisms for the targeted treatment of hematologic malignancies. Expert Opin Drug Metab Toxicol 2021; 17:1187-1198. [PMID: 34452592 DOI: 10.1080/17425255.2021.1974398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Thiopurine methyltransferase (TPMT) catalyzes the S-methylation of thiopurines (mercaptopurine (MP) and tioguanine (TG)), chemotherapeutic agents used in the treatment of acute lymphoblastic leukemia (ALL). Polymorphisms in TPMT gene encode diminished activity enzyme, enhancing accumulation of active metabolites, and partially explaining the inter-individual differences in patients' clinical response. AREAS COVERED This review gives an overview on TPMT gene and function, and discusses the pharmacogenomic implications of TPMT variants in the prevention of severe thiopurine-induced hematological toxicities and the less known implication on TG-induced sinusoidal obstruction syndrome. Additional genetic and non-genetic factors impairing TPMT activity are considered. Literature search was done in PubMed for English articles published since1990, and on PharmGKB. EXPERT OPINION To titrate thiopurines safely and effectively, achieve the right degree of lymphotoxic effect and avoid excessive myelosuppression, the optimal management will combine a preemptive TPMT genotyping to establish a safe initial dose with a close phenotypic monitoring of TPMT activity and/or of active metabolites during long-term treatment. Compared to current ALL protocols, replacement of TG by MP during reinduction phase in TPMT heterozygotes and novel individualized TG regimens in maintenance for TPMT wild-type subjects could be investigated to improve outcomes while avoiding risk of severe hepatotoxicity.
Collapse
Affiliation(s)
- R Franca
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - S Braidotti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - G Stocco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - G Decorti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal & Child Health (I.r.c.c.s) Burlo Garofolo, Trieste, Italy
| |
Collapse
|
14
|
Rac-dependent feedforward autoactivation of NOX2 leads to oxidative burst. J Biol Chem 2021; 297:100982. [PMID: 34293347 PMCID: PMC8353492 DOI: 10.1016/j.jbc.2021.100982] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/09/2021] [Accepted: 07/17/2021] [Indexed: 12/03/2022] Open
Abstract
NADPH oxidase 2 (NOX2) produces the superoxide anion radical (O2−), which has functions in both cell signaling and immune defense. NOX2 is a multimeric-protein complex consisting of several protein subunits including the GTPase Rac. NOX2 uniquely facilitates an oxidative burst, which is described by initially slow O2− production, which increases over time. The NOX2 oxidative burst is considered critical to immune defense because it enables expedited O2− production in response to infections. However, the mechanism of the initiation and progression of this oxidative burst and its implications for regulation of NOX2 have not been clarified. In this study, we show that the NOX2 oxidative burst is a result of autoactivation of NOX2 coupled with the redox function of Rac. NOX2 autoactivation begins when active Rac triggers NOX2 activation and the subsequent production of O2−, which in turn activates redox-sensitive Rac. This activated Rac further activates NOX2, amplifying the feedforward cycle and resulting in a NOX2-mediated oxidative burst. Using mutagenesis-based kinetic and cell analyses, we show that enzymatic activation of Rac is exclusively responsible for production of the active Rac trigger that initiates NOX2 autoactivation, whereas redox-mediated Rac activation is the main driving force of NOX2 autoactivation and contributes to generation of ∼98% of the active NOX2 in cells. The results of this study provide insight into the regulation of NOX2 function, which could be used to develop therapeutics to control immune responses associated with dysregulated NOX2 oxidative bursts.
Collapse
|
15
|
Thiopurines activate an antiviral unfolded protein response that blocks influenza A virus glycoprotein accumulation. J Virol 2021; 95:JVI.00453-21. [PMID: 33762409 PMCID: PMC8139708 DOI: 10.1128/jvi.00453-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Influenza A viruses (IAVs) utilize host shutoff mechanisms to limit antiviral gene expression and redirect translation machinery to the synthesis of viral proteins. Previously, we showed that IAV replication is sensitive to protein synthesis inhibitors that block translation initiation and induce formation of cytoplasmic condensates of untranslated messenger ribonucleoprotein complexes called stress granules (SGs). In this study, using an image-based high-content screen, we identified two thiopurines, 6-thioguanine (6-TG) and 6-thioguanosine (6-TGo), that triggered SG formation in IAV-infected cells and blocked IAV replication in a dose-dependent manner without eliciting SG formation in uninfected cells. 6-TG and 6-TGo selectively disrupted the synthesis and maturation of IAV glycoproteins hemagglutinin (HA) and neuraminidase (NA) without affecting the levels of the viral RNAs that encode them. By contrast, these thiopurines had minimal effect on other IAV proteins or the global host protein synthesis. Disruption of IAV glycoprotein accumulation by 6-TG and 6-TGo correlated with activation of unfolded protein response (UPR) sensors activating transcription factor-6 (ATF6), inositol requiring enzyme-1 (IRE1) and PKR-like endoplasmic reticulum kinase (PERK), leading to downstream UPR gene expression. Treatment of infected cells with the chemical chaperone 4-phenylbutyric acid diminished thiopurine-induced UPR activation and partially restored the processing and accumulation of HA and NA. By contrast, chemical inhibition of the integrated stress response downstream of PERK restored accumulation of NA monomers but did not restore processing of viral glycoproteins. Genetic deletion of PERK enhanced the antiviral effect of 6-TG without causing overt cytotoxicity, suggesting that while UPR activation correlates with diminished viral glycoprotein accumulation, PERK could limit the antiviral effects of drug-induced ER stress. Taken together, these data indicate that 6-TG and 6-TGo are effective host-targeted antivirals that trigger the UPR and selectively disrupt accumulation of viral glycoproteins.IMPORTANCESecreted and transmembrane proteins are synthesized in the endoplasmic reticulum (ER), where they are folded and modified prior to transport. Many viruses rely on the ER for the synthesis and processing of viral glycoproteins that will ultimately be incorporated into viral envelopes. Viral burden on the ER can trigger the unfolded protein response (UPR). Much remains to be learned about how viruses co-opt the UPR to ensure efficient synthesis of viral glycoproteins. Here, we show that two FDA-approved thiopurine drugs, 6-TG and 6-TGo, induce the UPR, which represents a previously unrecognized effect of these drugs on cell physiology. This thiopurine-mediated UPR activation blocks influenza virus replication by impeding viral glycoprotein accumulation. Our findings suggest that 6-TG and 6-TGo may have broad antiviral effect against enveloped viruses that require precise tuning of the UPR to support viral glycoprotein synthesis.
Collapse
|
16
|
Moyer AM. NUDT15: A bench to bedside success story. Clin Biochem 2021; 92:1-8. [PMID: 33675810 DOI: 10.1016/j.clinbiochem.2021.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022]
Abstract
Recently, the enzyme nudix hydrolase 15 (NUDT15) has been identified as an additional component of the thiopurine metabolism pathway. NUDT15 (also known as MTH2) catalyzes the dephosphorylation of 6-thioguanosine triphosphate (6-TGTP) and 6-thio-deoxyguanosine triphosphate (6-TdGTP), which is the active metabolite of thiopurine medications. Thiopurine compounds, which were first synthesized in the 1950s, are widely used in the treatment of childhood leukemia, inflammatory bowel disease, and autoimmune disorders. For many years, TPMT has been recognized as an enzyme that is involved in thiopurine metabolism, and interindividual variation in TPMT activity has been known to contribute to differences in risk of thiopurine toxicity. Genetic variation that leads to decreased NUDT15 activity has been recognized as an additional contributor, beyond TPMT, to thiopurine toxicity. In some populations, including Asian and Latino populations, NUDT15 genetic variants are more common than TPMT variants, making this a significant biomarker of toxicity. Clinical genetic testing is now available for a subset of NUDT15 variants, representing a remarkably fast translation from bench to bedside. This review will focus on NUDT15 - from discovery to clinical implementation.
Collapse
Affiliation(s)
- Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|
17
|
Nakase H. Optimizing the Use of Current Treatments and Emerging Therapeutic Approaches to Achieve Therapeutic Success in Patients with Inflammatory Bowel Disease. Gut Liver 2020; 14:7-19. [PMID: 30919602 PMCID: PMC6974326 DOI: 10.5009/gnl18203] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/06/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022] Open
Abstract
The current goal of inflammatory bowel disease (IBD) treatment is a symptom-free everyday life accompanied by mucosal healing with minimal use of corticosteroids. Recent therapeutic advances, particularly, the emergence of anti-tumor necrosis factor (anti-TNF) antibodies, have changed the natural history of IBD. Additionally, these advances also led to the emergence of the therapeutic concept of the “treat to target” strategy. With the development of new drugs and clinical trials, not only biologics but also small molecules have been applied to clinical practice to better individualize and optimize therapy. However, if newer drugs, including anti-TNF therapies, are recommended for all patients diagnosed with IBD, a significant number of patients will be overtreated. The basic goal of IBD treatment is still to make the best use of conventional treatments based on IBD pathophysiology. Thus, physicians should be familiar with the modes of action of the available drugs. In this review, the author discusses the existing data for many approved drugs and provide insights for optimizing current treatments for the management of patients with IBD in the era of biologics.
Collapse
Affiliation(s)
- Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
18
|
Calender A, Weichhart T, Valeyre D, Pacheco Y. Current Insights in Genetics of Sarcoidosis: Functional and Clinical Impacts. J Clin Med 2020; 9:E2633. [PMID: 32823753 PMCID: PMC7465171 DOI: 10.3390/jcm9082633] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Sarcoidosis is a complex disease that belongs to the vast group of autoinflammatory disorders, but the etiological mechanisms of which are not known. At the crosstalk of environmental, infectious, and genetic factors, sarcoidosis is a multifactorial disease that requires a multidisciplinary approach for which genetic research, in particular, next generation sequencing (NGS) tools, has made it possible to identify new pathways and propose mechanistic hypotheses. Codified treatments for the disease cannot always respond to the most progressive forms and the identification of new genetic and metabolic tracks is a challenge for the future management of the most severe patients. Here, we review the current knowledge regarding the genes identified by both genome wide association studies (GWAS) and whole exome sequencing (WES), as well the connection of these pathways with the current research on sarcoidosis immune-related disorders.
Collapse
Affiliation(s)
- Alain Calender
- Department of Molecular and Medical genetics, Hospices Civils de Lyon, University Hospital, 69500 Bron, France;
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory, University Claude Bernard Lyon 1, 69007 Lyon, France
| | - Thomas Weichhart
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria;
| | - Dominique Valeyre
- INSERM UMR 1272, Department of Pulmonology, Avicenne Hospital, University Sorbonne Paris Nord, Saint Joseph Hospital, AP-HP, 75014 Paris, France;
| | - Yves Pacheco
- Department of Molecular and Medical genetics, Hospices Civils de Lyon, University Hospital, 69500 Bron, France;
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory, University Claude Bernard Lyon 1, 69007 Lyon, France
| |
Collapse
|
19
|
Umutesi HG, Hoang HM, Johnson HE, Nam K, Heo J. Development of Noonan syndrome by deregulation of allosteric SOS autoactivation. J Biol Chem 2020; 295:13651-13663. [PMID: 32753483 DOI: 10.1074/jbc.ra120.013275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/30/2020] [Indexed: 11/06/2022] Open
Abstract
Ras family proteins play an essential role in several cellular functions, including growth, differentiation, and survival. The mechanism of action of Ras mutants in Costello syndrome and cancers has been identified, but the contribution of Ras mutants to Noonan syndrome, a genetic disorder that prevents normal development in various parts of the body, is unknown. Son of Sevenless (SOS) is a Ras guanine nucleotide exchange factor. In response to Ras-activating cell signaling, SOS autoinhibition is released and is followed by accelerative allosteric feedback autoactivation. Here, using mutagenesis-based kinetic and pulldown analyses, we show that Noonan syndrome Ras mutants I24N, T50I, V152G, and D153V deregulate the autoactivation of SOS to populate their active form. This previously unknown process has been linked so far only to the development of Noonan syndrome. In contrast, other Noonan syndrome Ras mutants-V14I, T58I, and G60E-populate their active form by deregulation of the previously documented Ras GTPase activities. We propose a novel mechanism responsible for the deregulation of SOS autoactivation, where I24N, T50I, V152G, and D153V Ras mutants evade SOS autoinhibition. Consequently, they are capable of forming a complex with the SOS allosteric site, thus aberrantly promoting SOS autoactivation, resulting in the population of active Ras mutants in cells. The results of this study elucidate the molecular mechanism of the Ras mutant-mediated development of Noonan syndrome.
Collapse
Affiliation(s)
- Hope Gloria Umutesi
- Department of Chemistry and Biochemistry, University of Texas, Arlington, Texas, USA
| | - Hanh My Hoang
- Department of Chemistry and Biochemistry, University of Texas, Arlington, Texas, USA
| | | | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas, Arlington, Texas, USA
| | - Jongyun Heo
- Department of Chemistry and Biochemistry, University of Texas, Arlington, Texas, USA.
| |
Collapse
|
20
|
Nakase H. Treatment of inflammatory bowel disease from the immunological perspective. Immunol Med 2020; 43:79-86. [DOI: 10.1080/25785826.2020.1751934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
21
|
Pacheco Y, Lim CX, Weichhart T, Valeyre D, Bentaher A, Calender A. Sarcoidosis and the mTOR, Rac1, and Autophagy Triad. Trends Immunol 2020; 41:286-299. [PMID: 32122794 DOI: 10.1016/j.it.2020.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022]
Abstract
Sarcoidosis is an enigmatic multisystem disease characterized by the development and accumulation of granulomas: a compact collection of macrophages that have differentiated into epithelioid cells and which are associated with T helper (Th)1 and Th17 cells. Although no single causative factor has been shown to underlie sarcoidosis in humans, its etiology has been related to microbial, environmental, and genetic factors. We examine how these factors play a role in sarcoidosis pathogenesis. Specifically, we propose that dysfunction of mTOR, Rac1, and autophagy-related pathways not only hampers pathogen or nonorganic particle clearance but also participates in T cell and macrophage dysfunction, driving granuloma formation. This concept opens new avenues for potentially treating sarcoidosis and may serve as a blueprint for other granulomatous disorders.
Collapse
Affiliation(s)
- Yves Pacheco
- Inflammation and Immunity of the Respiratory Epithelium - EA7426 (PI3) - South Medical University Hospital - Lyon 1 Claude Bernard University, Pierre-Bénite, France
| | - Clarice X Lim
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Dominique Valeyre
- Department of Pulmonology, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), EA-2363, Université Paris 13, Bobigny, France
| | - Abderrazzak Bentaher
- Inflammation and Immunity of the Respiratory Epithelium - EA7426 (PI3) - South Medical University Hospital - Lyon 1 Claude Bernard University, Pierre-Bénite, France
| | - Alain Calender
- Inflammation and Immunity of the Respiratory Epithelium - EA7426 (PI3) - South Medical University Hospital - Lyon 1 Claude Bernard University, Pierre-Bénite, France; Department of Molecular and Medical Genetics, Hospices Civils de Lyon, University Hospital, Bron, France.
| |
Collapse
|
22
|
Guan X, Guan X, Dong C, Jiao Z. Rho GTPases and related signaling complexes in cell migration and invasion. Exp Cell Res 2020; 388:111824. [PMID: 31926148 DOI: 10.1016/j.yexcr.2020.111824] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Cell migration and invasion play an important role in the development of cancer. Cell migration is associated with several specific actin filament-based structures, including lamellipodia, filopodia, invadopodia and blebs, and with cell-cell adhesion, cell-extracellular matrix adhesion. Migration occurs via different modes, human epithelial cancer cells mainly migrate collectively, while in vivo imaging studies in laboratory animals have found that most cells migrate as single cells. Rho GTPases play an important role in the process of cell migration, and several Rho GTPase-related signaling complexes are also involved. However, the exact mechanism by which these signaling complexes act remains unclear. This paper reviews how Rho GTPases and related signaling complexes interact with other proteins, how their expression is regulated, how tumor microenvironment-related factors play a role in invasion and metastasis, and the mechanism of these complex signaling networks in cell migration and invasion.
Collapse
Affiliation(s)
- Xiaoying Guan
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Xiaoli Guan
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Chi Dong
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zuoyi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
23
|
Sifuentes-Dominguez L, Starokadomskyy P, Welch J, Gurram B, Park JY, Koduru P, Burstein E. Mosaic Tetrasomy 9p Associated With Inflammatory Bowel Disease. J Crohns Colitis 2019; 13:1474-1478. [PMID: 31104071 PMCID: PMC6821155 DOI: 10.1093/ecco-jcc/jjz079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The genetic basis of inflammatory bowel disease remains to be elucidated completely. Here we report on a patient with inflammatory bowel disease who has mosaic tetrasomy of the short arm of chromosome 9, a genomic region that harbours the type I interferon gene cluster. We show that increased interferon activation is present in peripheral blood and intestinal tissue from this patient, similar to previous reports of autoinflammatory organ damage driven by interferon activation in other patients with this chromosomal abnormality. To our knowledge, this is the first case of tetrasomy 9p-associated interferonopathy driving intestinal inflammation and highlights the role that type-I interferon pathways can play in the pathogenesis of intestinal inflammation.
Collapse
Affiliation(s)
- Luis Sifuentes-Dominguez
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Corresponding author: Luis Sifuentes-Dominguez and Ezra Burstein, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Room J5.126, Dallas, TX 75390-9151, USA. Tel: 1-214-648-2008; Fax: 1-214-648-2022; ;
| | - Petro Starokadomskyy
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jacob Welch
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bhaskar Gurram
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jason Y Park
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Prasad Koduru
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Corresponding author: Luis Sifuentes-Dominguez and Ezra Burstein, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Room J5.126, Dallas, TX 75390-9151, USA. Tel: 1-214-648-2008; Fax: 1-214-648-2022; ;
| |
Collapse
|
24
|
Ben-Horin S, Van Assche G, Chowers Y, Fudim E, Ungar B, Picard O, Yavzori M, Kopylov U, Mao R, Chen MH, Peled Y, Gueta I, Eliakim R, Loebstein R, Markovits N. Pharmacokinetics and Immune Reconstitution Following Discontinuation of Thiopurine Analogues: Implications for Drug Withdrawal Strategies. J Crohns Colitis 2018; 12:1410-1417. [PMID: 30169593 DOI: 10.1093/ecco-jcc/jjy122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Discontinuation of thiopurine analogues is common prior to live vaccines, during infection or when de-escalating therapy. Data regarding clearance of active metabolites and immune re-constitution is scant. We aimed to determine drug elimination and immune re-constitution following thiopurine cessation. METHODS The elimination kinetics of 6-thioguanine nucleotides (6-TGN) were determined in nine inflammatory bowel disease [IBD] patients discontinuing thiopurines. Immune reconstitution was evaluated by toxic shock syndrome toxin 1 [TSST1] or anti-CD3 [OKT3]-induced CD4+ T-cell proliferation, following an initial exposure to TSST1 and 6-mercaptopurine [6MP], separately or combined. RESULTS All patients discontinuing thiopurines displayed first-order elimination kinetics of 6-TGN, with a median elimination half-life of 6.8 days [interquartile range 5.9-8.4]. Resting CD4+ T-cells exposed to 6MP preserved their response to subsequent polyclonal or Vβ2+-preferential stimulation. By contrast, exposure of TSST1-activated CD4+ T-cells to 6MP inhibited their subsequent Vβ2+clonal response to further stimulation [p = 0.008], whereas overall response to further non-Vβ2-selective stimulation with OKT3 was unaltered [p = 0.9]. CONCLUSIONS Upon 6MP/azathioprine discontinuation, a 6-TGN elimination half-life of less than 10 days is expected in most patients. Immune reconstitution, however, may take longer for T-cell clones exposed to stimulation during thiopurine treatment. These findings may be useful when considering thiopurine cessation.
Collapse
Affiliation(s)
- Shomron Ben-Horin
- Department of Gastroenterology, Sheba Medical Center Tel Hashomer & Sackler School of Medicine, Tel-Aviv University, Israel.,Department of Gastroenterology, First Affiliated Hospital, Sun YatSen University, Guangzhou, China
| | - Gert Van Assche
- Division of Gastroenterology and Hepatology, University Hospitals Leuven, Belgium
| | - Yehuda Chowers
- Rambam Health Care Campus & Bruce Rappaport School of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Ella Fudim
- Department of Gastroenterology, Sheba Medical Center Tel Hashomer & Sackler School of Medicine, Tel-Aviv University, Israel
| | - Bella Ungar
- Department of Gastroenterology, Sheba Medical Center Tel Hashomer & Sackler School of Medicine, Tel-Aviv University, Israel
| | - Orit Picard
- Department of Gastroenterology, Sheba Medical Center Tel Hashomer & Sackler School of Medicine, Tel-Aviv University, Israel
| | - Miri Yavzori
- Department of Gastroenterology, Sheba Medical Center Tel Hashomer & Sackler School of Medicine, Tel-Aviv University, Israel
| | - Uri Kopylov
- Department of Gastroenterology, Sheba Medical Center Tel Hashomer & Sackler School of Medicine, Tel-Aviv University, Israel
| | - Ren Mao
- Department of Gastroenterology, First Affiliated Hospital, Sun YatSen University, Guangzhou, China
| | - Min-Hu Chen
- Department of Gastroenterology, First Affiliated Hospital, Sun YatSen University, Guangzhou, China
| | - Yael Peled
- The Olga and Lev Leviev Heart Center, Sheba Medical Center Tel Hashomer & Sackler School of Medicine, Tel-Aviv University, Israel
| | - Itai Gueta
- Institute of Clinical Pharmacology, Sheba Medical Center Tel Hashomer, Tel-Aviv University, Israel
| | - Rami Eliakim
- Department of Gastroenterology, Sheba Medical Center Tel Hashomer & Sackler School of Medicine, Tel-Aviv University, Israel
| | - Ronen Loebstein
- Department of Gastroenterology, Sheba Medical Center Tel Hashomer & Sackler School of Medicine, Tel-Aviv University, Israel
| | - Noa Markovits
- The Institute of Clinical Pharmacology, Sheba Medical Center Tel Hashomer & Sackler School of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
25
|
Wang S, Breskovska I, Gandhy S, Punga AR, Guptill JT, Kaminski HJ. Advances in autoimmune myasthenia gravis management. Expert Rev Neurother 2018; 18:573-588. [PMID: 29932785 PMCID: PMC6289049 DOI: 10.1080/14737175.2018.1491310] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Myasthenia gravis (MG) is an autoimmune neuromuscular disorder with no cure and conventional treatments limited by significant adverse effects and variable benefit. In the last decade, therapeutic development has expanded based on improved understanding of autoimmunity and financial incentives for drug development in rare disease. Clinical subtypes exist based on age, gender, thymic pathology, autoantibody profile, and other poorly defined factors, such as genetics, complicate development of specific therapies. Areas covered: Clinical presentation and pathology vary considerably among patients with some having weakness limited to the ocular muscles and others having profound generalized weakness leading to respiratory insufficiency. MG is an antibody-mediated disorder dependent on autoreactive B cells which require T-cell support. Treatments focus on elimination of circulating autoantibodies or inhibition of effector mechanisms by a broad spectrum of approaches from plasmapheresis to B-cell elimination to complement inhibition. Expert commentary: Standard therapies and those under development are disease modifying and not curative. As a rare disease, clinical trials are challenged in patient recruitment. The great interest in development of treatments specific for MG is welcome, but decisions will need to be made to focus on those that offer significant benefits to patients.
Collapse
Affiliation(s)
- Shuhui Wang
- Department of Neurology, George Washington University, Washington DC 20008
| | - Iva Breskovska
- Department of Neurology, George Washington University, Washington DC 20008
| | - Shreya Gandhy
- Department of Neurology, George Washington University, Washington DC 20008
| | - Anna Rostedt Punga
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Jeffery T. Guptill
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| | - Henry J. Kaminski
- Department of Neurology, George Washington University, Washington DC 20008
| |
Collapse
|
26
|
Yin Y, Chen S, Hakim MS, Wang W, Xu L, Dang W, Qu C, Verhaar AP, Su J, Fuhler GM, Peppelenbosch MP, Pan Q. 6-Thioguanine inhibits rotavirus replication through suppression of Rac1 GDP/GTP cycling. Antiviral Res 2018; 156:92-101. [PMID: 29920300 PMCID: PMC7113846 DOI: 10.1016/j.antiviral.2018.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023]
Abstract
Rotavirus infection has emerged as an important cause of complications in organ transplantation recipients and might play a role in the pathogenesis of inflammatory bowel disease (IBD). 6-Thioguanine (6-TG) has been widely used as an immunosuppressive drug for organ recipients and treatment of IBD in the clinic. This study aims to investigate the effects and mode-of-action of 6-TG on rotavirus replication. Human intestinal Caco2 cell line, 3D model of human primary intestinal organoids, laboratory rotavirus strain (SA11) and patient-derived rotavirus isolates were used. We have demonstrated that 6-TG significantly inhibits rotavirus replication in these intestinal epithelium models. Importantly, gene knockdown or knockout of Rac1, the cellular target of 6-TG, significantly inhibited rotavirus replication, indicating the supportive role of Rac1 for rotavirus infection. We have further demonstrated that 6-TG can effectively inhibit the active form of Rac1 (GTP-Rac1), which essentially mediates the anti-rotavirus effect of 6-TG. Consistently, ectopic over-expression of GTP-Rac1 facilitates but an inactive Rac1 (N17) or a specific Rac1 inhibitor (NSC23766) inhibits rotavirus replication. In conclusion, we have identified 6-TG as an effective inhibitor of rotavirus replication via the inhibition of Rac1 activation. Thus, for transplantation patients or IBD patients infected with rotavirus or at risk of rotavirus infection, the choice of 6-TG as a treatment appears rational. 6-TG inhibits rotavirus infection. Rac1, the cellular target of 6-TG, supports rotavirus infection. 6-TG inhibits the active form of Rac1 (GTP-Rac1) to exert the anti-rotavirus effect.
Collapse
Affiliation(s)
- Yuebang Yin
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China; Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands; Institute of Subtropical Agriculture, Chinese Academic of Sciences, Changsha 410125, China
| | - Sunrui Chen
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Mohamad S Hakim
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands; Department of Microbiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Wenshi Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Lei Xu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Wen Dang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Changbo Qu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Auke P Verhaar
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Junhong Su
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China; Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands; Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China; Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
27
|
de Boer NKH, Peyrin-Biroulet L, Jharap B, Sanderson JD, Meijer B, Atreya I, Barclay ML, Colombel JF, Lopez A, Beaugerie L, Marinaki AM, van Bodegraven AA, Neurath MF. Thiopurines in Inflammatory Bowel Disease: New Findings and Perspectives. J Crohns Colitis 2018; 12:610-620. [PMID: 29293971 DOI: 10.1093/ecco-jcc/jjx181] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/20/2017] [Indexed: 02/08/2023]
Abstract
Thiopurines, available as azathioprine, mercaptopurine, and thioguanine, are immunomodulating agents primarily used to maintain corticosteroid-free remission in patients with inflammatory bowel disease. To provide a state-of-the-art overview of thiopurine treatment in inflammatory bowel disease, this clinical review critically summarises the available literature, as assessed by several experts in the field of thiopurine treatment and research in inflammatory bowel disease.
Collapse
Affiliation(s)
- Nanne K H de Boer
- Department of Gastroenterology and Hepatology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology and Hepatology and Inserm U954, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Bindia Jharap
- Department of Gastroenterology, Meander Medical Centre, Amersfoort, The Netherlands
| | - Jeremy D Sanderson
- Department of Gastroenterology, Guy's and St Thomas' Hospitals, London, UK
| | - Berrie Meijer
- Department of Gastroenterology and Hepatology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Imke Atreya
- Department of Gastroenterology, Pneumology and Endocrinology, Universitätsklinikum Erlangen, University of Erlangen-Nürnberg, Germany
| | - Murray L Barclay
- Department of Gastroenterology, Christchurch Hospital, Christchurch, New Zealand
| | | | - Anthony Lopez
- Department of Gastroenterology and Hepatology and Inserm U954, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Laurent Beaugerie
- Department of Gastroenterology, AP-HP, Hôpital Saint-Antoine,UPMC University, Paris, France
| | | | - Adriaan A van Bodegraven
- Department of Gastroenterology and Hepatology, VU University Medical Centre, Amsterdam, The Netherlands.,Department of Gastroenterology, Geriatrics, Internal and Intensive Care Medicine [Co-MIK], Zuyderland Medical Centre, Heerlen-Sittard-Geleen, The Netherlands
| | - Markus F Neurath
- Department of Gastroenterology, Pneumology and Endocrinology, Universitätsklinikum Erlangen, University of Erlangen-Nürnberg, Germany
| |
Collapse
|
28
|
Cardama GA, Alonso DF, Gonzalez N, Maggio J, Gomez DE, Rolfo C, Menna PL. Relevance of small GTPase Rac1 pathway in drug and radio-resistance mechanisms: Opportunities in cancer therapeutics. Crit Rev Oncol Hematol 2018; 124:29-36. [PMID: 29548483 DOI: 10.1016/j.critrevonc.2018.01.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/21/2017] [Accepted: 01/31/2018] [Indexed: 10/18/2022] Open
Abstract
Rac1 GTPase signaling pathway has a critical role in the regulation of a plethora of cellular functions governing cancer cell behavior. Recently, it has been shown a critical role of Rac1 in the emergence of resistance mechanisms to cancer therapy. This review describes the current knowledge regarding Rac1 pathway deregulation and its association with chemoresistance, radioresistance, resistance to targeted therapies and immune evasion. This supports the idea that interfering Rac1 signaling pathway could be an interesting approach to tackle cancer resistance.
Collapse
Affiliation(s)
- G A Cardama
- Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina
| | - D F Alonso
- Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - N Gonzalez
- Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina
| | - J Maggio
- Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina
| | - D E Gomez
- Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - C Rolfo
- Phase I-Early Clinical trials Unit, Oncology Department Antwerp University Hospital & Center for Oncological Research (CORE), Antwerp University, Belgium.
| | - P L Menna
- Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
29
|
Rac Attack: Modulation of the Small GTPase Rac in Inflammatory Bowel Disease and Thiopurine Therapy. Mol Diagn Ther 2017; 20:551-557. [PMID: 27604084 PMCID: PMC5107185 DOI: 10.1007/s40291-016-0232-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The incidence and prevalence of inflammatory bowel disease (IBD) are increasing. Although the etiology of IBD is unknown, it is thought that genetically susceptible individuals display an inappropriate inflammatory response to commensal microbes, resulting in intestinal tissue damage. Key proteins involved in regulating the immune response, and thus in inflammation, are the small triphosphate-binding protein Rac and its regulatory network. Recent data suggest these proteins to be involved in (dys)regulation of the characteristic inflammatory processes in IBD. Moreover, Rac-gene variants have been identified as susceptibility risk factors for IBD, and Rac1 GTPase signaling has been shown to be strongly suppressed in non-inflamed mucosa compared with inflamed colonic mucosa in IBD. In addition, first-line immunosuppressive treatment for IBD includes thiopurine therapy, and its immunosuppressive effect is primarily ascribed to Rac1 suppression. In this review, we focus on Rac modification and its potential role in the development of IBD, Rac as the molecular therapeutic target in current thiopurine therapy, and the modulation of the Rac signal transduction pathway as a promising novel therapeutic strategy.
Collapse
|
30
|
Azathioprine with Allopurinol: Lower Deoxythioguanosine in DNA and Transcriptome Changes Indicate Mechanistic Differences to Azathioprine Alone. Inflamm Bowel Dis 2017; 23:946-955. [PMID: 28452864 PMCID: PMC5436732 DOI: 10.1097/mib.0000000000001131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Use of azathioprine (AZA) for inflammatory bowel disease is limited by side effects or poor efficacy. Combining low-dose azathioprine with allopurinol (LDAA) bypasses side effects, improves efficacy, and may be appropriate as first-line therapy. We test the hypothesis that standard-dose azathioprine (AZA) and LDAA treatments work by similar mechanisms, using incorporation of the metabolite deoxythioguanosine into patient DNA, white-blood cell counts, and transcriptome analysis as biological markers of drug effect. METHODS DNA was extracted from peripheral whole-blood from patients with IBD treated with AZA or LDAA, and analyzed for DNA-incorporated deoxythioguanosine. Measurement of red-blood cell thiopurine metabolites was part of usual clinical practice, and pre- and on-treatment (12 wk) blood samples were used for transcriptome analysis. RESULTS There were no differences in reduction of white-cell counts between the 2 treatment groups, but patients on LDAA had lower DNA-incorporated deoxythioguanosine than those on AZA; for both groups, incorporated deoxythioguanosine was lower in patients on thiopurines for 24 weeks or more (maintenance of remission) compared to patients treated for less than 24 weeks (achievement of remission). Patients on LDAA had higher levels of red-blood cell thioguanine nucleotides than those on AZA, but there was no correlation between these or their methylated metabolites, and incorporated deoxythioguanosine. Transcriptome analysis suggested down-regulation of immune responses consistent with effective immunosuppression in patients receiving LDAA, with evidence for different mechanisms of action between the 2 therapies. CONCLUSIONS LDAA is biologically effective despite lower deoxythioguanosine incorporation into DNA, and has different mechanisms of action compared to standard-dose azathioprine.
Collapse
|
31
|
Tauber PA, Pickl WF. Pharmacological targeting of allergen-specific T lymphocytes. Immunol Lett 2017; 189:27-39. [PMID: 28322861 DOI: 10.1016/j.imlet.2017.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022]
Abstract
Allergic disorders are the result of a complex pathophysiology, involving major cellular lineages and a multitude of humoral factors of the innate and adaptive immune system, and have the tendency to involve multiple organs. Consequently, even standard pharmacological treatment of allergies is rarely specific but usually targets more than one pathway/cellular system at a time. Accordingly, many of the classic anti-allergic drugs have a critical impact also on T helper cells, which are pivotal not only during the sensitization but also the maintenance phase of allergic diseases. Recent years have seen a dramatic increase of novel drugs with the potency to interfere, more or less specifically, with T lymphocyte function, which might, possibly together with classic anti-allergic drugs, help harnessing one of the central cellular players in allergic responses. A major theme in the years to come will be a thoughtful combination of previously established with recently developed treatment modalities.
Collapse
Affiliation(s)
- Peter A Tauber
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|