1
|
Han P, Fan H, Tong Y. Identification of a novel family B DNA polymerase from Enterococcus phage IME199 and its overproduction in Escherichia coli BL21(DE3). Microb Cell Fact 2023; 22:217. [PMID: 37865739 PMCID: PMC10590003 DOI: 10.1186/s12934-023-02228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND Identification and characterization of novel, faithful and processive DNA polymerases is a driving force in the development of DNA amplification methods. Purification of proteins from natural phages is often time-consuming, cumbersome and low yielding. Escherichia coli is a host bacterium widely used for the production of recombinant proteins, is the cell factory of choice for in vitro studies of phage protein function. RESULTS We expressed the gene encoding Enterococcus faecium phage IME199 DNA polymerase (IME199 DNAP) in Escherichia coli BL21(DE3), and characterized protein function. IME199 DNAP has 3'-5' exonuclease activity, but does not have 5'-3' exonuclease activity. In addition, IME199 DNAP has dNTP-dependent 5'-3' polymerase activity and can amplify DNA at 15-35 °C and a pH range of 5.5-9.5. The amino acid residues Asp30, Glu32, Asp112 and Asp251 are the 3'-5' exonuclease active sites of IME199 DNAP, while residues Asp596 and Tyr639 are essential for DNA synthesis by IME199 DNAP. More importantly, the IME199 DNAP has strand displacement and processive synthesis capabilities, and can perform rolling circle amplification and multiple displacement amplification with very low error rates (approximately 3.67 × 10-6). CONCLUSIONS A novel family B DNA polymerase was successfully overproduced in Escherichia coli BL21(DE3). Based on the characterized properties, IME199 DNAP is expected to be developed as a high-fidelity polymerase for DNA amplification at room temperature.
Collapse
Affiliation(s)
- Pengjun Han
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
2
|
Wang J, Konigsberg WH. Two-Metal-Ion Catalysis: Inhibition of DNA Polymerase Activity by a Third Divalent Metal Ion. Front Mol Biosci 2022; 9:824794. [PMID: 35300112 PMCID: PMC8921852 DOI: 10.3389/fmolb.2022.824794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/14/2022] [Indexed: 11/15/2022] Open
Abstract
Almost all DNA polymerases (pols) exhibit bell-shaped activity curves as a function of both pH and Mg2+ concentration. The pol activity is reduced when the pH deviates from the optimal value. When the pH is too low the concentration of a deprotonated general base (namely, the attacking 3′-hydroxyl of the 3′ terminal residue of the primer strand) is reduced exponentially. When the pH is too high the concentration of a protonated general acid (i.e., the leaving pyrophosphate group) is reduced. Similarly, the pol activity also decreases when the concentration of the divalent metal ions deviates from its optimal value: when it is too low, the binding of the two catalytic divalent metal ions required for the full activity is incomplete, and when it is too high a third divalent metal ion binds to pyrophosphate, keeping it in the replication complex longer and serving as a substrate for pyrophosphorylysis within the complex. Currently, there is a controversy about the role of the third metal ion which we will address in this review.
Collapse
|
3
|
Gottesman ME, Chudaev M, Mustaev A. Key features of magnesium that underpin its role as the major ion for electrophilic biocatalysis. FEBS J 2020; 287:5439-5463. [DOI: 10.1111/febs.15318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 02/06/2020] [Accepted: 03/30/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Max E. Gottesman
- Department of Microbiology & Immunology Columbia University Medical Center New York NY USA
| | - Maxim Chudaev
- Public Health Research Institute & Department of Microbiology and Molecular Genetics New Jersey Medical School Rutgers Biomedical and Health Sciences Newark NJ USA
| | - Arkady Mustaev
- Public Health Research Institute & Department of Microbiology and Molecular Genetics New Jersey Medical School Rutgers Biomedical and Health Sciences Newark NJ USA
| |
Collapse
|
4
|
Okano H, Baba M, Kawato K, Hidese R, Yanagihara I, Kojima K, Takita T, Fujiwara S, Yasukawa K. High sensitive RNA detection by one-step RT-PCR using the genetically engineered variant of DNA polymerase with reverse transcriptase activity from hyperthermophilies. J Biosci Bioeng 2018; 125:275-281. [PMID: 29100684 DOI: 10.1016/j.jbiosc.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/03/2017] [Accepted: 10/07/2017] [Indexed: 01/14/2023]
Abstract
One-step RT-PCR has not been widely used even though some thermostable DNA polymerases with reverse transcriptase (RT) activity were developed from bacterial and archaeal polymerases, which is owing to low cDNA synthesis activity from RNA. In the present study, we developed highly-sensitive one-step RT-PCR using the single variant of family A DNA polymerase with RT activity, K4polL329A (L329A), from the hyperthermophilic bacterium Thermotoga petrophila K4 or the 16-tuple variant of family B DNA polymerase with RT activity, RTX, from the hyperthermophilic archaeon Thermococcus kodakarensis. Optimization of reaction condition revealed that the activities for cDNA synthesis and PCR of K4polL329A and RTX were highly affected by the concentrations of MgCl2 and Mn(OCOCH3)2 as well as those of K4polL329A or RTX. Under the optimized condition, 300 copies/μl of target RNA in 10 μl reaction volumes were successfully detected by the one-step RT-PCR with K4polL329A or RTX, which was almost equally sensitive enough compared with the current RT-PCR condition using retroviral RT and thermostable DNA polymerase. Considering that K4polL329A and RTX are stable even at 90-100°C, our results suggest that the one-step RT-PCR with K4polL329A or RTX is more advantageous than the current one.
Collapse
Affiliation(s)
- Hiroyuki Okano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan
| | - Misato Baba
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan
| | - Katsuhiro Kawato
- Department of Bioscience, School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Ryota Hidese
- Department of Bioscience, School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi 594-1101, Osaka, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
5
|
Cozens C, Pinheiro VB. XNA Synthesis and Reverse Transcription by Engineered Thermophilic Polymerases. ACTA ACUST UNITED AC 2018; 10:e47. [PMID: 30039931 DOI: 10.1002/cpch.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The B-family polymerases of hyperthermophilic archaea have proven an exceptional platform for engineering polymerases with extended substrate spectra, despite multiple mechanisms for detecting and avoiding incorporation of non-cognate substrates. These polymerases can efficiently synthesize and reverse-transcribe a number of xenonucleic acids (XNAs) that differ significantly from the canonical B-form of DNA. We present here a protocol for hexitol nucleic acid (HNA) synthesis by an engineered Thermococcus gorgonarius polymerase variant, including adaptation for large-scale synthesis and purification, and for other XNAs. We describe XNA purification and reverse transcription (with a previously reported XNA RT also based on Thermococcus gorgonarius), as well as key considerations for the characterization and optimization of XNA reactions. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Christopher Cozens
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Vitor B Pinheiro
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom.,Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
| |
Collapse
|
6
|
Willems K, Van Meervelt V, Wloka C, Maglia G. Single-molecule nanopore enzymology. Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630164 DOI: 10.1098/rstb.2016.0230] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biological nanopores are a class of membrane proteins that open nanoscale water conduits in biological membranes. When they are reconstituted in artificial membranes and a bias voltage is applied across the membrane, the ionic current passing through individual nanopores can be used to monitor chemical reactions, to recognize individual molecules and, of most interest, to sequence DNA. In addition, a more recent nanopore application is the analysis of single proteins and enzymes. Monitoring enzymatic reactions with nanopores, i.e. nanopore enzymology, has the unique advantage that it allows long-timescale observations of native proteins at the single-molecule level. Here, we describe the approaches and challenges in nanopore enzymology.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Kherim Willems
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.,Department of Life Sciences and Imaging, IMEC, Kapeldreef 75, 3001 Leuven, Belgium
| | - Veerle Van Meervelt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.,Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Carsten Wloka
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|