1
|
Lyu J, Wang S, Chen J, Yang X, Gao G, Zhou T. The comparison of pathogenic role and mechanism of Kallistatin and PEDF in tumors. Biochim Biophys Acta Rev Cancer 2025; 1880:189273. [PMID: 39880292 DOI: 10.1016/j.bbcan.2025.189273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Tumors are diseases caused by abnormal cell division and growth, which can be life-threatening if not treated properly. Serpin inhibitors play a crucial role in regulating pathophysiological process and are promising drug targets. Kallistatin (SERPINA4) and Pigment Epithelium-Derived Factor (PEDF, SERPINF1) are two serpins that lack protease inhibitory activity but are abundant in blood. They exhibit anti-angiogenic effects and are involved in tumorigenesis. The pathogenic role and mechanism of Kallistatin and pigment epithelium-derived factor (PEDF) have been extensively studied for their potential use in cancer therapy. Kallistatin and PEDF play significant roles in controlling tumor growth and progression. While they share some common mechanisms of action, such as promoting apoptosis and inhibiting angiogenesis, they also have distinct differences in effectiveness and range of anti-tumor activities. This review compares and contrasts the expression patterns, structural features, expression regulation, disease roles, signaling pathways, and potential clinical value of Kallistatin and PEDF, aiming to provide a comprehensive understanding of their biomedical and clinical potential.
Collapse
Affiliation(s)
- Jiayi Lyu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Simin Wang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jingnan Chen
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xia Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Guoquan Gao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ti Zhou
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; China Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
2
|
Porreca V, Corbella E, Palmisano B, Peres M, Angelone P, Barbagallo C, Stella M, Mignogna G, Mennini G, Melandro F, Rossi M, Ragusa M, Corsi A, Riminucci M, Maras B, Mancone C. Pigment Epithelium-Derived Factor Inhibits Cell Motility and p-ERK1/2 Signaling in Intrahepatic Cholangiocarcinoma Cell Lines. BIOLOGY 2025; 14:155. [PMID: 40001923 PMCID: PMC11851717 DOI: 10.3390/biology14020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional soluble glycoprotein, primarily known for its potent anti-angiogenic properties. In recent years, its ability to counteract cell proliferation and motility has generated interest in PEDF as a potential tumor suppressor. In the intrahepatic Cholangiocarcinoma (iCCA), PEDF, Thrombospondin 1 (THBS1), and Thrombospondin 2 (THBS2) are expressed and released into the tumor microenvironment (TME), where they promote lymphangiogenesis at the expense of the neoangiogenic program, aiding the dissemination of cancer cells via lymphatic vessels. Recently, we demonstrated that THBS1 and THBS2 directly affect iCCA cells, exacerbating their malignant behavior, while the direct role of PEDF remains to be elucidated. In this study, through a cell-based assay and molecular analysis, we investigate the direct function of PEDF on two well-established iCCA cell lines. Our results show that PEDF affects cancer cell motility in a paracrine manner, reducing their migratory and invasive capabilities. Notably, our data suggest that the PEDF-induced inhibition of motility in iCCA cells occurs through the MAPK/ERK signaling pathway, as indicated by the reduced phosphorylation of ERK1/2. Overall, this study provides the first evidence of PEDF acting as a tumor suppressor in iCCA.
Collapse
Affiliation(s)
- Veronica Porreca
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Eleonora Corbella
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Marco Peres
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Pietro Angelone
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences-Section of Biology and Genetics, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Michele Stella
- Department of Biomedical and Biotechnological Sciences-Section of Biology and Genetics, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Giuseppina Mignogna
- Department of Biochemical Science, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Gianluca Mennini
- General Surgery and Organ Transplantation Unit, Department of General Surgery and Surgical Specialties P. Stefanini, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.M.); (F.M.); (M.R.)
| | - Fabio Melandro
- General Surgery and Organ Transplantation Unit, Department of General Surgery and Surgical Specialties P. Stefanini, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.M.); (F.M.); (M.R.)
| | - Massimo Rossi
- General Surgery and Organ Transplantation Unit, Department of General Surgery and Surgical Specialties P. Stefanini, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.M.); (F.M.); (M.R.)
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences-Section of Biology and Genetics, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Bruno Maras
- Department of Biochemical Science, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| |
Collapse
|
3
|
Wang Y, Gao S, Gao S, Li N, Huang H, Liu X, Yao H, Shen X. Pigment epithelium-derived factor exerts neuroprotection in oxygen-induced retinopathy by targeting endoplasmic reticulum stress and oxidative stress. Exp Eye Res 2024; 249:110147. [PMID: 39510404 DOI: 10.1016/j.exer.2024.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/30/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Endoplasmic reticulum (ER) stress and oxidative stress have been involved in the occurrence of neuronal apoptosis in ischemic retinopathy. Pigment epitheliu-derived factor (PEDF) is well known for its multifunctional properties, including neuroprotection, anti-inflammation and antioxidant. However, the association between PEDF and ER stress or oxidative stress in ischemic retinopathy remain incompletely understood. In this study, the concentration of the key factor of ER stress C/EBP homologous protein (CHOP) in aqueous humor (AqH) and vitreous samples of proliferative diabetic retinopathy (PDR) patients were measured by ELISA assays. Oxygen-induced retinopathy (OIR) mice model was established and PEDF intravitreal injections were conducted. Primary bone marrow derived macrophages (BMDMs) were isolated and cultured under hypoxic conditions in vitro. Western blotting, real-time RT-PCR, immunofluorescence, transmission electron microscopy (TEM), TUNEL assays were performed to explore roles of PEDF on ER stress and oxidative stress, as well as subsequently neuronal apoptosis under hypoxic conditions in vivo and in vitro. The results revealed that ER stress and oxidative stress were notably activated under hypoxic conditions. We also observed that hypoxia evoked ultrastructural damage of ER and mitochondrion in the retina. However, PEDF significantly prevented ER stress and oxidative stress, as well as the damage of ultrastructure, resulting in diminution of photoreceptor apoptosis in OIR retinas. These results indicate that PEDF may play its neuroprotection role through inhibiting ER stress and oxidative stress in ischemic retinopathy, which is a novel molecular mechanism of PEDF protecting photoreceptors from ischemic damage, thereby suggesting that PEDF is an effective therapeutic agent for the treatment of neuron damage in ischemic retinal diseases.
Collapse
Affiliation(s)
- Ya'nuo Wang
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sha Gao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuang Gao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hanwen Huang
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaohong Liu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiping Yao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Ophthalmology, Ruijin Hospital, Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Zhou Z, Zhang P, Li J, Yao J, Jiang Y, Wan M, Tang W, Liu L. Autophagy and the pancreas: Healthy and disease states. Front Cell Dev Biol 2024; 12:1460616. [PMID: 39381372 PMCID: PMC11458389 DOI: 10.3389/fcell.2024.1460616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
Macroautophagy/autophagy is an intracellular degradation pathway that has an important effect on both healthy and diseased pancreases. It protects the structure and function of the pancreas by maintaining organelle homeostasis and removing damaged organelles. A variety of pancreas-related diseases, such as diabetes, pancreatitis, and pancreatic cancer, are closely associated with autophagy. Genetic studies that address autophagy confirm this view. Loss of autophagy homeostasis (lack or overactivation) can lead to a series of adverse reactions, such as oxidative accumulation, increased inflammation, and cell death. There is growing evidence that stimulating or inhibiting autophagy is a potential therapeutic strategy for various pancreatic diseases. In this review, we discuss the multiple roles of autophagy in physiological and pathological conditions of the pancreas, including its role as a protective or pathogenic factor.
Collapse
Affiliation(s)
- Zixian Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengcheng Zhang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Juan Li
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhong Jiang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Meihua Wan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Huang Y, Zhang R, Lyu H, Xiao S, Guo D, Chen XZ, Zhou C, Tang J. LncRNAs as nodes for the cross-talk between autophagy and Wnt signaling in pancreatic cancer drug resistance. Int J Biol Sci 2024; 20:2698-2726. [PMID: 38725864 PMCID: PMC11077374 DOI: 10.7150/ijbs.91832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/06/2024] [Indexed: 05/12/2024] Open
Abstract
Pancreatic cancer is a malignancy with high mortality. In addition to the few symptoms until the disease reaches an advanced stage, the high fatality rate is attributed to its rapid development, drug resistance and lack of appropriate treatment. In the selection and research of therapeutic drugs, gemcitabine is the first-line drug for pancreatic cancer. Solving the problem of gemcitabine resistance in pancreatic cancer will contribute to the progress of pancreatic cancer treatment. Long non coding RNAs (lncRNAs), which are RNA transcripts longer than 200 nucleotides, play vital roles in cellular physiological metabolic activities. Currently, our group and others have found that some lncRNAs are aberrantly expressed in pancreatic cancer cells, which can regulate the process of cancer through autophagy and Wnt/β-catenin pathways simultaneously and affect the sensitivity of cancer cells to therapeutic drugs. This review presents an overview of the recent evidence concerning the node of lncRNA for the cross-talk between autophagy and Wnt/β-catenin signaling in pancreatic cancer, together with the practicability of lncRNAs and the core regulatory factors as targets in therapeutic resistance.
Collapse
Affiliation(s)
- Yuhan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada, T6G2R3
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| |
Collapse
|
6
|
Nabeta R, Katselis GS, Chumala P, Dickinson R, Fernandez NJ, Meachem MD. Identification of potential plasma protein biomarkers for feline pancreatic carcinoma by liquid chromatography tandem mass spectrometry. Vet Comp Oncol 2022; 20:720-731. [PMID: 35514180 DOI: 10.1111/vco.12826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 12/01/2022]
Abstract
In both humans and cats, pancreatic carcinoma is an aggressive cancer with a grave prognosis. Proteomics techniques have successfully identified several blood-based biomarkers of human pancreatic neoplasia. Thus, this study aims to investigate whether similar biomarkers can be identified in the plasma of cats with FePAC by using liquid chromatography tandem mass spectrometry (LC-MS/MS). To facilitate evaluation of the low abundance plasma proteome, a human-based immunodepletion device (MARS-2) was first validated for use with feline plasma. Marked reduction and/or complete removal of albumin and immunoglobulins was confirmed by analysis of electrophoretograms and mass spectral data. Subsequently, plasma collected from 9 cats with pancreatic carcinoma (FePAC), 10 cats with symptomatic pancreatitis, and 10 healthy control cats was immunodepleted and subjected to LC-MS/MS. Thirty-seven plasma proteins were found to be differentially expressed (p < .05 in one-way ANOVA, FC >2 in fold change analysis). Among these proteins, ETS variant transcription factor 4 (p < .05) was overexpressed, while gelsolin (p < .01), tryptophan 2,3-dioxygenase (p < .05), serpin family F member 1 (p < .01), apolipoprotein A-IV (p < .01) and phosphatidylinositol-glycan-specific phospholipase D (p < .05) were down-regulated in cats with FePAC. Further studies on these potential biomarkers are needed to investigate their diagnostic value.
Collapse
Affiliation(s)
- Rina Nabeta
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - George S Katselis
- Department of Medicine, Division of the Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Paulos Chumala
- Department of Medicine, Division of the Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ryan Dickinson
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nicole J Fernandez
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Melissa D Meachem
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
7
|
Wu X, Ye W, Gong Y. The Role of RNA Methyltransferase METTL3 in Normal and Malignant Hematopoiesis. Front Oncol 2022; 12:873903. [PMID: 35574332 PMCID: PMC9095908 DOI: 10.3389/fonc.2022.873903] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
m6A modification is the most common modification in eukaryotes. METTL3, as a core methyltransferase of m6A modification, plays a vital role in normal and malignant hematopoiesis. Recent studies have shown that METTL3 is required for normal and symmetric differentiation of hematopoietic stem/progenitor cells (HSPCs). Moreover, METTL3 strongly impacts the process and development of hematological neoplasms, including the differentiation, apoptosis, proliferation, chemoresistance, and risk of tumors. Novel inhibitors of METTL3 have been identified and studied in acute myeloid leukemia (AML) cells. STM2457, a selective inhibitor of METTL3, has been identified to block proliferation and promote differentiation and apoptosis of AML cells without impacting normal hematopoiesis. Therefore, in our present review, we focus on the structure of METTL3, the role of METTL3 in both normal and malignant hematopoiesis, and the potential of METTL3 for treating hematological neoplasms.
Collapse
Affiliation(s)
- Xia Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Wu Ye
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuping Gong
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Cheng Y, Fu Y, Wang Y, Wang J. The m6A Methyltransferase METTL3 Is Functionally Implicated in DLBCL Development by Regulating m6A Modification in PEDF. Front Genet 2020; 11:955. [PMID: 33061938 PMCID: PMC7481464 DOI: 10.3389/fgene.2020.00955] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/30/2020] [Indexed: 12/22/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of lymphoma, whose treatment still has a major challenge of achieving a satisfactory curative effect. The underlying mechanisms also have not been fully illustrated. N6-Methyladenosine (m6A) has been identified as the most prevalent internal modification of mRNAs present in eukaryotes, which is involved in the pathogenesis of cancers. It remains unclear how m6A mRNA methylation is functionally linked to the pathogenesis of DLBCL. In this study, we sought to explore the roles of METTL3 on DLBCL development. The results showed that m6A level for RNA methylation and the expression level of METTL3 were upregulated in DLBCL tissues and cell lines. Functionally, downregulated METTL3 expression in DLBCL cells inhibited the cell proliferation ability. Further mechanism analysis indicated that METTL3 knockdown abates the m6A methylation and total mRNA level of pigment epithelium-derived factor (PEDF). However, Wnt/β-catenin signaling was not thus activated. Overexpressed PEDF abrogates the inhibition of cell proliferation in DLBCL cells that is caused by METTL3 silence. In summary, the above-mentioned results demonstrated that the METTL3 promotes DLBCL progression by regulating the m6A level of PEDF.
Collapse
Affiliation(s)
- Yingying Cheng
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yuanyuan Fu
- Department of Hematology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Ying Wang
- Department of Hematology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Jinbi Wang
- Department of Hematology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| |
Collapse
|
9
|
Pigment epithelium-derived factor alleviates depressive-like behaviors in mice by modulating adult hippocampal synaptic growth and Wnt pathway. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109792. [PMID: 31676463 DOI: 10.1016/j.pnpbp.2019.109792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/13/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022]
Abstract
Pigment epithelium-derived factor (PEDF, also known as SERPINF1) is a secreted glycoprotein with neuroprotective effects. However, the potential role of PEDF in major depressive disorder (MDD) remains largely unknown. Here, applying two-dimensional gel electrophoresis (2-DE) proteomics, we found that PEDF levels were significantly decreased in the plasma of 12 first-episode treatment-naïve MDD patients (FETND) compared to the levels in 12 healthy controls (HCs). PEDF levels were especially lower in MDD patients than in HCs and patients with bipolar disorder (BD) and schizophrenia (SCZ), and elevated PEDF were consistent with decreased HAM-D scores in patients given antidepressant therapy (ADT). Animal research indicated that PEDF was decreased in the periphery and hippocampus of two well-known depression rodent models (the chronic unpredictable mild stress (CUMS) rat model and chronic social defeat stress (CSDS) mouse model). Decreased PEDF levels in the hippocampus led to depressive-like behaviors, synaptic impairments and aberrant Wnt signaling in C57BL mice, while increased PEDF resulted in the opposite results. Mechanistic studies indicated that PEDF contributes to dendritic growth and Wnt signaling activation in the hippocampus of adult mice. Taken together, the results of our study demonstrate the involvement of PEDF and its related mechanism in depression, thus providing translational evidence suggesting that PEDF may be a novel therapeutic target for depression.
Collapse
|
10
|
Yamagishi SI, Koga Y, Sotokawauchi A, Hashizume N, Fukahori S, Matsui T, Yagi M. Therapeutic Potential of Pigment Epithelium-derived Factor in Cancer. Curr Pharm Des 2020; 25:313-324. [PMID: 30892156 DOI: 10.2174/1381612825666190319112106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is one of the serine protease inhibitors with multifunctional properties, which is produced by various types of organs and tissues. There is an accumulating body of evidence that PEDF plays an important role in the maintenance of tissue homeostasis. Indeed, PEDF not only works as an endogenous inhibitor of angiogenesis, but also suppresses oxidative stress, inflammatory and thrombotic reactions in cell culture systems, animal models, and humans. Furthermore, we, along with others, have found that PEDF inhibits proliferation of, and induces apoptotic cell death in, numerous kinds of tumors. In addition, circulating as well as tumor expression levels of PEDF have been inversely associated with tumor growth and metastasis. These observations suggest that supplementation of PEDF proteins and/or enhancement of endogenous PEDF expression could be a novel therapeutic strategy for the treatment of cancer. Therefore, in this paper, we review the effects of PEDF on diverse types of cancer, and discuss its therapeutic perspectives.
Collapse
Affiliation(s)
- Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Yoshinori Koga
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan.,Department of Pediatric Surgery, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Ami Sotokawauchi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Naoki Hashizume
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Suguru Fukahori
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Minoru Yagi
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume 830-0011, Japan
| |
Collapse
|
11
|
Effects of a combinatorial treatment with gene and cell therapy on retinal ganglion cell survival and axonal outgrowth after optic nerve injury. Gene Ther 2019; 27:27-39. [PMID: 31243393 DOI: 10.1038/s41434-019-0089-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/26/2019] [Accepted: 06/10/2019] [Indexed: 11/08/2022]
Abstract
After an injury, axons in the central nervous system do not regenerate over large distances and permanently lose their connections to the brain. Two promising approaches to correct this condition are cell and gene therapies. In the present work, we evaluated the neuroprotective and neuroregenerative potential of pigment epithelium-derived factor (PEDF) gene therapy alone and combined with human mesenchymal stem cell (hMSC) therapy after optic nerve injury by analysis of retinal ganglion cell survival and axonal outgrowth. Overexpression of PEDF by intravitreal delivery of AAV2 vector significantly increased Tuj1-positive cells survival and modulated FGF-2, IL-1ß, Iba-1, and GFAP immunostaining in the ganglion cell layer (GCL) at 4 weeks after optic nerve crush, although it could not promote axonal outgrowth. The combination of AAV2.PEDF and hMSC therapy showed a higher number of Tuj1-positive cells and a pronounced axonal outgrowth than unimodal therapy after optic nerve crush. In summary, our results highlight a synergistic effect of combined gene and cell therapy relevant for future therapeutic interventions regarding optic nerve injury.
Collapse
|
12
|
Honrubia-Gómez P, López-Garrido MP, Gil-Gas C, Sánchez-Sánchez J, Alvarez-Simon C, Cuenca-Escalona J, Perez AF, Arias E, Moreno R, Sánchez-Sánchez F, Ramirez-Castillejo C. Pedf derived peptides affect colorectal cancer cell lines resistance and tumour re-growth capacity. Oncotarget 2019; 10:2973-2986. [PMID: 31105879 PMCID: PMC6508205 DOI: 10.18632/oncotarget.26085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
Relapse after chemotherapy treatment depends on the cancer initiating cells (CICs). PEDF (Pigmented Epithelium Derived Factor) is an anti-angiogenic, neurotrophic and self-renewal regulator molecule, also involved in CICs biology. Acute and chronic exposition of colon cancer cell lines to CT/CTE PEDF-derived peptides decreased drug-resistance to conventional colorectal cancer treatments, such as oxaliplatin or irinotecan. We confirmed a reduction in the irinotecan and oxaliplatin IC50 doses for all tested tumour cell lines. After xenograft transplantation, CT/CTE treatments also produced a reduction in resistance to conventional chemotherapy treatments as in culture-assays. Metastatic capacity of these treated cell lines was also depleted. The PEDF signaling pathway could be a future therapeutic tool for use as an adjuvant therapy that decreases IC50 dosis, adverse effects and treatment costs. This pathway could also be involved in an increase of the time relapse in patients, decreased tumourigenicity, and decreased capacity to produce metastasis.
Collapse
Affiliation(s)
| | - María-Pilar López-Garrido
- Genética Médica, Departamento de Ciencia y Tecnología Agroforestal y Genética, IDINE, UCLM, Albacete, Spain
| | - Carmen Gil-Gas
- Stem Cell Laboratory, Departamento Ciencias Médicas, CRIB, UCLM, Albacete, Spain
| | | | - Carmen Alvarez-Simon
- Stem Cell Laboratory, Departamento Ciencias Médicas, CRIB, UCLM, Albacete, Spain
| | - Jorge Cuenca-Escalona
- Cancer Stem Cell Laboratory, HST Group, Biotechnology and V Biology Department, ETSIAAB, UPM, Madrid, Spain
| | - Ana Ferrer Perez
- Current address: Oncology Division, Hospital Obispo Polanco, Teruel, Spain
| | - Enrique Arias
- Departamento de Sistemas Informáticos, UCLM, Albacete, Spain
| | | | - Francisco Sánchez-Sánchez
- Genética Médica, Departamento de Ciencia y Tecnología Agroforestal y Genética, IDINE, UCLM, Albacete, Spain
| | - Carmen Ramirez-Castillejo
- Stem Cell Laboratory, Departamento Ciencias Médicas, CRIB, UCLM, Albacete, Spain.,Cancer Stem Cell Laboratory, HST Group, Biotechnology and V Biology Department, ETSIAAB, UPM, Madrid, Spain
| |
Collapse
|
13
|
Li Z, Chen S, Chen S, Huang D, Ma K, Shao Z. Moderate activation of Wnt/β‐catenin signaling promotes the survival of rat nucleus pulposus cells via regulating apoptosis, autophagy, and senescence. J Cell Biochem 2019; 120:12519-12533. [PMID: 31016779 DOI: 10.1002/jcb.28518] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/30/2018] [Accepted: 01/09/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Zhiliang Li
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Songfeng Chen
- Department of Orthopaedics The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Sheng Chen
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Donghua Huang
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Kaige Ma
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Zengwu Shao
- Department of Orthopaedics Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
14
|
Wilkes JG, Alexander MS, Cullen JJ. Superoxide Dismutases in Pancreatic Cancer. Antioxidants (Basel) 2017; 6:antiox6030066. [PMID: 28825637 PMCID: PMC5618094 DOI: 10.3390/antiox6030066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/10/2017] [Accepted: 08/15/2017] [Indexed: 01/17/2023] Open
Abstract
The incidence of pancreatic cancer is increasing as the population ages but treatment advancements continue to lag far behind. The majority of pancreatic cancer patients have a K-ras oncogene mutation causing a shift in the redox state of the cell, favoring malignant proliferation. This mutation is believed to lead to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and superoxide overproduction, generating tumorigenic behavior. Superoxide dismutases (SODs) have been studied for their ability to manage the oxidative state of the cell by dismuting superoxide and inhibiting signals for pancreatic cancer growth. In particular, manganese superoxide dismutase has clearly shown importance in cell cycle regulation and has been found to be abnormally low in pancreatic cancer cells as well as the surrounding stromal tissue. Likewise, extracellular superoxide dismutase expression seems to favor suppression of pancreatic cancer growth. With an increased understanding of the redox behavior of pancreatic cancer and key regulators, new treatments are being developed with specific targets in mind. This review summarizes what is known about superoxide dismutases in pancreatic cancer and the most current treatment strategies to be advanced from this knowledge.
Collapse
Affiliation(s)
- Justin G. Wilkes
- Departments of Surgery and Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52245, USA; (J.G.W.); (M.S.A.)
| | - Matthew S. Alexander
- Departments of Surgery and Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52245, USA; (J.G.W.); (M.S.A.)
| | - Joseph J. Cullen
- Departments of Surgery and Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52245, USA; (J.G.W.); (M.S.A.)
- Veterans Affairs Medical Center, Iowa City, IA 52245, USA
- Correspondence: ; Tel.: +1-319-353-8297; Fax: +1-319-356-8378
| |
Collapse
|