1
|
Massoud G, Parish M, Hazimeh D, Moukarzel P, Singh B, Cayton Vaught KC, Segars J, Islam MS. Unlocking the potential of tranilast: Targeting fibrotic signaling pathways for therapeutic benefit. Int Immunopharmacol 2024; 137:112423. [PMID: 38861914 PMCID: PMC11245748 DOI: 10.1016/j.intimp.2024.112423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Fibrosis is the excessive deposition of extracellular matrix in an organ or tissue that results from an impaired tissue repair in response to tissue injury or chronic inflammation. The progressive nature of fibrotic diseases and limited treatment options represent significant healthcare challenges. Despite the substantial progress in understanding the mechanisms of fibrosis, a gap persists translating this knowledge into effective therapeutics. Here, we discuss the critical mediators involved in fibrosis and the role of tranilast as a potential antifibrotic drug to treat fibrotic conditions. Tranilast, an antiallergy drug, is a derivative of tryptophan and has been studied for its role in various fibrotic diseases. These include scleroderma, keloid and hypertrophic scars, liver fibrosis, renal fibrosis, cardiac fibrosis, pulmonary fibrosis, and uterine fibroids. Tranilast exerts antifibrotic effects by suppressing fibrotic pathways, including TGF-β, and MPAK. Because it disrupts fibrotic pathways and has demonstrated beneficial effects against keloid and hypertrophic scars, tranilast could be used to treat other conditions characterized by fibrosis.
Collapse
Affiliation(s)
- Gaelle Massoud
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Maclaine Parish
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Dana Hazimeh
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Pamela Moukarzel
- American University of Beirut Medical Center, Faculty of Medicine, Riad El Solh, Beirut, Lebanon
| | - Bhuchitra Singh
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Kamaria C Cayton Vaught
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - James Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA.
| | - Md Soriful Islam
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Delangre E, Oppliger E, Berkcan S, Gjorgjieva M, Correia de Sousa M, Foti M. S100 Proteins in Fatty Liver Disease and Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms231911030. [PMID: 36232334 PMCID: PMC9570375 DOI: 10.3390/ijms231911030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 01/27/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent and slow progressing hepatic pathology characterized by different stages of increasing severity which can ultimately give rise to the development of hepatocellular carcinoma (HCC). Besides drastic lifestyle changes, few drugs are effective to some extent alleviate NAFLD and HCC remains a poorly curable cancer. Among the deregulated molecular mechanisms promoting NAFLD and HCC, several members of the S100 proteins family appear to play an important role in the development of hepatic steatosis, non-alcoholic steatohepatitis (NASH) and HCC. Specific members of this Ca2+-binding protein family are indeed significantly overexpressed in either parenchymal or non-parenchymal liver cells, where they exert pleiotropic pathological functions driving NAFLD/NASH to severe stages and/or cancer development. The aberrant activity of S100 specific isoforms has also been reported to drive malignancy in liver cancers. Herein, we discuss the implication of several key members of this family, e.g., S100A4, S100A6, S100A8, S100A9 and S100A11, in NAFLD and HCC, with a particular focus on their intracellular versus extracellular functions in different hepatic cell types. Their clinical relevance as non-invasive diagnostic/prognostic biomarkers for the different stages of NAFLD and HCC, or their pharmacological targeting for therapeutic purpose, is further debated.
Collapse
|
3
|
Volkova TD, Avetisyan AV, Koroev DO, Kamynina AV, Balasanyants SM, Simonyan RA, Volpina OM. Biologically Active Fragment of the Receptor for Advanced Glycation End Products (RAGE) Is Able to Inhibit Oligomerization of the Beta-Amyloid. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract
It was found earlier that the synthetic fragment corresponding to the 60–76 sequence of the extracellular domain of the receptor for advanced glycation end products (RAGE) had a protective effect on animal and cellular models of Alzheimer’s disease. It was proposed that this effect was mediated via the interaction of the peptide with beta-amyloid (Aβ), which was one of the RAGE ligands, by inhibiting the formation of toxic Aβ oligomers. The aim of this study was an application of physicochemical methods to an investigation of the ability of the 60–76 peptide to prevent the Aβ40 oligomerization in solution in comparison with the nonprotective 65–76 truncated peptide. The dynamics of the formation of the Aβ40 fibrils in the presence of the peptides was evaluated using thioflavin T. The relative sizes of oligomers were determined by dynamic light scattering. The peptide binding to Aβ40 was examined by fluorescence titration. We demonstrated by the two methods that the peptide corresponding to the 60–76 sequence of RAGE considerably inhibited (by more than 90%) the formation of oligomers and fibrils of Aβ40 distinct from the 65–76 peptide. In addition, we found that the protective effect of the peptides and their ability to inhibit the Aβ40 oligomerization did not correlate with their binding to the monomeric/tetrameric Aβ40. We confirmed in vitro the hypothesis that the protective activity of the synthetic 60–76 fragment of RAGE was associated with its ability to inhibit the Aβ oligomerization.
Collapse
|
4
|
Singh H, Agrawal DK. Therapeutic potential of targeting the receptor for advanced glycation end products (RAGE) by small molecule inhibitors. Drug Dev Res 2022; 83:1257-1269. [PMID: 35781678 PMCID: PMC9474610 DOI: 10.1002/ddr.21971] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 01/05/2023]
Abstract
Receptor for advanced glycation end products (RAGE) is a 45 kDa transmembrane receptor of immunoglobulin family that can bind to various endogenous and exogenous ligands and initiate the inflammatory downstream signaling pathways. RAGE is involved in various disorders including cardiovascular and neurodegenerative diseases, cancer, and diabetes. This review summarizes the structural features of RAGE and its various isoforms along with their pathological effects. Mainly, the article emphasized on the translational significance of antagonizing the interactions of RAGE with its ligands using small molecules reported in the last 5 years and discusses future approaches that could be employed to block the interactions in the treatment of chronic inflammatory ailments. The RAGE inhibitors described in this article could prove as a powerful approach in the management of immune‐inflammatory diseases. A critical review of the literature suggests that there is a dire need to dive deeper into the molecular mechanism of action to resolve critical issues that must be addressed to understand RAGE‐targeting therapy and long‐term blockade of RAGE in human diseases.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
5
|
Cheng M, Shi YL, Shang PP, Chen YJ, Xu YD. Inhibitory Effect of S100A11 on Airway Smooth Muscle Contraction and Airway Hyperresponsiveness. Curr Med Sci 2022; 42:333-340. [PMID: 35419674 DOI: 10.1007/s11596-022-2559-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE S100A11 is a member of the S100 calcium-binding protein family and has intracellular and extracellular regulatory activities. We previously reported that S100A11 was differentially expressed in the respiratory tracts of asthmatic rats as compared with normal controls. Here, we aimed to analyze the potential of S100A11 to regulate both allergen-induced airway hyperresponsiveness (AHR) as well as acetylcholine (ACh)-induced hypercontractility of airway smooth muscle (ASM) and contraction of ASM cells (ASMCs). METHODS Purified recombinant rat S100A11 protein (rS100A11) was administered to OVA-sensitized and challenged rats and then the AHR of animals was measured. The relaxation effects of rS100A11 on ASM were detected using isolated tracheal rings and primary ASMCs. The expression levels of un-phosphorylated myosin light chain (MLC) and phosphorylated MLC in ASMCs were analyzed using Western blotting. RESULTS Treatment with rS100A11 attenuated AHR in the rats. ASM contraction assays showed that rS100A11 reduced the contractile responses of isolated tracheal rings and primary ASMCs treated with ACh. In addition, rS100A11 markedly decreased the ACh-induced phosphorylation of the myosin light chain in ASMCs. Moreover, rS100A11 also suppressed the contractile response of tracheal rings in calcium-free buffer medium. CONCLUSION These results indicate that S100A11 protein can relieve AHR by relaxing ASM independently of extracellular calcium. Our data support the idea that S100A11 is a potential therapeutic target for reducing airway resistance in asthma patients.
Collapse
Affiliation(s)
- Mi Cheng
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Yang-Lin Shi
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Pan-Pan Shang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Yan-Jiao Chen
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Yu-Dong Xu
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China.
| |
Collapse
|
6
|
Jeong S, Kang C, Park S, Ju S, Yoo JW, Yoon IS, Yun H, Jung Y. Eletrophilic Chemistry of Tranilast Is Involved in Its Anti-Colitic Activity via Nrf2-HO-1 Pathway Activation. Pharmaceuticals (Basel) 2021; 14:ph14111092. [PMID: 34832874 PMCID: PMC8623426 DOI: 10.3390/ph14111092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023] Open
Abstract
Tranilast (TRL), a synthetic derivative of a tryptophan metabolite, is an anti-allergic drug used to treat bronchial asthma. We investigated how TRL activated the nuclear factor-erythroid 2 p45-related factor 2 (Nrf2)-hemeoxygenase-1 (HO-1) pathway based on the electrophilic chemistry of the drug and whether TRL activity contributed to the treatment of rat colitis. In human colon carcinoma cells, TRL activated Nrf2, as represented by an increase in nuclear Nrf2 and induction of Nrf2-dependent luciferase and, subsequently, HO-1, a target gene product of Nrf2. TRL activation of Nrf2 and induction of HO-1 were completely prevented by chemical reduction of the electrophilic functional group (α, β-unsaturated carbonyl group) in the drug. In parallel, TRL was reactive with the nucleophilic thiol group in N-acetylcysteine, forming a covalent adduct. Moreover, TRL, but not reduced TRL, binds to Kelch-like ECH-associated protein 1 (KEAP1), releasing Nrf2. TRL administration ameliorated colonic damage and inflammation in rats with dinitrobenzene sulfonic acid-induced colitis, which was partly compromised by the chemical reduction of TRL or co-treatment with an HO-1 inhibitor. Our results suggest that TRL activated the Nrf2-HO-1 pathway via covalent binding to KEAP1, partly contributing to TRL amelioration in rat colitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yunjin Jung
- Correspondence: ; Tel.: +82-51-510-2527; Fax: +82-51-513-6754
| |
Collapse
|
7
|
Chen Y, Huang M, Yan Y, He D. Tranilast inhibits angiotensin II-induced myocardial fibrosis through S100A11/ transforming growth factor-β (TGF-β1)/Smad axis. Bioengineered 2021; 12:8447-8456. [PMID: 34663163 PMCID: PMC8806955 DOI: 10.1080/21655979.2021.1982322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tranilast has an ameliorative effect on myocardial fibrosis (MF), but the specific mechanism has not been studied. S100A11 is a key regulator of collagen expression in MF. In this paper, we will study the regulatory roles of Tranilast and S100A11 in MF. After the introduction of angiotensin II (AngII) to Human cardiac fibroblasts (HCF), Tranilast was administered. CCK-8 kit was used to detect cell viability. Wound Healing assay detected cell migration, and Western blot was used to detect the expression of migration-related proteins and proteins related to extracellular matrix synthesis. The expression of α-SMA was detected by immunofluorescence (IF). The expression of S100A11 was detected by qPCR and Western blot, and then S100A11 was overexpressed by cell transfection technology, so as to explore the mechanism by which Tranilast regulated MF. In addition, the expression of TGF-β1/Smad pathway related proteins was detected by Western blot. Tranilast inhibited Ang II–induced over-proliferation, migration and fibrosis of human cardiac fibroblasts (HCF), and simultaneously significantly decreased S100A11 expression was observed. Overexpression of S100A11 reversed the inhibition of Tranilast on AngII–induced over-proliferation, migration, and fibrosis in HCF, accompanied by activation of the TGF-β1/Smad pathway. Overall, Tranilast inhibits angiotensin II-induced myocardial fibrosis through S100A11/TGF-β1/Smad axis.
Collapse
Affiliation(s)
- Youquan Chen
- Department of Cardiology, Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Ming Huang
- Department of Cardiology, Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Yi Yan
- Department of Cardiology, Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Dequan He
- Department of Cardiology, Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| |
Collapse
|
8
|
Wang H, Yin M, Ye L, Gao P, Mao X, Tian X, Xu Z, Dai X, Cheng H. S100A11 Promotes Glioma Cell Proliferation and Predicts Grade-Correlated Unfavorable Prognosis. Technol Cancer Res Treat 2021; 20:15330338211011961. [PMID: 33902363 PMCID: PMC8085370 DOI: 10.1177/15330338211011961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
The prognosis of glioma is significantly correlated with the pathological grades; however, the correlations between the prognostic biomarkers with pathological grades have not been elucidated. S100A11 is involved in a variety of malignant biological processes of tumor, whereas its biological and clinicopathological features on glioma remain unclear. In this study, the S100A11 expression and clinical information were obtained from the public databases (TCGA, GEPIA2) to analyze its correlations with the pathological grade and the prognosis of glioma patients. We then verified the expression of S100A11 by immunohistochemistry staining. The effects of S100A11 on the proliferation of glioma cells were confirmed by cytological function assays (CCK-8, Flow cytometry, Clone formation assay) in vitro, the role of S100A11 in regulation of glioma growth was determined by xenograft model assay. We observed that S100A11 expression positively correlated with the pathological grades, while negatively correlated with the survival time of patients. In cytological analysis, we found the proliferations of glioma cell lines were significantly inhibited in vitro (P < 0.05) after interfering S100A11 expression via shRNAs. The cell cycle was blocked at G0/G1 stage. The ability of clone formation was significantly decreased, and the tumorigenicity in vivo was weakened (P < 0.05). In summary, S100A11 was over-expressed in gliomas and positively correlated with the pathological grades. Interfering the expression of S100A11 significantly inhibited the proliferation of glioma in vitro and the tumorigenicity in vivo (P < 0.05). In conclusion, S100A11 might be considered as a potential biomarker in glioma.
Collapse
Affiliation(s)
- Haopeng Wang
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengyuan Yin
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Ye
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peng Gao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiang Mao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuefeng Tian
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziao Xu
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xingliang Dai
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Brain Tumor Lab, Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Avetisyan A, Balasanyants S, Simonyan R, Koroev D, Kamynina A, Zinovkin R, Bobkova N, Volpina O. Synthetic fragment (60-76) of RAGE improves brain mitochondria function in olfactory bulbectomized mice. Neurochem Int 2020; 140:104799. [PMID: 32783973 DOI: 10.1016/j.neuint.2020.104799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022]
Abstract
The receptor for advanced glycation end products (RAGE) is considered to contribute to the pathogenesis of Alzheimer's disease (AD), mediating amyloid beta (Aβ) accumulation, mitochondrial damage, and neuroinflammation. Previously, we have synthesized small peptides corresponding to the fragments (60-76) (P1) and (60-62) (P2) of the RAGE extracellular domain, and have shown that administration of P1 fragment but not P2 results in restoration of the spatial memory and decreases the brain Aβ (1-40) level in olfactory bulbectomized (OBX) mice demonstrating main features of Alzheimer's type neurodegeneration. In the present study, we have investigated the supposed mechanism of the therapeutic efficacy of P1 RAGE fragment and compared it to P2 short fragment. We have found that P1 restored activities of the respiratory chain in the Complexes I and IV in both cortical and hippocampal mitochondria of the OBX mice while P2 had no effect. Besides, fluorescein-labeled analog Flu-P1 bound to Aβ (1-40) and Aβ (1-42) with high affinity (Kd in the nanomolar range) whereas Flu-P2 revealed low affinity with tenfold higher Kd value for Aβ (1-40) and did not bind to Aβ (1-42). However, neither of the peptides had a notable impact on inflammation, estimated as mRNA expression of proinflammatory cytokines in the brain tissues of OBX mice. Taken together, our results suggest that direct Aβ-P1 interaction is one of the molecular events mediating the protection of the mitochondria in OBX animals from Aβ toxic effect. The RAGE fragment P1 would be the soluble decoy for Aβs and serve as a promising therapeutic agent against neurodegeneration accompanied by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Armine Avetisyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Samson Balasanyants
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia
| | - Ruben Simonyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitriy Koroev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia
| | - Anna Kamynina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Roman Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Natalia Bobkova
- Institute of Cell Biophysics RAS, Moscow Region, Pushchino, Russia
| | - Olga Volpina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia
| |
Collapse
|
10
|
Guo ML, Sun MX, Lan JZ, Yan LS, Zhang JJ, Hu XX, Xu S, Mao DH, Yang HS, Liu YW, Chen TX. Proteomic analysis of the effects of cell culture density on the metastasis of breast cancer cells. Cell Biochem Funct 2019; 37:72-83. [PMID: 30773657 DOI: 10.1002/cbf.3377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/14/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
Cancer cell progression and proliferation increase cell density, resulting in changes to the tumour site, including the microenvironment. What is not known is if increased cell density influences the aggressiveness of cancer cells, especially their proliferation, migration, and invasion capabilities. In this study, we found that dense cell culture enhances the aggressiveness of the metastatic cancer cell lines, 4T1 and ZR-75-30, by increasing their proliferation, migration, and invasion capabilities. However, a less metastatic cell line, MCF-7, did not show an increase in aggressiveness, following dense cell culture conditions. We conducted a differential proteomic analysis on 4T1 cells cultured under dense or sparse conditions and identified an increase in expression for proteins involved in migration, including focal adhesion, cytoskeletal reorganization, and transendothelial migration. In contrast, 4T1 cells grown under sparse conditions had higher expression levels for proteins involved in metabolism, including lipid and phospholipid binding, lipid and cholesterol transporter activity, and protein binding. These results suggest that the high-density tumour microenvironment can cause a change in cellular behaviour, leading towards more aggressive cancers. SIGNIFICANCE OF THE STUDY: Metastasis of cancer cells is an obstacle to the clinical treatment of cancer. We found that dense cultures made metastatic cancer cells more potent in terms of proliferation, migration, and invasion. The proteomic and bioinformatic analyses provided some valuable clues for further intensive studies about the effects of cell density on cancer cell aggressiveness, which were associated with events such as pre-mRNA splicing and RNA transport, focal adhesion and cytoskeleton reorganization, ribosome biogenesis, and transendothelial migration, or associated with proteins, such as JAM-1 and S100A11. This investigation gives us new perspectives to investigate the metastasis mechanisms related to the microenvironment of tumour sites.
Collapse
Affiliation(s)
- Man-Lan Guo
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China.,The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mi-Xin Sun
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Jin-Zhi Lan
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Li-Sha Yan
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Jing-Juan Zhang
- Human Functional Laboratory, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiao-Xia Hu
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Shu Xu
- Department of Pathology, School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Da-Hua Mao
- Department of Breast Surgery, Wudang Affiliated Hospital, School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Hai-Song Yang
- Department of Breast Surgery, Wudang Affiliated Hospital, School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Ya-Wei Liu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Teng-Xiang Chen
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
11
|
Rojas A, Morales M, Gonzalez I, Araya P. Inhibition of RAGE Axis Signaling: A Pharmacological Challenge. Curr Drug Targets 2019; 20:340-346. [PMID: 30124149 DOI: 10.2174/1389450119666180820105956] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/18/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
The Receptor for Advanced Glycation End Products (RAGE) is an important cell surface receptor, which belongs to the IgG super family and is now considered as a pattern recognition receptor. Because of its relevance in many human clinical settings, it is now pursued as a very attractive therapeutic target. However, particular features of this receptor such as a wide repertoire of ligands with different binding domains, the existence of many RAGE variants as well as the presence of cytoplasmatic adaptors leading a diverse signaling, are important limitations in the search for successful pharmacological approaches to inhibit RAGE signaling. Therefore, the present review aimed to display the most promising approaches to inhibit RAGE signaling, and provide an up to date review of progress in this area.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Lab., Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Miguel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Ileana Gonzalez
- Biomedical Research Lab., Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Paulina Araya
- Biomedical Research Lab., Medicine Faculty, Catholic University of Maule, Talca, Chile
| |
Collapse
|
12
|
Kamynina AV, Esteras N, Koroev DO, Bobkova NV, Balasanyants SM, Simonyan RA, Avetisyan AV, Abramov AY, Volpina OM. Synthetic Fragments of Receptor for Advanced Glycation End Products Bind Beta-Amyloid 1-40 and Protect Primary Brain Cells From Beta-Amyloid Toxicity. Front Neurosci 2018; 12:681. [PMID: 30319347 PMCID: PMC6170785 DOI: 10.3389/fnins.2018.00681] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/10/2018] [Indexed: 11/18/2022] Open
Abstract
Receptor for advanced glycation end products (RAGE) is involved in the pathogenesis of Alzheimer's disease. We have previously revealed that RAGE fragment sequence (60-76) and its shortened analogs sequence (60-70) and (60-65) under intranasal insertion were able to restore memory and improve morphological and biochemical state of neurons in the brain of bulbectomized mice developing major AD features. In the current study, we have investigated the ability of RAGE peptide (60-76) and five shortened analogs to bind beta-amyloid (Aβ) 1-40 in an fluorescent titration test and show that all the RAGE fragments apart from one [sequence (65-76)] were able to bind Aβ in vitro. Moreover, we show that all RAGE fragments apart from the shortest one (60-62), were able to protect neuronal primary cultures from amyloid toxicity, by preventing the caspase 3 activation induced by Aβ 1-42. We have compared the data obtained in the present research with the previously published data in the animal model of AD, and offer a probable mechanism of neuroprotection of the RAGE peptide.
Collapse
Affiliation(s)
- Anna V. Kamynina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Noemi Esteras
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Dmitriy O. Koroev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V. Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Samson M. Balasanyants
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ruben A. Simonyan
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Armine V. Avetisyan
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Andrey Y. Abramov
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Olga M. Volpina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
Dowarha D, Chou RH, Yu C. S100B as an Antagonist To Interfere with the Interface Area Flanked by S100A11 and RAGE V Domain. ACS OMEGA 2018; 3:9689-9698. [PMID: 31459098 PMCID: PMC6644751 DOI: 10.1021/acsomega.8b00922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/08/2018] [Indexed: 05/03/2023]
Abstract
The Ca2+-sensing protein S100A11 of the S100 family is an important mediator of numerous biological functions and pathological conditions including cancer. The receptor for advanced glycation end products (RAGE) has been well accepted as the major receptor for several S100 family members. Here, we take the S100B protein as an antagonist to interfere with the interaction flanked by S100A11 and the RAGE V domain. We employed NMR spectroscopy to describe the interactions between the S100A11 and S100B proteins. 1H-15N heteronuclear single-quantum correlation-NMR titrations showed the potential binding dynamics of S100A11 and S100B interactions. In the HADDOCK program, we constructed the S100A11-S100B heterodimer complex that was then superimposed with the S100A11-S100B complex structure in the same orientation as the S100A11-RAGE V domain complex. This overlay analysis showed that S100B could interfere in the binding section of S100A11 and the RAGE V domain. Additionally, water-soluble tetrazolium-1 assay provided a functional read-out of the effects of these proteins in an in vitro cancer model. Our study establishes that the development of an S100B antagonist could perform a vital part in the treatment of S100- and RAGE-dependent human diseases.
Collapse
Affiliation(s)
- Deepu Dowarha
- Department
of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ruey-Hwang Chou
- Graduate
Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Chin Yu
- Department
of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- E-mail: . Fax: 886-35-711082
| |
Collapse
|
14
|
Correlation between S100A11 and the TGF-β 1/SMAD4 pathway and its effects on the proliferation and apoptosis of pancreatic cancer cell line PANC-1. Mol Cell Biochem 2018; 450:53-64. [PMID: 29922945 DOI: 10.1007/s11010-018-3372-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
S100A11 as a S100 protein family member has been documented to play dual-direction regulation over cancer cell proliferation. We explored the role of S100A11 in the proliferation and apoptosis of pancreatic cancer cell line PANC-1 and the potential mechanisms involving the TGF-β1/SMAD4/p21 pathway. S100A11 and TGF-β1 protein expressions in 30 paraffin-embedded specimens were evaluated by immunohistochemistry. S100A11 and TGF-β1 expression in PANC-1 cell line was suppressed using small interfering RNA (siRNA), respectively. Subsequently, pancreatic cancer cell apoptosis was measured by Cell Counting Kit-8 and flow cytometry, and S100A11 and TGF-β1/SMAD4/p21 pathway proteins and genes were detected with Western blotting and quantitative polymerase chain reaction (qPCR). S100A11 cytoplasmic/nuclear protein translocation was examined using NE-PER® cytoplasm/nuclear protein extraction in cells interfered with TGF-β1 siRNA. Our results showed that S100A11 expression was positively correlated with TGF-β1 expression in pancreatic cancerous tissue. Silencing TGF-β1 down-regulated intracellular P21WAF1 expression by 90%, blocked S100A11 from cytoplasm entering nucleus, and enhanced cell proliferation. Silencing S100A11 down-regulated intracellular P21 expression and promoted cell apoptosis without significantly changing TGF-β1 and SMAD4 expression. Our findings revealed that S100A11 and TGF-β1/SMAD4 signaling pathway were related but mutually independent in regulating PANC-1 cells proliferation and apoptosis. Other independent mechanisms might be involved in S100A11's regulation of pancreatic cell growth. S100A11 could be a potential gene therapy target for pancreatic cancer.
Collapse
|
15
|
Xiao Y, Shaw GS, Konermann L. Calcium-Mediated Control of S100 Proteins: Allosteric Communication via an Agitator/Signal Blocking Mechanism. J Am Chem Soc 2017; 139:11460-11470. [PMID: 28758397 DOI: 10.1021/jacs.7b04380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Allosteric proteins possess dynamically coupled residues for the propagation of input signals to distant target binding sites. The input signals usually correspond to "effector is present" or "effector is not present". Many aspects of allosteric regulation remain incompletely understood. This work focused on S100A11, a dimeric EF-hand protein with two hydrophobic target binding sites. An annexin peptide (Ax) served as the target. Target binding is allosterically controlled by Ca2+ over a distance of ∼26 Å. Ca2+ promotes formation of a [Ca4 S100 Ax2] complex, where the Ax peptides are accommodated between helices III/IV and III'/IV'. Without Ca2+ these binding sites are closed, precluding interactions with Ax. The allosteric mechanism was probed by microsecond MD simulations in explicit water, complemented by hydrogen exchange mass spectrometry (HDX/MS). Consistent with experimental data, MD runs in the absence of Ca2+ and Ax culminated in target binding site closure. In simulations on [Ca4 S100] the target binding sites remained open. These results capture the essence of allosteric control, revealing how Ca2+ prevents binding site closure. Both HDX/MS and MD data showed that the metalation sites become more dynamic after Ca2+ loss. However, these enhanced dynamics do not represent the primary trigger of the allosteric cascade. Instead, a labile salt bridge acts as an incessantly active "agitator" that destabilizes the packing of adjacent residues, causing a domino chain of events that culminates in target binding site closure. This agitator represents the starting point of the allosteric signal propagation pathway. Ca2+ binding rigidifies elements along this pathway, thereby blocking signal transmission. This blocking mechanism does not conform to the commonly held view that allosteric communication pathways generally originate at the sites where effectors interact with the protein.
Collapse
Affiliation(s)
- Yiming Xiao
- Department of Chemistry, The University of Western Ontario , London, Ontario N6A 5B7, Canada
| | - Gary S Shaw
- Department of Chemistry, The University of Western Ontario , London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario , London, Ontario N6A 5B7, Canada
| |
Collapse
|
16
|
Blocking the Interactions between Calcium-Bound S100A12 Protein and the V Domain of RAGE Using Tranilast. PLoS One 2016; 11:e0162000. [PMID: 27598566 PMCID: PMC5012620 DOI: 10.1371/journal.pone.0162000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE), a transmembrane receptor in the immunoglobulin superfamily, is involved in several inflammatory processes. RAGE induces cellular signaling pathways upon binding with various ligands, such as advanced glycation end products (AGEs), β-amyloids, and S100 proteins. The solution structure of S100A12 and the V ligand-binding region of RAGE have been reported previously. Using heteronuclear NMR spectroscopy to conduct 1H–15N heteronuclear single quantum coherence (HSQC) titration experiments, we identified and mapped the binding interface between S100A12 and the V domain of RAGE. The NMR chemical shift data were used as the constraints for the High Ambiguity Driven biomolecular DOCKing (HADDOCK) calculation to generate a structural model of the S100A12–V domain complex. In addition, tranilast (an anti-allergic drug) showed strong interaction with S100A12 in the 1H–15N HSQC titration, fluorescence experiments, and WST-1 assay. The results also indicated that tranilast was located at the binding site between S100A12 and the V domain, blocking interaction between these two proteins. Our results provide the mechanistic details for a structural model and reveal a potential precursor for an inhibitor for pro-inflammatory diseases, which could be useful for the development of new drugs.
Collapse
|
17
|
Cho CC, Chou RH, Yu C. Amlexanox Blocks the Interaction between S100A4 and Epidermal Growth Factor and Inhibits Cell Proliferation. PLoS One 2016; 11:e0161663. [PMID: 27559743 PMCID: PMC4999211 DOI: 10.1371/journal.pone.0161663] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/09/2016] [Indexed: 01/08/2023] Open
Abstract
The human S100A4 protein binds calcium, resulting in a change in its conformation to promote the interaction with its target protein. Human epidermal growth factor (EGF) is the target protein of S100A4 and a critical ligand of the receptor EGFR. The EGF/EGFR system promotes cell survival, differentiation, and growth by activating several signaling pathways. Amlexanox is an anti-inflammatory and anti-allergic drug that is used to treat recurrent aphthous ulcers. In the present study, we determined that amlexanox interacts with S100A4 using heteronuclear single quantum correlation titration. We elucidated the interactions of S100A4 with EGF and amlexanox using fluorescence and nuclear magnetic resonance spectroscopy. We generated two binary models (for the S100A4-EGF and S100A4-amlexanox complexes) and observed that amlexanox and EGF share a similar binding region in mS100A4. We also used a WST-1 assay to investigate the bioactivity of S100A4, EGF, and amlexanox, and found that amlexanox blocks the binding between S100A4 and EGF, and is therefore useful for the development of new anti-proliferation drugs.
Collapse
Affiliation(s)
- Ching Chang Cho
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|