1
|
Rich J, Bennaroch M, Notel L, Patalakh P, Alberola J, Issa F, Opolon P, Bawa O, Rondof W, Marchais A, Dessen P, Meurice G, Le-Gall M, Polrot M, Ser-Le Roux K, Mamchaoui K, Droin N, Raslova H, Maire P, Geoerger B, Pirozhkova I. DiPRO1 distinctly reprograms muscle and mesenchymal cancer cells. EMBO Mol Med 2024; 16:1840-1885. [PMID: 39009887 PMCID: PMC11319797 DOI: 10.1038/s44321-024-00097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
We have recently identified the uncharacterized ZNF555 protein as a component of a productive complex involved in the morbid function of the 4qA locus in facioscapulohumeral dystrophy. Subsequently named DiPRO1 (Death, Differentiation, and PROliferation related PROtein 1), our study provides substantial evidence of its role in the differentiation and proliferation of human myoblasts. DiPRO1 operates through the regulatory binding regions of SIX1, a master regulator of myogenesis. Its relevance extends to mesenchymal tumors, such as rhabdomyosarcoma (RMS) and Ewing sarcoma, where DiPRO1 acts as a repressor via the epigenetic regulators TIF1B and UHRF1, maintaining methylation of cis-regulatory elements and gene promoters. Loss of DiPRO1 mimics the host defense response to virus, awakening retrotransposable repeats and the ZNF/KZFP gene family. This enables the eradication of cancer cells, reprogramming the cellular decision balance towards inflammation and/or apoptosis by controlling TNF-α via NF-kappaB signaling. Finally, our results highlight the vulnerability of mesenchymal cancer tumors to si/shDiPRO1-based nanomedicines, positioning DiPRO1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Jeremy Rich
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Melanie Bennaroch
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Laura Notel
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Polina Patalakh
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Julien Alberola
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Fayez Issa
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France
| | - Paule Opolon
- Pathology and Cytology Section, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Olivia Bawa
- Pathology and Cytology Section, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Windy Rondof
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Philippe Dessen
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Guillaume Meurice
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Morgane Le-Gall
- Proteom'IC facility, Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
| | - Melanie Polrot
- Pre-clinical Evaluation Unit (PFEP), INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Karine Ser-Le Roux
- Pre-clinical Evaluation Unit (PFEP), INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013, Paris, France
| | - Nathalie Droin
- Genomic Platform, UMS AMMICA US 23 INSERM UAR 3655 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- UMR1287 INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Hana Raslova
- UMR1287 INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Pascal Maire
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Iryna Pirozhkova
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France.
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France.
| |
Collapse
|
2
|
Deb R, Sengar GS, Sonowal J, Pegu SR, Das PJ, Singh I, Chakravarti S, Selvaradjou A, Attupurum N, Rajkhowa S, Gupta VK. Transcriptome signatures of host tissue infected with African swine fever virus reveal differential expression of associated oncogenes. Arch Virol 2024; 169:54. [PMID: 38381218 DOI: 10.1007/s00705-023-05959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/27/2023] [Indexed: 02/22/2024]
Abstract
African swine fever (ASF) has emerged as a threat to swine production worldwide. Evasion of host immunity by ASF virus (ASFV) is well understood. However, the role of ASFV in triggering oncogenesis is still unclear. In the present study, ASFV-infected kidney tissue samples were subjected to Illumina-based transcriptome analysis. A total of 2463 upregulated and 825 downregulated genes were differentially expressed (p < 0.05). A literature review revealed that the majority of the differentially expressed host genes were key molecules in signaling pathways involved in oncogenesis. Bioinformatic analysis indicated the activation of certain oncogenic KEGG pathways, including basal cell carcinoma, breast cancer, transcriptional deregulation in cancer, and hepatocellular carcinoma. Analysis of host-virus interactions revealed that the upregulated oncogenic RELA (p65 transcription factor) protein of Sus scrofa can interact with the A238L (hypothetical protein of unknown function) of ASFV. Differential expression of oncogenes was confirmed by qRT-PCR, using the H3 histone family 3A gene (H3F3A) as an internal control to confirm the RNA-Seq data. The levels of gene expression indicated by qRT-PCR matched closely to those determined through RNA-Seq. These findings open up new possibilities for investigation of the mechanisms underlying ASFV infection and offer insights into the dynamic interaction between viral infection and oncogenic processes. However, as these investigations were conducted on pigs that died from natural ASFV infection, the role of ASFV in oncogenesis still needs to be investigated in controlled experimental studies.
Collapse
Affiliation(s)
- Rajib Deb
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India.
| | | | - Joyshikh Sonowal
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat, Assam, 785001, India
| | - Seema Rani Pegu
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Pranab Jyoti Das
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India.
| | | | - Soumendu Chakravarti
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
- Pirbright Institute, Ash Road, Pirbright, Surrey, United Kingdom
| | | | - Nitin Attupurum
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Swaraj Rajkhowa
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Vivek Kumar Gupta
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India.
| |
Collapse
|
3
|
Murin M, Nemcova L, Bartkova A, Gad A, Lucas-Hahn A, Strejcek F, Prochazka R, Laurincik J. Porcine oocytes matured in a chemically defined medium are transcriptionally active. Theriogenology 2023; 203:89-98. [PMID: 37001226 DOI: 10.1016/j.theriogenology.2023.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/11/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
The statement that fully-grown porcine oocytes (oocytes from follicles with diameter from 3 to 6 mm) are transcriptionally quiescent is not as strongly supported as it was before. Currently, we know that there is a difference between the transcription profile of germinal vesicle (GV) and metaphase II (MII) oocytes. The goal of our study was to compare the transcription profile of GV, germinal vesicle breakdown (GVBD), metaphase I (MI), and MII oocytes matured in the chemically defined medium FLI. Oocytes were sequenced, and the results were subsequently validated using quantitative reverse transcription polymerase chain reaction (RT-qPCR). We detected multiple differentially transcribed mRNAs, of which many were upregulated. Among them we found mRNAs necessary for protein production, mitochondrial functions and cytoplasmic maturation. Collectively, these data support the hypothesis that transcription activity in fully-grown porcine oocytes is necessary for key processes during their successful maturation in vitro in a chemically defined maturation medium.
Collapse
|
4
|
Yano N, Fedulov AV. Targeted DNA Demethylation: Vectors, Effectors and Perspectives. Biomedicines 2023; 11:biomedicines11051334. [PMID: 37239005 DOI: 10.3390/biomedicines11051334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Aberrant DNA hypermethylation at regulatory cis-elements of particular genes is seen in a plethora of pathological conditions including cardiovascular, neurological, immunological, gastrointestinal and renal diseases, as well as in cancer, diabetes and others. Thus, approaches for experimental and therapeutic DNA demethylation have a great potential to demonstrate mechanistic importance, and even causality of epigenetic alterations, and may open novel avenues to epigenetic cures. However, existing methods based on DNA methyltransferase inhibitors that elicit genome-wide demethylation are not suitable for treatment of diseases with specific epimutations and provide a limited experimental value. Therefore, gene-specific epigenetic editing is a critical approach for epigenetic re-activation of silenced genes. Site-specific demethylation can be achieved by utilizing sequence-dependent DNA-binding molecules such as zinc finger protein array (ZFA), transcription activator-like effector (TALE) and clustered regularly interspaced short palindromic repeat-associated dead Cas9 (CRISPR/dCas9). Synthetic proteins, where these DNA-binding domains are fused with the DNA demethylases such as ten-eleven translocation (Tet) and thymine DNA glycosylase (TDG) enzymes, successfully induced or enhanced transcriptional responsiveness at targeted loci. However, a number of challenges, including the dependence on transgenesis for delivery of the fusion constructs, remain issues to be solved. In this review, we detail current and potential approaches to gene-specific DNA demethylation as a novel epigenetic editing-based therapeutic strategy.
Collapse
Affiliation(s)
- Naohiro Yano
- Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Alexey V Fedulov
- Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
5
|
Taka N, Asami S, Sakamoto M, Matsui T, Yoshida W. Quantification of Global DNA Hydroxymethylation Level Using UHRF2 SRA-Luciferase Based on Bioluminescence Resonance Energy Transfer. Anal Chem 2022; 94:8618-8624. [DOI: 10.1021/acs.analchem.1c05619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Natsumi Taka
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Shoya Asami
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Mikiya Sakamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Toru Matsui
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Wataru Yoshida
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| |
Collapse
|
6
|
Huang C, Xu H, Zhou X, Liu M, Li J, Liu C. Systematic Investigations on the Metabolic and Transcriptomic Regulation of Lactate in the Human Colon Epithelial Cells. Int J Mol Sci 2022; 23:6262. [PMID: 35682941 PMCID: PMC9181574 DOI: 10.3390/ijms23116262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Lactate, primarily produced by the gut microbiota, performs as a necessary "information transmission carrier" between the gut and the microbiota. To investigate the role of lactate in the gut epithelium cell-microbiota interactions as a metabolic signal, we performed a combinatory, global, and unbiased analysis of metabolomic and transcriptional profiling in human colon epithelial cells (Caco-2), using a lactate treatment at the physiological concentration (8 mM). The data demonstrated that most of the genes in oxidative phosphorylation were significantly downregulated in the Caco-2 cells due to lactate treatment. Consistently, the levels of fumarate, adenosine triphosphate (ATP), and creatine significantly decreased, and these are the metabolic markers of OXPHOS inhibition by mitochondria dysfunction. The one-carbon metabolism was affected and the polyol pathway was activated at the levels of gene expression and metabolic alternation. In addition, lactate significantly upregulated the expressions of genes related to self-protection against apoptosis. In conclusion, lactate participates in gut-gut microbiota communications by remodeling the metabolomic and transcriptional signatures, especially for the regulation of mitochondrial function. This work contributes comprehensive information to disclose the molecular mechanisms of lactate-mediated functions in human colon epithelial cells that can help us understand how the microbiota communicates with the intestines through the signaling molecule, lactate.
Collapse
Affiliation(s)
- Chongyang Huang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (C.H.); (X.Z.); (M.L.)
| | - Huanzhou Xu
- Department of Pediatrics, Division of Infectious Diseases, University of Florida College of Medicine, Gainesville, FL 32608, USA;
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (C.H.); (X.Z.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (C.H.); (X.Z.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Jing Li
- University of Chinese Academy of Sciences, Beijing 100049, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Chaoyang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (C.H.); (X.Z.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Wuhan 430074, China
| |
Collapse
|
7
|
Wang X, Sarver AL, Han Q, Seiler CL, Xie C, Lu H, Forster CL, Tretyakova NY, Hallstrom TC. UHRF2 regulates cell cycle, epigenetics and gene expression to control the timing of retinal progenitor and ganglion cell differentiation. Development 2022; 149:274710. [PMID: 35285483 PMCID: PMC8984156 DOI: 10.1242/dev.195644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/28/2022] [Indexed: 11/20/2022]
Abstract
Ubiquitin-like, containing PHD and RING finger domains 2 (UHRF2) regulates cell cycle and binds 5-hydroxymethylcytosine (5hmC) to promote completion of DNA demethylation. Uhrf2-/- mice are without gross phenotypic defects; however, the cell cycle and epigenetic regulatory functions of Uhrf2 during retinal tissue development are unclear. Retinal progenitor cells (RPCs) produce all retinal neurons and Müller glia in a predictable sequence controlled by the complex interplay between extrinsic signaling, cell cycle, epigenetic changes and cell-specific transcription factor activation. In this study, we find that UHRF2 accumulates in RPCs, and its conditional deletion from mouse RPCs reduced 5hmC, altered gene expressions and disrupted retinal cell proliferation and differentiation. Retinal ganglion cells were overproduced in Uhrf2-deficient retinae at the expense of VSX2+ RPCs. Most other cell types were transiently delayed in differentiation. Expression of each member of the Tet3/Uhrf2/Tdg active demethylation pathway was reduced in Uhrf2-deficient retinae, consistent with locally reduced 5hmC in their gene bodies. This study highlights a novel role of UHRF2 in controlling the transition from RPCs to differentiated cell by regulating cell cycle, epigenetic and gene expression decisions.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Pediatrics, Division of Blood and Marrow Transplantation, 420 Delaware Street S.E., University of Minnesota, Minneapolis, MN 55455, USA
| | - Aaron L Sarver
- Institute for Health Informatics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Qiyuan Han
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher L Seiler
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chencheng Xie
- Department of Pediatrics, Division of Blood and Marrow Transplantation, 420 Delaware Street S.E., University of Minnesota, Minneapolis, MN 55455, USA
| | - Huarui Lu
- Department of Pediatrics, Division of Blood and Marrow Transplantation, 420 Delaware Street S.E., University of Minnesota, Minneapolis, MN 55455, USA
| | - Colleen L Forster
- BioNet, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy C Hallstrom
- Department of Pediatrics, Division of Blood and Marrow Transplantation, 420 Delaware Street S.E., University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Du ZQ, Liang H, Liu XM, Liu YH, Wang C, Yang CX. Single cell RNA-seq reveals genes vital to in vitro fertilized embryos and parthenotes in pigs. Sci Rep 2021; 11:14393. [PMID: 34257377 PMCID: PMC8277874 DOI: 10.1038/s41598-021-93904-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Successful early embryo development requires the correct reprogramming and configuration of gene networks by the timely and faithful execution of zygotic genome activation (ZGA). However, the regulatory principle of molecular elements and circuits fundamental to embryo development remains largely obscure. Here, we profiled the transcriptomes of single zygotes and blastomeres, obtained from in vitro fertilized (IVF) or parthenogenetically activated (PA) porcine early embryos (1- to 8-cell), focusing on the gene expression dynamics and regulatory networks associated with maternal-to-zygote transition (MZT) (mainly maternal RNA clearance and ZGA). We found that minor and major ZGAs occur at 1-cell and 4-cell stages for both IVF and PA embryos, respectively. Maternal RNAs gradually decay from 1- to 8-cell embryos. Top abundantly expressed genes (CDV3, PCNA, CDR1, YWHAE, DNMT1, IGF2BP3, ARMC1, BTG4, UHRF2 and gametocyte-specific factor 1-like) in both IVF and PA early embryos identified are of vital roles for embryo development. Differentially expressed genes within IVF groups are different from that within PA groups, indicating bi-parental and maternal-only embryos have specific sets of mRNAs distinctly decayed and activated. Pathways enriched from DEGs showed that RNA associated pathways (RNA binding, processing, transport and degradation) could be important. Moreover, mitochondrial RNAs are found to be actively transcribed, showing dynamic expression patterns, and for DNA/H3K4 methylation and transcription factors as well. Taken together, our findings provide an important resource to investigate further the epigenetic and genome regulation of MZT events in early embryos of pigs.
Collapse
Affiliation(s)
- Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Hao Liang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiao-Man Liu
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yun-Hua Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
9
|
Yang CX, Wu ZW, Liu XM, Liang H, Gao ZR, Wang Y, Fang T, Liu YH, Miao YL, Du ZQ. Single-cell RNA-seq reveals mRNAs and lncRNAs important for oocytes in vitro matured in pigs. Reprod Domest Anim 2021; 56:642-657. [PMID: 33496347 DOI: 10.1111/rda.13901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
The faithful execution of molecular programme underlying oocyte maturation and meiosis is vital to generate competent haploid gametes for efficient mammalian reproduction. However, the organization and principle of molecular circuits and modules for oocyte meiosis remain obscure. Here, we employed the recently developed single-cell RNA-seq technique to profile the transcriptomes of germinal vesicle (GV) and metaphase II (MII) oocytes, aiming to discover the dynamic changes of mRNAs and long non-coding RNAs (lncRNAs) during oocyte in vitro meiotic maturation. During the transition from GV to MII, total number of detected RNAs (mRNAs and lncRNAs) in oocytes decreased. Moreover, 1,807 (602 up- and 1,205 down-regulated) mRNAs and 313 (177 up- and 136 down-regulated) lncRNAs were significantly differentially expressed (DE), i.e., more mRNAs down-regulated, but more lncRNAs up-regulated. During maturation of pig oocytes, mitochondrial mRNAs were actively transcribed, eight of which (ND6, ND5, CYTB, ND1, ND2, COX1, COX2 and COX3) were significantly up-regulated. Both DE mRNAs and targets of DE lncRNAs were enriched in multiple biological and signal pathways potentially associated with oocyte meiosis. Highly abundantly expressed mRNAs (including DNMT1, UHRF2, PCNA, ARMC1, BTG4, ASNS and SEP11) and lncRNAs were also discovered. Weighted gene co-expression network analysis (WGCNA) revealed 20 hub mRNAs in three modules to be important for oocyte meiosis and maturation. Taken together, our findings provide insights and resources for further functional investigation of mRNAs/lncRNAs in in vitro meiotic maturation of pig oocytes.
Collapse
Affiliation(s)
- Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zi-Wei Wu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Xiao-Man Liu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Hao Liang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Zhuo-Ran Gao
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Yi Wang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Ting Fang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Yun-Hua Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
10
|
Pfeifer GP, Szabó PE, Song J. Protein Interactions at Oxidized 5-Methylcytosine Bases. J Mol Biol 2019:S0022-2836(19)30501-7. [PMID: 31401118 DOI: 10.1016/j.jmb.2019.07.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022]
Abstract
5-Methylcytosine (5mC), the major modified DNA base in mammalian cells, can be oxidized enzymatically to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) by the Ten-Eleven-Translocation (TET) family of proteins. Whereas 5fC and 5caC are recognized and removed by base excision repair proteins, the 5hmC base accumulates to substantial levels in certain cell types such as brain-derived neurons and is viewed as a relatively stable DNA base. As such, the existence of "reader" proteins that recognize 5hmC would be a logical assumption, and various searches have been undertaken to identify proteins that specifically bind to 5hmC and the other oxidized 5mC bases. However, the existence of definitive 5hmC "readers" has remained unclear and proteins interacting specifically with 5fC or 5caC are also very few. On the other hand, 5hmC is incapable of interacting with a number of proteins that recognize 5mC at CpG sequences, suggesting that 5hmC is an anti-reader modification that may serve to displace 5mC readers from DNA. In this review article, we discuss candidate proteins that may interact with oxidized 5mC bases.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Piroska E Szabó
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jikui Song
- Department of Biochemistry, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
11
|
A genome-wide association study in individuals of African ancestry reveals the importance of the Duffy-null genotype in the assessment of clozapine-related neutropenia. Mol Psychiatry 2019; 24:328-337. [PMID: 30647433 DOI: 10.1038/s41380-018-0335-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/13/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Individuals of African ancestry in the United States and Europe are at increased risk of developing schizophrenia and have poorer clinical outcomes. The antipsychotic clozapine, the only licensed medication for treatment-resistant schizophrenia, is under-prescribed and has high rates of discontinuation in individuals of African ancestry, due in part to increased rates of neutropenia. The genetic basis of lower neutrophil levels in those of African ancestry has not previously been investigated in the context of clozapine treatment. We sought to identify risk alleles in the first genome-wide association study of neutrophil levels during clozapine treatment, in 552 individuals with treatment-resistant schizophrenia and robustly inferred African genetic ancestry. Two genome-wide significant loci were associated with low neutrophil counts during clozapine treatment. The most significantly associated locus was driven by rs2814778 (β = -0.9, P = 4.21 × 10-21), a known regulatory variant in the atypical chemokine receptor 1 (ACKR1) gene. Individuals homozygous for the C allele at rs2814778 were significantly more likely to develop neutropenia and have to stop clozapine treatment (OR = 20.4, P = 3.44 × 10-7). This genotype, also termed "Duffy-null", has previously been shown to be associated with lower neutrophil levels in those of African ancestry. Our results indicate the relevance of the rs2814778 genotype for those taking clozapine and its potential as a pharmacogenetic test, dependent on the outcome of additional safety studies, to assist decision making in the initiation and on-going management of clozapine treatment.
Collapse
|
12
|
WareJoncas Z, Campbell JM, Martínez-Gálvez G, Gendron WAC, Barry MA, Harris PC, Sussman CR, Ekker SC. Precision gene editing technology and applications in nephrology. Nat Rev Nephrol 2018; 14:663-677. [PMID: 30089813 PMCID: PMC6591726 DOI: 10.1038/s41581-018-0047-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The expanding field of precision gene editing is empowering researchers to directly modify DNA. Gene editing is made possible using synonymous technologies: a DNA-binding platform to molecularly locate user-selected genomic sequences and an associated biochemical activity that serves as a functional editor. The advent of accessible DNA-targeting molecular systems, such as zinc-finger nucleases, transcription activator-like effectors (TALEs) and CRISPR-Cas9 gene editing systems, has unlocked the ability to target nearly any DNA sequence with nucleotide-level precision. Progress has also been made in harnessing endogenous DNA repair machineries, such as non-homologous end joining, homology-directed repair and microhomology-mediated end joining, to functionally manipulate genetic sequences. As understanding of how DNA damage results in deletions, insertions and modifications increases, the genome becomes more predictably mutable. DNA-binding platforms such as TALEs and CRISPR can also be used to make locus-specific epigenetic changes and to transcriptionally enhance or suppress genes. Although many challenges remain, the application of precision gene editing technology in the field of nephrology has enabled the generation of new animal models of disease as well as advances in the development of novel therapeutic approaches such as gene therapy and xenotransplantation.
Collapse
Affiliation(s)
- Zachary WareJoncas
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jarryd M Campbell
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - William A C Gendron
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Michael A Barry
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA
| | - Caroline R Sussman
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
13
|
Lu H, Bhoopatiraju S, Wang H, Schmitz NP, Wang X, Freeman MJ, Forster CL, Verneris MR, Linden MA, Hallstrom TC. Loss of UHRF2 expression is associated with human neoplasia, promoter hypermethylation, decreased 5-hydroxymethylcytosine, and high proliferative activity. Oncotarget 2018; 7:76047-76061. [PMID: 27738314 PMCID: PMC5340178 DOI: 10.18632/oncotarget.12583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 09/24/2016] [Indexed: 12/31/2022] Open
Abstract
Ubiquitin-like with PHD and ring finger domains 2 (UHRF2) binds to 5-hydroxymethylcytosine (5hmC), a DNA base involved in tissue development, but it is unknown how their distribution compares with each other in normal and malignant human tissues. We used IHC on human tumor specimens (160 from 19 tumor types) or normal tissue to determine the expression and distribution of UHRF2, Ki-67, and 5hmC. We also examined UHRF2 expression in cord blood progenitors and compared its expression to methylation status in 6 leukemia cell lines and 15 primary human leukemias. UHRF2 is highly expressed, paralleling that of 5hmC, in most non-neoplastic, differentiated tissue with low Ki-67 defined proliferative activity. UHRF2 is expressed in common lymphoid progenitors and mature lymphocytes but not common myeloid progenitors or monocytes. In contrast, UHRF2 immunostaining in human cancer tissues revealed widespread reduction or abnormal cytoplasmic localization which correlated with a higher Ki-67 and reduced 5hmC. UHRF2 expression is reduced in some leukemia cell lines, this correlates with promoter hypermethylation, and similar UHRF2 methylation profiles are seen in primary human leukemia samples. Thus, UHRF2 and 5hmC are widely present in differentiated human tissues, and UHRF2 protein is poorly expressed or mislocalized in diverse human cancers.
Collapse
Affiliation(s)
- Huarui Lu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sweta Bhoopatiraju
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hongbo Wang
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nolan P Schmitz
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiaohong Wang
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew J Freeman
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Colleen L Forster
- BioNet, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael R Verneris
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael A Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy C Hallstrom
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Udali S, De Santis D, Ruzzenente A, Moruzzi S, Mazzi F, Beschin G, Tammen SA, Campagnaro T, Pattini P, Olivieri O, Guglielmi A, Choi SW, Friso S. DNA Methylation and Hydroxymethylation in Primary Colon Cancer and Synchronous Hepatic Metastasis. Front Genet 2018; 8:229. [PMID: 29375619 PMCID: PMC5767180 DOI: 10.3389/fgene.2017.00229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/20/2017] [Indexed: 01/09/2023] Open
Abstract
Colon cancer is one of the most frequent solid tumor and simultaneous diagnosis of primary colon cancer and liver metastases occurs in about one fourth of cases. The current knowledge on epigenetic signatures, especially those related to hydroxymethylation in primary cancer tissue, synchronous metastasis, and blood circulating cells is lacking. This study aimed to investigate both methylcytosine (mCyt) and hydroxymethylcytosine (hmCyt) status in the DNA of individual patients from colon cancer tissue, synchronous liver metastases, and in cancer-free colon and liver tissues and leukocytes. Patients undergoing curative surgery (n = 16) were enrolled and their laboratory and clinical history data collected. The contents of mCyt and hmCyt were determined by a liquid chromatography/mass spectrometry (LC/MS/MS) method in DNA extracted from primary colon cancer, synchronous hepatic metastatic tissues and homologous cancer-free tissues, i.e., colon and liver tissues as well as leukocytes. The mCyt and hmCyt levels were compared between cancerous and cancer-free tissues, and correlations between leukocytes and colon/liver tissues for both the mCyt and hmCyt levels were evaluated. The mCyt levels were similar in primary colon cancer and liver metastasis tissues (4.69 ± 0.37% vs. 4.77 ± 0.38%, respectively, p = 0.535), and both primary and metastatic tissues were hypomethylated compared to cancer-free colon (4.98 ± 0.26%). The difference in the mCyt content between cancerous and cancer-free colon tissues was significantly lower in primary colon cancer (p = 0.004), but not in liver metastasis (p = 0.148). The hmCyt content was similar in primary colon cancer compared to liver metastasis (0.035%, C.I. 0.024–0.052% versus 0.035%, C.I. 0.021–0.058%, respectively, p = 0.905) and markedly depleted compared to the cancer-free colon (0.081%, C.I. 0.055–0.119%) with a statistically significant difference (p < 0.05) for both comparisons. The mCyt levels showed a borderline correlation between leukocytes and colon cancer tissue (Pearson’s correlation coefficient = 0.51, p = 0.052) while no correlations were detected for the hmCyt levels. In conclusion, primary colon cancer and synchronous liver metastasis tissues showed a similar epigenetic status but were significantly hypomethylated and hypohydroxymethylated as compared to homologous cancer-free colon tissues.
Collapse
Affiliation(s)
- Silvia Udali
- Department of Medicine, School of Medicine, University of Verona, Verona, Italy
| | - Domenica De Santis
- Department of Medicine, School of Medicine, University of Verona, Verona, Italy
| | - Andrea Ruzzenente
- Department of Surgery, School of Medicine, University of Verona, Verona, Italy
| | - Sara Moruzzi
- Department of Medicine, School of Medicine, University of Verona, Verona, Italy
| | - Filippo Mazzi
- Department of Medicine, School of Medicine, University of Verona, Verona, Italy
| | - Greta Beschin
- Department of Medicine, School of Medicine, University of Verona, Verona, Italy
| | - Stephanie A Tammen
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Tommaso Campagnaro
- Department of Surgery, School of Medicine, University of Verona, Verona, Italy
| | - Patrizia Pattini
- Department of Medicine, School of Medicine, University of Verona, Verona, Italy
| | - Oliviero Olivieri
- Department of Medicine, School of Medicine, University of Verona, Verona, Italy
| | - Alfredo Guglielmi
- Department of Surgery, School of Medicine, University of Verona, Verona, Italy
| | - Sang-Woon Choi
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States.,Chaum Life Center, CHA University, Seoul, South Korea
| | - Simonetta Friso
- Department of Medicine, School of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
15
|
Peng R, Huang X, Zhang C, Yang X, Xu Y, Bai D. Overexpression of UHRF2 in intrahepatic cholangiocarcinoma and its clinical significance. Onco Targets Ther 2017; 10:5863-5872. [PMID: 29270024 PMCID: PMC5729825 DOI: 10.2147/ott.s149361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ubiquitin-like with PHD and ring finger domains 2 (UHRF2) has been implicated in tumorigenesis. However, its roles in intrahepatic cholangiocarcinoma (ICC) are still unclear. In this study, UHRF2 expression was analyzed in several kinds of cancers by referring to public Oncomine database, and the levels of UHRF2 mRNA and protein were determined in ICC cells and tissues. Then, the roles of UHRF2 in ICC were investigated by UHRF2 interference. Moreover, the relationship between UHRF2 and E-cadherin expression was examined in ICC cells and samples. Finally, the prognostic role of UHRF2 in ICC was analyzed in 139 ICC patients by Cox regression and Kaplan–Meier methods. We found UHRF2 was overexpressed in multiple human cancers, as well as in ICC, and the invasion, migration, proliferation, and antiapoptosis of ICC cells were inhibited by UHRF2 interference. Moreover, the epithelial–mesenchymal transition-related marker E-cadherin was upregulated in ICC cells which was influenced by UHRF2 expression. Clinically, UHRF2 expression was positively associated with microvascular invasion and lymphatic metastasis of ICC, and patients in the UHRF2high group had much lower overall survival and higher recurrence rates than patients in the UHRF2low group. A multivariate analysis revealed that UHRF2 overexpression was a new prognostic marker for ICC. Thus, our results indicated that high level of UHRF2 might be a novel predictor for the prognosis of ICC.
Collapse
Affiliation(s)
- Rui Peng
- The Second Affiliated Hospital of Xiangya School of Medicine, Central South University, Hunan.,Department of Hepatobiliary and Pancreatic Surgery, Subei People Hospital, Clinical Medical College of Yangzhou University, Jiangsu
| | | | - Chi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Subei People Hospital, Clinical Medical College of Yangzhou University, Jiangsu
| | - Xuan Yang
- Liver Cancer Institute, Zhongshan Hospital.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai
| | - Yaping Xu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Dousheng Bai
- Department of Hepatobiliary and Pancreatic Surgery, Subei People Hospital, Clinical Medical College of Yangzhou University, Jiangsu
| |
Collapse
|
16
|
Liu Y, Zhang B, Meng X, Korn MJ, Parent JM, Lu LY, Yu X. UHRF2 regulates local 5-methylcytosine and suppresses spontaneous seizures. Epigenetics 2017; 12:551-560. [PMID: 28402695 DOI: 10.1080/15592294.2017.1314423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The 5-methylcytosine (5mC) modification regulates multiple cellular processes and is faithfully maintained following DNA replication. In addition to DNA methyltransferase (DNMT) family proteins, ubiquitin-like PHD and ring finger domain-containing protein 1 (UHRF1) plays an important role in the maintenance of 5mC levels. Loss of UHRF1 abolishes 5mC in cells and leads to embryonic lethality in mice. Interestingly, UHRF1 has a paralog, UHRF2, that has similar sequence and domain architecture, but its biologic function is not clear. Here, we have generated Uhrf2 knockout mice and characterized the role of UHRF2 in vivo. Uhrf2 knockout mice are viable, but the adult mice develop frequent spontaneous seizures and display abnormal electrical activities in brain. Despite no global DNA methylation changes, 5mC levels are decreased at certain genomic loci in the brains of Uhrf2 knockout mice. Therefore, our study has revealed a unique role of UHRF2 in the maintenance of local 5mC levels in brain that is distinct from that of its paralog UHRF1.
Collapse
Affiliation(s)
- Yidan Liu
- a Key Laboratory of Reproductive Genetics, Ministry of Education and Women's Reproductive Health Laboratory of Zhejiang Province , Women's Hospital, School of Medicine, Zhejiang University , Hangzhou , Zhejiang , China.,b Institute of Translational Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| | - Bin Zhang
- a Key Laboratory of Reproductive Genetics, Ministry of Education and Women's Reproductive Health Laboratory of Zhejiang Province , Women's Hospital, School of Medicine, Zhejiang University , Hangzhou , Zhejiang , China.,b Institute of Translational Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| | - Xiaoyu Meng
- a Key Laboratory of Reproductive Genetics, Ministry of Education and Women's Reproductive Health Laboratory of Zhejiang Province , Women's Hospital, School of Medicine, Zhejiang University , Hangzhou , Zhejiang , China.,b Institute of Translational Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| | - Matthew J Korn
- c Department of Molecular, Cellular, and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Jack M Parent
- c Department of Molecular, Cellular, and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Lin-Yu Lu
- a Key Laboratory of Reproductive Genetics, Ministry of Education and Women's Reproductive Health Laboratory of Zhejiang Province , Women's Hospital, School of Medicine, Zhejiang University , Hangzhou , Zhejiang , China.,b Institute of Translational Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| | - Xiaochun Yu
- d Department of Cancer Genetics and Epigenetics , Beckman Research Institute, City of Hope , Duarte , CA , USA
| |
Collapse
|