1
|
Krueger-Burg D. Understanding GABAergic synapse diversity and its implications for GABAergic pharmacotherapy. Trends Neurosci 2025; 48:47-61. [PMID: 39779392 DOI: 10.1016/j.tins.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/17/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Despite the substantial contribution of disruptions in GABAergic inhibitory neurotransmission to the etiology of psychiatric, neurodevelopmental, and neurodegenerative disorders, surprisingly few drugs targeting the GABAergic system are currently available, partly due to insufficient understanding of circuit-specific GABAergic synapse biology. In addition to GABA receptors, GABAergic synapses contain an elaborate organizational protein machinery that regulates the properties of synaptic transmission. Until recently, this machinery remained largely unexplored, but key methodological advances have now led to the identification of a wealth of new GABAergic organizer proteins. Notably, many of these proteins appear to function only at specific subsets of GABAergic synapses, creating a diversity of organizer complexes that may serve as circuit-specific targets for pharmacotherapies. The present review aims to summarize the methodological developments that underlie this newfound knowledge and provide a current overview of synapse-specific GABAergic organizer complexes, as well as outlining future avenues and challenges in translating this knowledge into clinical applications.
Collapse
Affiliation(s)
- Dilja Krueger-Burg
- Laboratory of Cell Biology and Neuroscience, Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
2
|
Mitra S, Bp K, C R S, Saikumar NV, Philip P, Narayanan M. Alzheimer's disease rewires gene coexpression networks coupling different brain regions. NPJ Syst Biol Appl 2024; 10:50. [PMID: 38724582 PMCID: PMC11082197 DOI: 10.1038/s41540-024-00376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Connectome studies have shown how Alzheimer's disease (AD) disrupts functional and structural connectivity among brain regions. But the molecular basis of such disruptions is less studied, with most genomic/transcriptomic studies performing within-brain-region analyses. To inspect how AD rewires the correlation structure among genes in different brain regions, we performed an Inter-brain-region Differential Correlation (Inter-DC) analysis of RNA-seq data from Mount Sinai Brain Bank on four brain regions (frontal pole, superior temporal gyrus, parahippocampal gyrus and inferior frontal gyrus, comprising 264 AD and 372 control human post-mortem samples). An Inter-DC network was assembled from all pairs of genes across two brain regions that gained (or lost) correlation strength in the AD group relative to controls at FDR 1%. The differentially correlated (DC) genes in this network complemented known differentially expressed genes in AD, and likely reflects cell-intrinsic changes since we adjusted for cell compositional effects. Each brain region used a distinctive set of DC genes when coupling with other regions, with parahippocampal gyrus showing the most rewiring, consistent with its known vulnerability to AD. The Inter-DC network revealed master dysregulation hubs in AD (at genes ZKSCAN1, SLC5A3, RCC1, IL17RB, PLK4, etc.), inter-region gene modules enriched for known AD pathways (synaptic signaling, endocytosis, etc.), and candidate signaling molecules that could mediate region-region communication. The Inter-DC network generated in this study is a valuable resource of gene pairs, pathways and signaling molecules whose inter-brain-region functional coupling is disrupted in AD, thereby offering a new perspective of AD etiology.
Collapse
Affiliation(s)
- Sanga Mitra
- Bioinformatics and Integrative Data Science group, Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Kailash Bp
- Bioinformatics and Integrative Data Science group, Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Srivatsan C R
- Bioinformatics and Integrative Data Science group, Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Naga Venkata Saikumar
- Bioinformatics and Integrative Data Science group, Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Philge Philip
- Centre for Integrative Biology and Systems Medicine, IIT Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence, IIT Madras, Chennai, India
| | - Manikandan Narayanan
- Bioinformatics and Integrative Data Science group, Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India.
- Centre for Integrative Biology and Systems Medicine, IIT Madras, Chennai, India.
- Robert Bosch Centre for Data Science and Artificial Intelligence, IIT Madras, Chennai, India.
- Sudha Gopalakrishnan Brain Centre, IIT Madras, Chennai, India.
| |
Collapse
|
3
|
Lee G, Kim S, Hwang DE, Eom YG, Jang G, Park HY, Choi JM, Ko J, Shin Y. Thermodynamic modulation of gephyrin condensation by inhibitory synapse components. Proc Natl Acad Sci U S A 2024; 121:e2313236121. [PMID: 38466837 PMCID: PMC10963017 DOI: 10.1073/pnas.2313236121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Phase separation drives compartmentalization of intracellular contents into various biomolecular condensates. Individual condensate components are thought to differentially contribute to the organization and function of condensates. However, how intermolecular interactions among constituent biomolecules modulate the phase behaviors of multicomponent condensates remains unclear. Here, we used core components of the inhibitory postsynaptic density (iPSD) as a model system to quantitatively probe how the network of intra- and intermolecular interactions defines the composition and cellular distribution of biomolecular condensates. We found that oligomerization-driven phase separation of gephyrin, an iPSD-specific scaffold, is critically modulated by an intrinsically disordered linker region exhibiting minimal homotypic attractions. Other iPSD components, such as neurotransmitter receptors, differentially promote gephyrin condensation through distinct binding modes and affinities. We further demonstrated that the local accumulation of scaffold-binding proteins at the cell membrane promotes the nucleation of gephyrin condensates in neurons. These results suggest that in multicomponent systems, the extent of scaffold condensation can be fine-tuned by scaffold-binding factors, a potential regulatory mechanism for self-organized compartmentalization in cells.
Collapse
Affiliation(s)
- Gyehyun Lee
- Department of Mechanical Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Seungjoon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu42988, Republic of Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Republic of Korea
| | - Da-Eun Hwang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan46241, Republic of Korea
| | - Yu-Gon Eom
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan46241, Republic of Korea
| | - Gyubin Jang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu42988, Republic of Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Republic of Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul08826, Republic of Korea
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN55455
| | - Jeong-Mo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan46241, Republic of Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu42988, Republic of Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Republic of Korea
| | - Yongdae Shin
- Department of Mechanical Engineering, Seoul National University, Seoul08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
4
|
Khan J, Yadav S, Bhardwaj D, Kumar A, Okanlawon MU. Flavonoids as Potential Natural Compounds for the Prevention and Treatment of Eczema. Antiinflamm Antiallergy Agents Med Chem 2024; 23:71-84. [PMID: 38721791 DOI: 10.2174/0118715230299752240310171954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 08/21/2024]
Abstract
Eczema is a systemic autoimmune disease characterized by inflammation and skin manifestation with a range of comorbidities that include physical and psychological disorders. Despite recent advancements in understanding the mechanisms involved in atopic dermatitis, current marketed products have shown varying results with more side effects. The present objective of the research studies is to develop new agents for eczema that cut down the cost of the novel drugs available and also improve the efficacy with the least adverse effects. Natural compounds and medicinal plants have been traditionally used since ancient civilizations. Nowadays, research in the herbal field is at its peak. One such natural compound, flavonoid, was found to be beneficial for the treatment of eczema. This review describes the use of certain flavonoid products to prepare preparations suitable for the treatment of prophylaxis or eczema. This is especially true for prophylaxis or atopic eczema treatment. These compounds exhibit anti-inflammatory, anti-inflammatory, anti-inflammatory, and anti-inflammatory properties and are, therefore, used in treatments to prevent allergies, inflammation, and irritation to the skin. We also dock the flavonoid derivatives used with the protein associated with the inhibition of eczema for better lead optimization. These preparations appear to be used for cosmetic, dermatological, or herbal remedies as a local application.
Collapse
Affiliation(s)
- Javed Khan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Divya Bhardwaj
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Abhishek Kumar
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Moshood Ummuani Okanlawon
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
5
|
Bai G, Li H, Qin P, Guo Y, Yang W, Lian Y, Ye F, Chen J, Wu M, Huang R, Li J, Lu Y, Zhang M. Ca2+-induced release of IQSEC2/BRAG1 autoinhibition under physiological and pathological conditions. J Cell Biol 2023; 222:e202307117. [PMID: 37787765 PMCID: PMC10548395 DOI: 10.1083/jcb.202307117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023] Open
Abstract
IQSEC2 (aka BRAG1) is a guanine nucleotide exchange factor (GEF) highly enriched in synapses. As a top neurodevelopmental disorder risk gene, numerous mutations are identified in Iqsec2 in patients with intellectual disabilities accompanied by other developmental, neurological, and psychiatric symptoms, though with poorly understood underlying molecular mechanisms. The atomic structures of IQSECs, together with biochemical analysis, presented in this study reveal an autoinhibition and Ca2+-dependent allosteric activation mechanism for all IQSECs and rationalize how each identified Iqsec2 mutation can alter the structure and function of the enzyme. Transgenic mice modeling two pathogenic variants of Iqsec2 (R359C and Q801P), with one activating and the other inhibiting the GEF activity of the enzyme, recapitulate distinct clinical phenotypes in patients. Our study demonstrates that different mutations on one gene such as Iqsec2 can have distinct neurological phenotypes and accordingly will require different therapeutic strategies.
Collapse
Affiliation(s)
- Guanhua Bai
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, China
| | - Hao Li
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Pengwei Qin
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqing Guo
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Wanfa Yang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, China
| | - Yinmiao Lian
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, China
| | - Jianxin Chen
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Meiling Wu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ruifeng Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Youming Lu
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Mingjie Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
6
|
Jung H, Kim S, Ko J, Um JW. Intracellular signaling mechanisms that shape postsynaptic GABAergic synapses. Curr Opin Neurobiol 2023; 81:102728. [PMID: 37236068 DOI: 10.1016/j.conb.2023.102728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023]
Abstract
Postsynaptic GABAergic receptors interact with various membrane and intracellular proteins to mediate inhibitory synaptic transmission. They form structural and/or signaling synaptic protein complexes that perform a variety of postsynaptic functions. In particular, the key GABAergic synaptic scaffold, gephyrin, and its interacting partners govern downstream signaling pathways that are essential for GABAergic synapse development, transmission, and plasticity. In this review, we discuss recent researches on GABAergic synaptic signaling pathways. We also outline the main outstanding issues that need to be addressed in this field and highlight the association of dysregulated GABAergic synaptic signaling with the onset of various brain disorders.
Collapse
Affiliation(s)
- Hyeji Jung
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea
| | - Seungjoon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea
| | - Ji Won Um
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea.
| |
Collapse
|
7
|
Cheng X, Li X, Liu Y, Ma Y, Zhang R, Zhang Y, Fan C, Qu L, Ning Z. DNA methylome and transcriptome identified Key genes and pathways involved in Speckled Eggshell formation in aged laying hens. BMC Genomics 2023; 24:31. [PMID: 36658492 PMCID: PMC9854222 DOI: 10.1186/s12864-022-09100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The quality of poultry eggshells is closely related to the profitability of egg production. Eggshell speckles reflect an important quality trait that influences egg appearance and customer preference. However, the mechanism of speckle formation remains poorly understood. In this study, we systematically compared serum immune and antioxidant indices of hens laying speckled and normal eggs. Transcriptome and methylome analyses were used to elucidate the mechanism of eggshell speckle formation. RESULTS The results showed that seven differentially expressed genes (DEGs) were identified between the normal and speckle groups. Gene set enrichment analysis (GSEA) revealed that the expressed genes were mainly enriched in the calcium signaling pathway, focal adhesion, and MAPK signaling pathway. Additionally, 282 differentially methylated genes (DMGs) were detected, of which 15 genes were associated with aging, including ARNTL, CAV1, and GCLC. Pathway analysis showed that the DMGs were associated with T cell-mediated immunity, response to oxidative stress, and cellular response to DNA damage stimulus. Integrative analysis of transcriptome and DNA methylation data identified BFSP2 as the only overlapping gene, which was expressed at low levels and hypomethylated in the speckle group. CONCLUSIONS Overall, these results indicate that aging- and immune-related genes and pathways play a crucial role in the formation of speckled eggshells, providing useful information for improving eggshell quality.
Collapse
Affiliation(s)
- Xue Cheng
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Xinghua Li
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yuchen Liu
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ying Ma
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ruiqi Zhang
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yalan Zhang
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Cuidie Fan
- Rongde Breeding Company Limited, Hebei, 053000 China
| | - Lujiang Qu
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhonghua Ning
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
8
|
Lin H, Tang M, Ji C, Girardi P, Cvetojevic G, Chen D, Koren SA, Johnson GVW. BAG3 Regulation of RAB35 Mediates the Endosomal Sorting Complexes Required for Transport/Endolysosome Pathway and Tau Clearance. Biol Psychiatry 2022; 92:10-24. [PMID: 35000752 PMCID: PMC9085972 DOI: 10.1016/j.biopsych.2021.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND Declining proteostasis with aging contributes to increased susceptibility to neurodegenerative diseases, including Alzheimer's disease (AD). Emerging studies implicate impairment of the endosome-lysosome pathway as a significant factor in the pathogenesis of these diseases. Previously, we demonstrated that BAG3 regulates phosphorylated tau clearance. However, we did not fully define how BAG3 regulates endogenous tau proteostasis, especially in the early stages of disease progression. METHODS Mass spectrometric analyses were performed to identify neuronal BAG3 interactors. Multiple biochemical assays were used to investigate the BAG3-HSP70-TBC1D10B (EPI64B)-RAB35-HRS regulatory networks. Live-cell imaging was used to study the dynamics of the endosomal pathway. Immunohistochemistry and immunoblotting were performed in human AD brains and in P301S tau transgenic mice with BAG3 overexpressed. RESULTS The primary group of neuronal BAG3 interactors identified are involved in the endocytic pathway. Among them were key regulators of small GTPases, such as the RAB35 GTPase-activating protein TBC1D10B. We demonstrated that a BAG3-HSP70-TBC1D10B complex attenuates the ability of TBC1D10B to inactivate RAB35. Thus, BAG3 interacts with TBC1D10B to support the activation of RAB35 and recruitment of HRS, initiating endosomal sorting complex required for transport-mediated endosomal tau clearance. Furthermore, TBC1D10B shows significantly less colocalization with BAG3 in AD brains than in age-matched controls. Overexpression of BAG3 in P301S tau transgenic mice increased the colocalization of phosphorylated tau with the endosomal sorting complex required for transport III protein CHMP2B and reduced the levels of the mutant human tau. CONCLUSIONS We identified a novel BAG3-TBC1D10B-RAB35 regulatory axis that modulates endosomal sorting complex required for transport-dependent protein degradation machinery and tau clearance. Dysregulation of BAG3 could contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gail V. W. Johnson
- Correspondence should be addressed to: Gail V.W. Johnson, PhD, Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14642, , +1-585-276-3740 (voice)
| |
Collapse
|
9
|
Kim D, Jung H, Shirai Y, Kim H, Kim J, Lim D, Mori T, Lee H, Park D, Kim HY, Guo Q, Pang B, Qiu W, Cao X, Kouyama-Suzuki E, Uemura T, Kasem E, Fu Y, Kim S, Tokunaga A, Yoshizawa T, Suzuki T, Sakagami H, Lee KJ, Ko J, Tabuchi K, Um JW. IQSEC3 Deletion Impairs Fear Memory Through Upregulation of Ribosomal S6K1 Signaling in the Hippocampus. Biol Psychiatry 2022; 91:821-831. [PMID: 35219498 DOI: 10.1016/j.biopsych.2021.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND IQSEC3, a gephyrin-binding GABAergic (gamma-aminobutyric acidergic) synapse-specific guanine nucleotide exchange factor, was recently reported to regulate activity-dependent GABAergic synapse maturation, but the underlying signaling mechanisms remain incompletely understood. METHODS We generated mice with conditional knockout (cKO) of Iqsec3 to examine whether altered synaptic inhibition influences hippocampus-dependent fear memory formation. In addition, electrophysiological recordings, immunohistochemistry, and behavioral assays were used to address our question. RESULTS We found that Iqsec3-cKO induces a specific reduction in GABAergic synapse density, GABAergic synaptic transmission, and maintenance of long-term potentiation in the hippocampal CA1 region. In addition, Iqsec3-cKO mice exhibited impaired fear memory formation. Strikingly, Iqsec3-cKO caused abnormally enhanced activation of ribosomal P70-S6K1-mediated signaling in the hippocampus but not in the cortex. Furthermore, inhibiting upregulated S6K1 signaling by expressing dominant-negative S6K1 in the hippocampal CA1 of Iqsec3-cKO mice completely rescued impaired fear learning and inhibitory synapse density but not deficits in long-term potentiation maintenance. Finally, upregulated S6K1 signaling was rescued by IQSEC3 wild-type, but not by an ARF-GEF (adenosine diphosphate ribosylation factor-guanine nucleotide exchange factor) inactive IQSEC3 mutant. CONCLUSIONS Our results suggest that IQSEC3-mediated balanced synaptic inhibition in hippocampal CA1 is critical for the proper formation of hippocampus-dependent fear memory.
Collapse
Affiliation(s)
- Dongwook Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hyeji Jung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Yoshinori Shirai
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Hyeonho Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jinhu Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Dongseok Lim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Takuma Mori
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Hyojeong Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Dongseok Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hee Young Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Qi Guo
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Bo Pang
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Wen Qiu
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Xueshan Cao
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Emi Kouyama-Suzuki
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Takeshi Uemura
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Enas Kasem
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan; Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Yu Fu
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Akinori Tokunaga
- Division of Laboratory Animal Resources, Life Science Research Laboratory, University of Fukui, Fukui, Japan
| | - Takahiro Yoshizawa
- Research Center for Supports to Advanced Science, Shinshu University, Nagano, Japan
| | - Tatsuo Suzuki
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Kanagawa, Japan
| | - Kea Joo Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea; Neural Circuits Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan.
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea.
| |
Collapse
|
10
|
Mehta A, Shirai Y, Kouyama-Suzuki E, Zhou M, Yoshizawa T, Yanagawa T, Mori T, Tabuchi K. IQSEC2 Deficiency Results in Abnormal Social Behaviors Relevant to Autism by Affecting Functions of Neural Circuits in the Medial Prefrontal Cortex. Cells 2021; 10:2724. [PMID: 34685703 PMCID: PMC8534507 DOI: 10.3390/cells10102724] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/28/2022] Open
Abstract
IQSEC2 is a guanine nucleotide exchange factor (GEF) for ADP-ribosylation factor 6 (Arf6), of which protein is exclusively localized to the postsynaptic density of the excitatory synapse. Human genome studies have revealed that the IQSEC2 gene is associated with X-linked neurodevelopmental disorders, such as intellectual disability (ID), epilepsy, and autism. In this study, we examined the behavior and synapse function in IQSEC2 knockout (KO) mice that we generated using CRIPSR/Cas9-mediated genome editing to solve the relevance between IQSEC2 deficiency and the pathophysiology of neurodevelopmental disorders. IQSEC2 KO mice exhibited autistic behaviors, such as overgrooming and social deficits. We identified that up-regulation of c-Fos expression in the medial prefrontal cortex (mPFC) induced by social stimulation was significantly attenuated in IQSEC2 KO mice. Whole cell electrophysiological recording identified that synaptic transmissions mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), N-methyl-D-aspartate receptor (NMDAR), and γ-aminobutyric acid receptor (GABAR) were significantly decreased in pyramidal neurons in layer 5 of the mPFC in IQSEC2 KO mice. Reexpression of IQSEC2 isoform 1 in the mPFC of IQSEC2 KO mice using adeno-associated virus (AAV) rescued both synaptic and social deficits, suggesting that impaired synaptic function in the mPFC is responsible for social deficits in IQSEC2 KO mice.
Collapse
Affiliation(s)
- Anuradha Mehta
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (A.M.); (Y.S.); (E.K.-S.); (M.Z.); (T.M.)
| | - Yoshinori Shirai
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (A.M.); (Y.S.); (E.K.-S.); (M.Z.); (T.M.)
| | - Emi Kouyama-Suzuki
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (A.M.); (Y.S.); (E.K.-S.); (M.Z.); (T.M.)
| | - Mengyun Zhou
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (A.M.); (Y.S.); (E.K.-S.); (M.Z.); (T.M.)
| | - Takahiro Yoshizawa
- Research Center for Advanced Science and Technology, Shinshu University, Matsumoto 390-8621, Japan;
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Takuma Mori
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (A.M.); (Y.S.); (E.K.-S.); (M.Z.); (T.M.)
- Department of NeuroHealth Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (A.M.); (Y.S.); (E.K.-S.); (M.Z.); (T.M.)
- Department of NeuroHealth Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
11
|
Kim S, Park D, Kim J, Kim D, Kim H, Mori T, Jung H, Lee D, Hong S, Jeon J, Tabuchi K, Cheong E, Kim J, Um JW, Ko J. Npas4 regulates IQSEC3 expression in hippocampal somatostatin interneurons to mediate anxiety-like behavior. Cell Rep 2021; 36:109417. [PMID: 34289353 DOI: 10.1016/j.celrep.2021.109417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/11/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Activity-dependent GABAergic synapse plasticity is important for normal brain functions, but the underlying molecular mechanisms remain incompletely understood. Here, we show that Npas4 (neuronal PAS-domain protein 4) transcriptionally regulates the expression of IQSEC3, a GABAergic synapse-specific guanine nucleotide-exchange factor for ADP-ribosylation factor (ARF-GEF) that directly interacts with gephyrin. Neuronal activation by an enriched environment induces Npas4-mediated upregulation of IQSEC3 protein specifically in CA1 stratum oriens layer somatostatin (SST)-expressing GABAergic interneurons. SST+ interneuron-specific knockout (KO) of Npas4 compromises synaptic transmission in these GABAergic interneurons, increases neuronal activity in CA1 pyramidal neurons, and reduces anxiety behavior, all of which are normalized by the expression of wild-type IQSEC3, but not a dominant-negative ARF-GEF-inactive mutant, in SST+ interneurons of Npas4-KO mice. Our results suggest that IQSEC3 is a key GABAergic synapse component that is directed by Npas4 and ARF activity, specifically in SST+ interneurons, to orchestrate excitation-to-inhibition balance and control anxiety-like behavior.
Collapse
Affiliation(s)
- Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Dongseok Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Jinhu Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Dongwook Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Hyeonho Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Takuma Mori
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-86221, Japan
| | - Hyeji Jung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Dongsu Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Sookyung Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jongcheol Jeon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Katsuhiko Tabuchi
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-86221, Japan; Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea.
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea.
| |
Collapse
|
12
|
Kim S, Kang M, Park D, Lee AR, Betz H, Ko J, Chang I, Um JW. Impaired formation of high-order gephyrin oligomers underlies gephyrin dysfunction-associated pathologies. iScience 2021; 24:102037. [PMID: 33532714 PMCID: PMC7822942 DOI: 10.1016/j.isci.2021.102037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Gephyrin is critical for the structure, function, and plasticity of inhibitory synapses. Gephyrin mutations have been linked to various neurological disorders; however, systematic analyses of the functional consequences of these mutations are lacking. Here, we performed molecular dynamics simulations of gephyrin to predict how six reported point mutations might change the structural stability and/or function of gephyrin. Additional in silico analyses revealed that the A91T and G375D mutations reduce the binding free energy of gephyrin oligomer formation. Gephyrin A91T and G375D displayed altered clustering patterns in COS-7 cells and nullified the inhibitory synapse-promoting effect of gephyrin in cultured neurons. However, only the G375D mutation reduced gephyrin interaction with GABAA receptors and neuroligin-2 in mouse brain; it also failed to normalize deficits in GABAergic synapse maintenance and neuronal hyperactivity observed in hippocampal dentate gyrus-specific gephyrin-deficient mice. Our results provide insights into biochemical, cell-biological, and network-activity effects of the pathogenic G375D mutation.
Collapse
Affiliation(s)
- Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Mooseok Kang
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Core Protein Resources Center, DGIST, Daegu 42988, Korea
| | - Dongseok Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Ae-Ree Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Core Protein Resources Center, DGIST, Daegu 42988, Korea
| | - Heinrich Betz
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Iksoo Chang
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Core Protein Resources Center, DGIST, Daegu 42988, Korea.,Supercomputing Bigdata Center, DGIST, Daegu 42988, Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Core Protein Resources Center, DGIST, Daegu 42988, Korea
| |
Collapse
|
13
|
George S, Chiou TT, Kanamalla K, De Blas AL. Recruitment of Plasma Membrane GABA-A Receptors by Submembranous Gephyrin/Collybistin Clusters. Cell Mol Neurobiol 2021; 42:1585-1604. [PMID: 33547626 DOI: 10.1007/s10571-021-01050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/23/2021] [Indexed: 11/29/2022]
Abstract
It has been shown that subunit composition is the main determinant of the synaptic or extrasynaptic localization of GABAA receptors (GABAARs). Synaptic and extrasynaptic GABAARs are involved in phasic and tonic inhibition, respectively. It has been proposed that synaptic GABAARs bind to the postsynaptic gephyrin/collybistin (Geph/CB) lattice, but not the typically extrasynaptic GABAARs. Nevertheless, there are no studies of the direct binding of various types of GABAARs with the submembranous Geph/CB lattice in the absence of other synaptic proteins, some of which are known to interact with GABAARs. We have reconstituted GABAARs of various subunit compositions, together with the Geph/CB scaffold, in HEK293 cells, and have investigated the recruitment of surface GABAARs by submembranous Geph/CB clusters. Results show that the typically synaptic α1β3γ2 GABAARs were trapped by submembranous Geph/CB clusters. The α5β3γ2 GABAARs, which are both synaptic and extrasynaptic, were also trapped by Geph/CB clusters. Extrasynaptic α4β3δ GABAARs consistently showed little or no trapping by the Geph/CB clusters. However, the extrasynaptic α6β3δ, α1β3, α6β3 (and less α4β3) GABAARs were highly trapped by the Geph/CB clusters. AMPA and NMDA glutamate receptors were not trapped. The results suggest: (I) in the absence of other synaptic molecules, the Geph/CB lattice has the capacity to trap not only synaptic but also several typically extrasynaptic GABAARs; (II) the Geph/CB lattice is important but does not play a decisive role in the synaptic localization of GABAARs; and (III) in neurons there must be mechanisms preventing the trapping of several typically extrasynaptic GABAARs by the postsynaptic Geph/CB lattice.
Collapse
Affiliation(s)
- Shanu George
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA
| | - Tzu-Ting Chiou
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA
| | - Karthik Kanamalla
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA
| | - Angel L De Blas
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA.
| |
Collapse
|
14
|
Pizzarelli R, Griguoli M, Zacchi P, Petrini EM, Barberis A, Cattaneo A, Cherubini E. Tuning GABAergic Inhibition: Gephyrin Molecular Organization and Functions. Neuroscience 2020; 439:125-136. [PMID: 31356900 PMCID: PMC7351109 DOI: 10.1016/j.neuroscience.2019.07.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/15/2023]
Abstract
To be highly reliable, synaptic transmission needs postsynaptic receptors (Rs) in precise apposition to the presynaptic release sites. At inhibitory synapses, the postsynaptic protein gephyrin self-assembles to form a scaffold that anchors glycine and GABAARs to the cytoskeleton, thus ensuring the accurate accumulation of postsynaptic receptors at the right place. This protein undergoes several post-translational modifications which control protein-protein interaction and downstream signaling pathways. In addition, through the constant exchange of scaffolding elements and receptors in and out of synapses, gephyrin dynamically regulates synaptic strength and plasticity. The aim of the present review is to highlight recent findings on the functional role of gephyrin at GABAergic inhibitory synapses. We will discuss different approaches used to interfere with gephyrin in order to unveil its function. In addition, we will focus on the impact of gephyrin structure and distribution at the nanoscale level on the functional properties of inhibitory synapses as well as the implications of this scaffold protein in synaptic plasticity processes. Finally, we will emphasize how gephyrin genetic mutations or alterations in protein expression levels are implicated in several neuropathological disorders, including autism spectrum disorders, schizophrenia, temporal lobe epilepsy and Alzheimer's disease, all associated with severe deficits of GABAergic signaling. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Rocco Pizzarelli
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Roma, Italy
| | - Marilena Griguoli
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Roma, Italy
| | - Paola Zacchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Enrica Maria Petrini
- Fondazione Istituto Italiano di Tecnologia (IIT), Department of Neuroscience and Brain Technologies, Plasticity of inhibitory networks Unit, Genoa, Italy
| | - Andrea Barberis
- Fondazione Istituto Italiano di Tecnologia (IIT), Department of Neuroscience and Brain Technologies, Plasticity of inhibitory networks Unit, Genoa, Italy
| | - Antonino Cattaneo
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Roma, Italy; Scuola Normale Superiore, Pisa, Italy
| | - Enrico Cherubini
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Roma, Italy; Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy.
| |
Collapse
|
15
|
Park D, Kim S, Kim H, Shin J, Jung H, Um JW. Seizure progression triggered by
IQSEC3
loss is mitigated by reducing activated microglia in mice. Glia 2020; 68:2661-2673. [DOI: 10.1002/glia.23876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Dongseok Park
- Department of Brain and Cognitive Sciences Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu South Korea
| | - Seungjoon Kim
- Department of Brain and Cognitive Sciences Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu South Korea
| | - Hyeonho Kim
- Department of Brain and Cognitive Sciences Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu South Korea
| | - Jungsu Shin
- Department of Brain and Cognitive Sciences Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu South Korea
| | - Hyeji Jung
- Department of Brain and Cognitive Sciences Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu South Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu South Korea
- Core Protein Resources Center, DGIST Daegu South Korea
| |
Collapse
|
16
|
Kim S, Kim H, Park D, Kim J, Hong J, Kim JS, Jung H, Kim D, Cheong E, Ko J, Um JW. Loss of IQSEC3 Disrupts GABAergic Synapse Maintenance and Decreases Somatostatin Expression in the Hippocampus. Cell Rep 2020; 30:1995-2005.e5. [PMID: 32049026 DOI: 10.1016/j.celrep.2020.01.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/28/2019] [Accepted: 01/16/2020] [Indexed: 12/31/2022] Open
Abstract
Gephyrin interacts with various GABAergic synaptic proteins to organize GABAergic synapse development. Among the multitude of gephyrin-binding proteins is IQSEC3, a recently identified component at GABAergic synapses that acts through its ADP ribosylation factor-guanine nucleotide exchange factor (ARF-GEF) activity to orchestrate GABAergic synapse formation. Here, we show that IQSEC3 knockdown (KD) reduced GABAergic synaptic density in vivo, suggesting that IQSEC3 is required for GABAergic synapse maintenance in vivo. We further show that IQSEC3 KD in the dentate gyrus (DG) increases seizure susceptibility and triggers selective depletion of somatostatin (SST) peptides in the DG hilus in an ARF-GEP activity-dependent manner. Strikingly, selective introduction of SST into SST interneurons in DG-specific IQSEC3-KD mice reverses GABAergic synaptic deficits. Thus, our data suggest that IQSEC3 is required for linking gephyrin-GABAA receptor complexes with ARF-dependent pathways to prevent aberrant, runaway excitation and thereby contributes to the integrity of SST interneurons and proper GABAergic synapse maintenance.
Collapse
Affiliation(s)
- Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Hyeonho Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Dongseok Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Jinhu Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Joohyeon Hong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jae Seong Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hyeji Jung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Dongwook Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea.
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea; Core Protein Resources Center, DGIST, 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea.
| |
Collapse
|
17
|
van der Spek SJF, Koopmans F, Paliukhovich I, Ramsden SL, Harvey K, Harvey RJ, Smit AB, Li KW. Glycine Receptor Complex Analysis Using Immunoprecipitation-Blue Native Gel Electrophoresis-Mass Spectrometry. Proteomics 2020; 20:e1900403. [PMID: 31984645 DOI: 10.1002/pmic.201900403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 11/07/2022]
Abstract
The pentameric glycine receptor (GlyR), comprising the α1 and β subunits, is a major inhibitory ionotropic receptor in brainstem and spinal cord. GlyRs interact with gephyrin (GPHN), a scaffold protein that anchors the GlyR in the plasma membrane and enables it to form clusters in glycinergic postsynapses. Using an interaction proteomics approach, evidence of the ArfGEFs IQ motif and Sec7 domain 3 (IQSEC3) and IQ motif and Sec7 domain 2 (IQSEC2) as two novel synaptic proteins interacting with GlyR complexes is provided. When the affinity-isolated GlyR complexes are fractionated by blue native gel electrophoresis and characterized by mass spectrometry, GlyR α1β-GPHN appears as the most abundant complex with a molecular weight of ≈1 MDa, and GlyR α1β-GPHN-IQSEC3 as a minor protein complex of ≈1.2 MDa. A third GlyR α1β-GPHN-IQSEC2 complex exists at the lowest amount with a mass similar to the IQSEC3 containing complex. Using yeast two-hybrid it is demonstrated that IQSEC3 interacts with the GlyR complex by binding to the GPHN G domain at the N-terminal of the IQSEC3 IQ-like domain. The data provide direct evidence of the interaction of IQSEC3 with GlyR-GPHN complexes, underscoring a potential role of these ArfGEFs in the function of glycinergic synapses.
Collapse
Affiliation(s)
- Sophie J F van der Spek
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Frank Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Iryna Paliukhovich
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Sarah L Ramsden
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick square, WC1N 1AX, London, UK
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick square, WC1N 1AX, London, UK
| | - Robert J Harvey
- School of Health and Sport Sciences, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia.,Sunshine Coast Health Institute, Birtinya, Queensland, 4575, Australia
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Lewis V, Laberge F, Heyland A. Temporal Profile of Brain Gene Expression After Prey Catching Conditioning in an Anuran Amphibian. Front Neurosci 2020; 13:1407. [PMID: 31992968 PMCID: PMC6971186 DOI: 10.3389/fnins.2019.01407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
A key goal in modern neurobiology is to understand the mechanisms underlying learning and memory. To that end, it is essential to identify the patterns of gene expression and the temporal sequence of molecular events associated with learning and memory processes. It is also important to ascertain if and how these molecular events vary between organisms. In vertebrates, learning and memory processes are characterized by distinct phases of molecular activity involving gene transcription, structural change, and long-term maintenance of such structural change in the nervous system. Utilizing next generation sequencing techniques, we profiled the temporal expression patterns of genes in the brain of the fire-bellied toad Bombina orientalis after prey catching conditioning. The fire-bellied toad is a basal tetrapod whose neural architecture and molecular pathways may help us understand the ancestral state of learning and memory mechanisms in tetrapods. Differential gene expression following conditioning revealed activity in molecular pathways related to immediate early genes (IEG), cytoskeletal modification, axon guidance activity, and apoptotic processes. Conditioning induced early IEG activity coinciding with transcriptional activity and neuron structural modification, followed by axon guidance and cell adhesion activity, and late neuronal pruning. While some of these gene expression patterns are similar to those found in mammals submitted to conditioning, some interesting divergent expression profiles were seen, and differential expression of some well-known learning-related mammalian genes is missing altogether. These results highlight the importance of using a comparative approach in the study of the mechanisms of leaning and memory and provide molecular resources for a novel vertebrate model in the relatively poorly studied Amphibia.
Collapse
Affiliation(s)
- Vern Lewis
- Integrative Biology, University of Guelph, Guelph, ON, Canada
| | | | - Andreas Heyland
- Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
19
|
Kim H, Jung H, Jung H, Kwon SK, Ko J, Um JW. The small GTPase ARF6 regulates GABAergic synapse development. Mol Brain 2020; 13:2. [PMID: 31907062 PMCID: PMC6945580 DOI: 10.1186/s13041-019-0543-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023] Open
Abstract
ADP ribosylation factors (ARFs) are a family of small GTPases composed of six members (ARF1-6) that control various cellular functions, including membrane trafficking and actin cytoskeletal rearrangement, in eukaryotic cells. Among them, ARF1 and ARF6 are the most studied in neurons, particularly at glutamatergic synapses, but their roles at GABAergic synapses have not been investigated. Here, we show that a subset of ARF6 protein is localized at GABAergic synapses in cultured hippocampal neurons. In addition, we found that knockdown (KD) of ARF6, but not ARF1, triggered a reduction in the number of GABAergic synaptic puncta in mature cultured neurons in an ARF activity-dependent manner. ARF6 KD also reduced GABAergic synaptic density in the mouse hippocampal dentate gyrus (DG) region. Furthermore, ARF6 KD in the DG increased seizure susceptibility in an induced epilepsy model. Viewed together, our results suggest that modulating ARF6 and its regulators could be a therapeutic strategy against brain pathologies involving hippocampal network dysfunction, such as epilepsy.
Collapse
Affiliation(s)
- Hyeonho Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-eup, Dalseong-gun, Daegu, 42988, South Korea
| | - Hyeji Jung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-eup, Dalseong-gun, Daegu, 42988, South Korea
| | - Hyunsu Jung
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea.,Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Seok-Kyu Kwon
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-eup, Dalseong-gun, Daegu, 42988, South Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-eup, Dalseong-gun, Daegu, 42988, South Korea.
| |
Collapse
|
20
|
Huang J, Zhuo C, Xu Y, Lin X. Auditory verbal hallucination and the auditory network: From molecules to connectivity. Neuroscience 2019; 410:59-67. [PMID: 31082536 DOI: 10.1016/j.neuroscience.2019.04.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
Auditory verbal hallucinations (AVHs) frequently occur across multiple psychiatric diseases especially in schizophrenia (SCZ) patients. Functional imaging studies have revealed the hyperactivity of the auditory cortex and disrupted auditory-verbal network activity underlying AVH etiology. This review will firstly summarize major findings from both human AVH patients and animal models, with focuses on the auditory cortex and associated cortical/sub-cortical areas. Besides mesoscale connectivity or activity data, structure and functions at synaptic level will be discussed, in conjunction with molecular mechanisms. We have summarized major findings for the pathogenesis of AVH in SCZ patients, with focuses in the auditory cortex and prefrontal cortex (PFC). Those discoveries provide explanations for AVH from different perspectives including inter-regional connectivity, local activity in specific areas, structure and functions of synapse, and potentially molecular targets. Due to the uniqueness of AVH in humans, full replica using animals seems impossible. However, we can still extract useful information from animal SCZ models based on the disruption of auditory pathway during AVH episodes. Therefore, we will further interpolate the synaptic structures and molecular targets, whose dysregulation in SCZ models may be highly related with AVH episodes. As the last part, implications for future development of treatment strategies will be discussed.
Collapse
Affiliation(s)
- Jianjie Huang
- Department of Psychiatric-Neuroimging-Genetics Laboratory(PNG-Lab), Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuroimging-Genetics Laboratory(PNG-Lab), Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China; Department of Psychiatry, Institute of Mental Health, Jining University, Jining Shandong Province, 272191, China; Department of Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory (PNGC-Lab), Tianjin Mental Health Centre, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Anding Hospital, China, Tianjin, 300222, China; Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiaodong Lin
- Department of Psychiatric-Neuroimging-Genetics Laboratory(PNG-Lab), Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|
21
|
Früh S, Tyagarajan SK, Campbell B, Bosshard G, Fritschy JM. The catalytic function of the gephyrin-binding protein IQSEC3 regulates neurotransmitter-specific matching of pre- and post-synaptic structures in primary hippocampal cultures. J Neurochem 2018; 147:477-494. [DOI: 10.1111/jnc.14572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 08/05/2018] [Accepted: 08/08/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Simon Früh
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and Federal Institute of Technology (ETH) Zurich; Zurich Switzerland
| | - Shiva K. Tyagarajan
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and Federal Institute of Technology (ETH) Zurich; Zurich Switzerland
| | - Benjamin Campbell
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and Federal Institute of Technology (ETH) Zurich; Zurich Switzerland
| | - Giovanna Bosshard
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology; University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and Federal Institute of Technology (ETH) Zurich; Zurich Switzerland
| |
Collapse
|
22
|
Kasaragod VB, Schindelin H. Structure-Function Relationships of Glycine and GABA A Receptors and Their Interplay With the Scaffolding Protein Gephyrin. Front Mol Neurosci 2018; 11:317. [PMID: 30258351 PMCID: PMC6143783 DOI: 10.3389/fnmol.2018.00317] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/16/2018] [Indexed: 12/03/2022] Open
Abstract
Glycine and γ-aminobutyric acid (GABA) are the major determinants of inhibition in the central nervous system (CNS). These neurotransmitters target glycine and GABAA receptors, respectively, which both belong to the Cys-loop superfamily of pentameric ligand-gated ion channels (pLGICs). Interactions of the neurotransmitters with the cognate receptors result in receptor opening and a subsequent influx of chloride ions, which, in turn, leads to hyperpolarization of the membrane potential, thus counteracting excitatory stimuli. The majority of glycine receptors and a significant fraction of GABAA receptors (GABAARs) are recruited and anchored to the post-synaptic membrane by the central scaffolding protein gephyrin. This ∼93 kDa moonlighting protein is structurally organized into an N-terminal G-domain (GephG) connected to a C-terminal E-domain (GephE) via a long unstructured linker. Both inhibitory neurotransmitter receptors interact via a short peptide motif located in the large cytoplasmic loop located in between transmembrane helices 3 and 4 (TM3-TM4) of the receptors with a universal receptor-binding epitope residing in GephE. Gephyrin engages in nearly identical interactions with the receptors at the N-terminal end of the peptide motif, and receptor-specific interaction toward the C-terminal region of the peptide. In addition to its receptor-anchoring function, gephyrin also interacts with a rather large collection of macromolecules including different cytoskeletal elements, thus acting as central scaffold at inhibitory post-synaptic specializations. Dysfunctions in receptor-mediated or gephyrin-mediated neurotransmission have been identified in various severe neurodevelopmental disorders. Although biochemical, cellular and electrophysiological studies have helped to understand the physiological and pharmacological roles of the receptors, recent high resolution structures of the receptors have strengthened our understanding of the receptors and their gating mechanisms. Besides that, multiple crystal structures of GephE in complex with receptor-derived peptides have shed light into receptor clustering by gephyrin at inhibitory post-synapses. This review will highlight recent biochemical and structural insights into gephyrin and the GlyRs as well as GABAA receptors, which provide a deeper understanding of the molecular machinery mediating inhibitory neurotransmission.
Collapse
Affiliation(s)
- Vikram B Kasaragod
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Hermann Schindelin
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
Krueger-Burg D, Papadopoulos T, Brose N. Organizers of inhibitory synapses come of age. Curr Opin Neurobiol 2017; 45:66-77. [DOI: 10.1016/j.conb.2017.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022]
|
24
|
Uezu A, Kanak DJ, Bradshaw TWA, Soderblom EJ, Catavero CM, Burette AC, Weinberg RJ, Soderling SH. Identification of an elaborate complex mediating postsynaptic inhibition. Science 2017; 353:1123-9. [PMID: 27609886 DOI: 10.1126/science.aag0821] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/25/2016] [Indexed: 12/13/2022]
Abstract
Inhibitory synapses dampen neuronal activity through postsynaptic hyperpolarization. The composition of the inhibitory postsynapse and the mechanistic basis of its regulation, however, remain poorly understood. We used an in vivo chemico-genetic proximity-labeling approach to discover inhibitory postsynaptic proteins. Quantitative mass spectrometry not only recapitulated known inhibitory postsynaptic proteins but also revealed a large network of new proteins, many of which are either implicated in neurodevelopmental disorders or are of unknown function. Clustered regularly interspaced short palindromic repeats (CRISPR) depletion of one of these previously uncharacterized proteins, InSyn1, led to decreased postsynaptic inhibitory sites, reduced the frequency of miniature inhibitory currents, and increased excitability in the hippocampus. Our findings uncover a rich and functionally diverse assemblage of previously unknown proteins that regulate postsynaptic inhibition and might contribute to developmental brain disorders.
Collapse
Affiliation(s)
- Akiyoshi Uezu
- The Department of Cell Biology, Duke University Medical School, Durham, NC 27703, USA
| | - Daniel J Kanak
- The Department of Cell Biology, Duke University Medical School, Durham, NC 27703, USA
| | - Tyler W A Bradshaw
- The Department of Cell Biology, Duke University Medical School, Durham, NC 27703, USA
| | - Erik J Soderblom
- The Department of Cell Biology, Duke University Medical School, Durham, NC 27703, USA. Duke Proteomics and Metabolomics Shared Resource and Duke Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC 27703, USA
| | - Christina M Catavero
- The Department of Cell Biology, Duke University Medical School, Durham, NC 27703, USA
| | - Alain C Burette
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA. Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Richard J Weinberg
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA. Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Scott H Soderling
- The Department of Cell Biology, Duke University Medical School, Durham, NC 27703, USA. The Department of Neurobiology, Duke University Medical School, Durham, NC 27703, USA.
| |
Collapse
|
25
|
Um JW. Synaptic functions of the IQSEC family of ADP-ribosylation factor guanine nucleotide exchange factors. Neurosci Res 2017; 116:54-59. [DOI: 10.1016/j.neures.2016.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 01/08/2023]
|
26
|
Kang H, Han KA, Won SY, Kim HM, Lee YH, Ko J, Um JW. Slitrk Missense Mutations Associated with Neuropsychiatric Disorders Distinctively Impair Slitrk Trafficking and Synapse Formation. Front Mol Neurosci 2016; 9:104. [PMID: 27812321 PMCID: PMC5071332 DOI: 10.3389/fnmol.2016.00104] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/04/2016] [Indexed: 12/29/2022] Open
Abstract
Slit- and Trk-like (Slitrks) are a six-member family of synapse organizers that control excitatory and inhibitory synapse formation by forming trans-synaptic adhesions with LAR receptor protein tyrosine phosphatases (PTPs). Intriguingly, genetic mutations of Slitrks have been associated with a multitude of neuropsychiatric disorders. However, nothing is known about the neuronal and synaptic consequences of these mutations. Here, we report the structural and functional effects on synapses of various rare de novo mutations identified in patients with schizophrenia or Tourette syndrome. A number of single amino acid substitutions in Slitrk1 (N400I or T418S) or Slitrk4 (V206I or I578V) reduced their surface expression levels. These substitutions impaired glycosylation of Slitrks expressed in HEK293T cells, caused retention of Slitrks in the endoplasmic reticulum and cis-Golgi compartment in COS-7 cells and neurons, and abolished Slitrk binding to PTPδ. Furthermore, these substitutions eliminated the synapse-inducing activity of Slitrks, abolishing their functional effects on synapse density in cultured neurons. Strikingly, a valine-to-methionine mutation in Slitrk2 (V89M) compromised synapse formation activity in cultured neuron, without affecting surface transport, expression, or synapse-inducing activity in coculture assays. Similar deleterious effects were observed upon introduction of the corresponding valine-to-methionine mutation into Slitrk1 (V85M), suggesting that this conserved valine residue plays a key role in maintaining the synaptic functions of Slitrks. Collectively, these data indicate that inactivation of distinct cellular mechanisms caused by specific Slitrk dysfunctions may underlie Slitrk-associated neuropsychiatric disorders in humans, and provide a robust cellular readout for the development of knowledge-based therapies.
Collapse
Affiliation(s)
- Hyeyeon Kang
- Department of Physiology and BK21 PLUS Project for Medical Science, Yonsei University College of Medicine Seoul, Korea
| | - Kyung Ah Han
- Department of Physiology and BK21 PLUS Project for Medical Science, Yonsei University College of Medicine Seoul, Korea
| | - Seoung Youn Won
- Department of Chemistry, Korea Advanced Institute of Science and Technology Daejeon, Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology Daejeon, Korea
| | - Young-Ho Lee
- Department of Physiology and BK21 PLUS Project for Medical Science, Yonsei University College of Medicine Seoul, Korea
| | - Jaewon Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University Seoul, Korea
| | - Ji Won Um
- Department of Physiology and BK21 PLUS Project for Medical Science, Yonsei University College of Medicine Seoul, Korea
| |
Collapse
|
27
|
Abstract
The IQSec/BRAG proteins are a subfamily of Arf-nucleotide exchange factors. Since their discovery almost 15 y ago, the BRAGs have been reported to be involved in diverse physiological processes from myoblast fusion, neuronal pathfinding and angiogenesis, to pathophysiological processes including X-linked intellectual disability and tumor metastasis. In this review we will address how, in each of these situations, the BRAGs are thought to regulate the surface levels of adhesive and signaling receptors. While in most cases BRAGs are thought to enhance the endocytosis of these receptors, how they achieve this remains unclear. Similarly, while all 3 BRAG proteins contain calmodulin-binding IQ motifs, little is known about how their activities might be regulated by calcium. These are some of the questions that are likely to form the basis of future research.
Collapse
Affiliation(s)
- Ryan S D'Souza
- a Department of Cell Biology , University of Virginia Health System , Charlottesville , VA , USA
| | - James E Casanova
- a Department of Cell Biology , University of Virginia Health System , Charlottesville , VA , USA
| |
Collapse
|