1
|
Regan JL, Schumacher D, Staudte S, Steffen A, Lesche R, Toedling J, Jourdan T, Haybaeck J, Mumberg D, Henderson D, Győrffy B, Regenbrecht CRA, Keilholz U, Schäfer R, Lange M. RNA sequencing of long-term label-retaining colon cancer stem cells identifies novel regulators of quiescence. iScience 2021; 24:102618. [PMID: 34142064 PMCID: PMC8185225 DOI: 10.1016/j.isci.2021.102618] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/23/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Recent data suggest that therapy-resistant quiescent cancer stem cells (qCSCs) are the source of relapse in colon cancer. Here, using colon cancer patient-derived organoids and xenografts, we identify rare long-term label-retaining qCSCs that can re-enter the cell cycle to generate new tumors. RNA sequencing analyses demonstrated that these cells display the molecular hallmarks of quiescent tissue stem cells, including expression of p53 signaling genes, and are enriched for transcripts common to damage-induced quiescent revival stem cells of the regenerating intestine. In addition, we identify negative regulators of cell cycle, downstream of p53, that we show are indicators of poor prognosis and may be targeted for qCSC abolition in both p53 wild-type and mutant tumors. These data support the temporal inhibition of downstream targets of p53 signaling, in combination with standard-of-care treatments, for the elimination of qCSCs and prevention of relapse in colon cancer. Colon tumors contain therapy-resistant quiescent cancer stem cells (qCSCs) qCSC gene expression mirrors that of quiescent stem cells of the regenerating gut qCSCs are enriched for p53 signaling genes qCSC elimination may be achieved by inhibiting downstream targets of p53 signaling
Collapse
Affiliation(s)
- Joseph L Regan
- Bayer AG, Research & Development, Pharmaceuticals, 13342 Berlin, Germany.,Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Dirk Schumacher
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Stephanie Staudte
- Bayer AG, Research & Development, Pharmaceuticals, 13342 Berlin, Germany.,German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany.,Department of Radiation Oncology and Radiotherapy, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Steffen
- Bayer AG, Research & Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Research & Development, Pharmaceuticals, 13342 Berlin, Germany.,Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Joern Toedling
- Bayer AG, Research & Development, Pharmaceuticals, 13342 Berlin, Germany.,Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Thibaud Jourdan
- Bayer AG, Research & Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, A-6020 Innsbruck, Austria.,Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Dominik Mumberg
- Bayer AG, Research & Development, Pharmaceuticals, 13342 Berlin, Germany
| | - David Henderson
- Bayer AG, Research & Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary.,TTK Cancer Biomarker Research Group, Institute of Enzymology, 1117 Budapest, Hungary
| | - Christian R A Regenbrecht
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.,CELLphenomics GmbH, 13125 Berlin, Germany.,Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Reinhold Schäfer
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.,Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Martin Lange
- Bayer AG, Research & Development, Pharmaceuticals, 13342 Berlin, Germany.,Nuvisan ICB GmbH, 13353 Berlin, Germany
| |
Collapse
|
3
|
Webster MR, Fane ME, Alicea GM, Basu S, Kossenkov AV, Marino GE, Douglass SM, Kaur A, Ecker BL, Gnanapradeepan K, Ndoye A, Kugel C, Valiga A, Palmer J, Liu Q, Xu X, Morris J, Yin X, Wu H, Xu W, Zheng C, Karakousis GC, Amaravadi RK, Mitchell TC, Almeida FV, Xiao M, Rebecca VW, Wang YJ, Schuchter LM, Herlyn M, Murphy ME, Weeraratna AT. Paradoxical Role for Wild-Type p53 in Driving Therapy Resistance in Melanoma. Mol Cell 2019; 77:633-644.e5. [PMID: 31836388 DOI: 10.1016/j.molcel.2019.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 07/17/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022]
Abstract
Metastatic melanoma is an aggressive disease, despite recent improvements in therapy. Eradicating all melanoma cells even in drug-sensitive tumors is unsuccessful in patients because a subset of cells can transition to a slow-cycling state, rendering them resistant to most targeted therapy. It is still unclear what pathways define these subpopulations and promote this resistant phenotype. In the current study, we show that Wnt5A, a non-canonical Wnt ligand that drives a metastatic, therapy-resistant phenotype, stabilizes the half-life of p53 and uses p53 to initiate a slow-cycling state following stress (DNA damage, targeted therapy, and aging). Inhibiting p53 blocks the slow-cycling phenotype and sensitizes melanoma cells to BRAF/MEK inhibition. In vivo, this can be accomplished with a single dose of p53 inhibitor at the commencement of BRAF/MEK inhibitor therapy. These data suggest that taking the paradoxical approach of inhibiting rather than activating wild-type p53 may sensitize previously resistant metastatic melanoma cells to therapy.
Collapse
Affiliation(s)
- Marie R Webster
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA.
| | - Mitchell E Fane
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Gretchen M Alicea
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; University of the Sciences, Philadelphia, PA 19104, USA
| | - Subhasree Basu
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Gloria E Marino
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Stephen M Douglass
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Amanpreet Kaur
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; University of the Sciences, Philadelphia, PA 19104, USA
| | - Brett L Ecker
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; Department of Surgery, University of Pennsylvania Hospital, Philadelphia, PA 19104, USA
| | - Keerthana Gnanapradeepan
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Abibatou Ndoye
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; University of the Sciences, Philadelphia, PA 19104, USA
| | - Curtis Kugel
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Alexander Valiga
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Jessica Palmer
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Qin Liu
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessicamarie Morris
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Xiangfan Yin
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Hong Wu
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Wei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cathy Zheng
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos C Karakousis
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi K Amaravadi
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tara C Mitchell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Filipe V Almeida
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Min Xiao
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Vito W Rebecca
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310003, China
| | - Lynn M Schuchter
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center at Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meenhard Herlyn
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Maureen E Murphy
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Ashani T Weeraratna
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health and Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
Poynter L, Galea D, Veselkov K, Mirnezami A, Kinross J, Nicholson J, Takáts Z, Darzi A, Mirnezami R. Network Mapping of Molecular Biomarkers Influencing Radiation Response in Rectal Cancer. Clin Colorectal Cancer 2019; 18:e210-e222. [PMID: 30928329 DOI: 10.1016/j.clcc.2019.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/12/2018] [Accepted: 01/23/2019] [Indexed: 02/07/2023]
Abstract
Preoperative radiotherapy (RT) plays an important role in the management of locally advanced rectal cancer (RC). Tumor regression after RT shows marked variability, and robust molecular methods are needed to help predict likely response. The aim of this study was to review the current published literature and use Gene Ontology (GO) analysis to define key molecular biomarkers governing radiation response in RC. A systematic review of electronic bibliographic databases (Medline, Embase) was performed for original articles published between 2000 and 2015. Biomarkers were then classified according to biological function and incorporated into a hierarchical GO tree. Both significant and nonsignificant results were included in the analysis. Significance was binarized on the basis of univariate and multivariate statistics. Significance scores were calculated for each biological domain (or node), and a direct acyclic graph was generated for intuitive mapping of biological pathways and markers involved in RC radiation response. Seventy-two individual biomarkers across 74 studies were identified. On highest-order classification, molecular biomarkers falling within the domains of response to stress, cellular metabolism, and pathways inhibiting apoptosis were found to be the most influential in predicting radiosensitivity. Homogenizing biomarker data from original articles using controlled GO terminology demonstrated that cellular mechanisms of response to RT in RC-in particular the metabolic response to RT-may hold promise in developing radiotherapeutic biomarkers to help predict, and in the future modulate, radiation response.
Collapse
Affiliation(s)
- Liam Poynter
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Dieter Galea
- Computational & Systems Medicine, Imperial College London, London, UK
| | - Kirill Veselkov
- Computational & Systems Medicine, Imperial College London, London, UK
| | | | - James Kinross
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Jeremy Nicholson
- Computational & Systems Medicine, Imperial College London, London, UK
| | - Zoltán Takáts
- Computational & Systems Medicine, Imperial College London, London, UK
| | - Ara Darzi
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Reza Mirnezami
- Department of Surgery & Cancer, Imperial College London, London, UK; St Mark's Hospital and Academic Institute, Harrow, London, UK.
| |
Collapse
|
6
|
So V, Jalan D, Lemaire M, Topham MK, Hatch GM, Epand RM. Diacylglycerol kinase epsilon suppresses expression of p53 and glycerol kinase in mouse embryo fibroblasts. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1993-1999. [PMID: 27713003 DOI: 10.1016/j.bbalip.2016.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/22/2016] [Accepted: 09/30/2016] [Indexed: 01/24/2023]
Abstract
The incorporation of glycerol into lipid was measured using SV40 transformed mouse embryo fibroblasts (MEFs) from either wild-type (WT) mice or from mice in which the epsilon isoform of diacylglycerol kinase (DGKε) was knocked out (DGKε-/-). We present an explanation for our finding that DGKε-/- MEFs exhibited greater uptake of 3H-glycerol into the cell and a greater incorporation into lipids compared with their WT counterparts, with no change in the relative amounts of various lipids between the DGKε-/- and WT MEFs. Glycerol kinase is more highly expressed in the DGKε-/- cells than in their WT counterparts. In addition, the activity of glycerol kinase is greater in the DGKε-/- cells than in their WT counterparts. Other substrates that enter the cell independent of glycerol kinase, such as pyruvate or acetate, are incorporated into lipid to the same extent between DGKε-/- and WT cell lines. We also show that expression of p53, a transcription factor that increases the synthesis of glycerol kinase, is increased in DGKε-/- MEFs in comparison to WT cells. We conclude that the increased incorporation of glycerol into lipids in DGKε-/- cells is a consequence of up-regulation of glycerol kinase and not a result of an increase in the rate of lipid synthesis. Furthermore, increased expression of the pro-survival gene, p53, in cells knocked out for DGKε suggests that cells over-expressing DGKε would have a greater propensity to become tumorigenic.
Collapse
Affiliation(s)
- Vincent So
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Divyanshi Jalan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Mathieu Lemaire
- Nephrology Division & Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Institute of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Matthew K Topham
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, United States
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, Center for Research and Treatment of Atherosclerosis, DREAM Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
7
|
Shan GP, Zhang P, Li P, Du FL, Yang YW. Numb Gene Enhances Radiation Sensitivity of Nonsmall Cell Lung Cancer Stem Cells. Cancer Biother Radiopharm 2016; 31:180-8. [PMID: 27310305 DOI: 10.1089/cbr.2016.2053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To study the effects of Numb gene expression on radiation sensitivity of nonsmall cell lung cancer (NSCLC) stem cells. MATERIALS AND METHODS The side population (SP) cells A549-SP were transfected with pcDNA3.1 (pcDNA3.1 group), pcDNA-Numb (pcDNA-Numb group) and shRNA-Numb (shRNA-Numb group). Real-time quantitative polymerase chain reaction and Western blot were performed to determine Numb expression; MTT method was used to measure the proliferation activity change of the NSCLC stem cells both before and after irradiation with different doses of 60Coγ ray; Hoechst staining and Annexin V-FITC/PI were used to detect the apoptosis of the NSCLC stem cells; and colony-forming assay was used to determine the effect of Numb expression on radiation sensitivity of the NSCLC stem cells. RESULTS Increased mRNA and protein expressions of the A549-SP cells were found in the pcDNA-Numb group, and decreased mRNA and protein expressions were found in the shRNA-Numb group. The optical density value of the cells decreased in the pcDNA-Numb group but increased in the shRNA-Numb group. The cells with over-expressed Numb showed obvious nuclear condensation and fragmentation; the apoptosis rate increased significantly. The cells with knockdown Numb showed less nuclear damage; the apoptosis rate significantly decreased. After irradiation, the cells in the pcDNA-Numb group showed decreased survival rate, clonality, and the values of D0, Dq, N, and SF2; whereas the cells in the shRNA-Numb group showed the opposite trend. CONCLUSIONS Radiation sensitivity of NSCLC stem cells was enhanced with the increase of Numb expression. Determination of Numb expression helped to evaluate the response of lung cancer to radiotherapy, which was important for guiding tumor treatment clinically.
Collapse
Affiliation(s)
- Guo-Ping Shan
- Department of Radiation Oncology, Zhejiang Cancer Hospital , Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, P.R. China
| | - Peng Zhang
- Department of Radiation Oncology, Zhejiang Cancer Hospital , Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, P.R. China
| | - Pu Li
- Department of Radiation Oncology, Zhejiang Cancer Hospital , Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, P.R. China
| | - Feng-Lei Du
- Department of Radiation Oncology, Zhejiang Cancer Hospital , Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, P.R. China
| | - Yi-Wei Yang
- Department of Radiation Oncology, Zhejiang Cancer Hospital , Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, P.R. China
| |
Collapse
|