1
|
Yang S, Duan Z, Zhang S, Fan C, Zhu C, Fu R, Ma X, Fan D. Ginsenoside Rh4 Improves Hepatic Lipid Metabolism and Inflammation in a Model of NAFLD by Targeting the Gut Liver Axis and Modulating the FXR Signaling Pathway. Foods 2023; 12:2492. [PMID: 37444230 DOI: 10.3390/foods12132492] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a series of disorders of liver metabolism caused by the accumulation of lipids in the liver, which is considered the main cause of hepatocellular carcinoma. Our previous study demonstrated the promising efficacy of ginsenoside Rh4 in improving the intestinal tract and its related metabolites. Meanwhile, many studies in the literature have investigated the gut microbiota and its metabolites, such as bile acids (BAs) and short-chain fatty acids (SCFAs), which play a key role in the pathogenesis of NAFLD. Therefore, this study focused on whether Rh4 could achieve therapeutic effects on NAFLD through the gut-liver axis. The results showed that Rh4 exhibited sound therapeutic effects on the NAFLD model induced by the Western diet and CCl4 in mice. In the liver, the degrees of hepatic steatosis, lobular inflammation levels, and bile acid in the liver tissue were improved after Rh4 treatment. At the same time, Rh4 treatment significantly increased the levels of intestinal SCFAs and BAs, and these changes were accompanied by the complementary diversity and composition of intestinal flora. In addition, correlation analysis showed that Rh4 affected the expression of proteins involved in the farnesoid X receptor (FXR) signaling pathway in the liver and intestine, which modulates hepatic lipid metabolism, inflammation, and proteins related to bile acid regulation. In conclusion, our study provides a valuable insight into how Rh4 targets the gut-liver axis for the development of NAFLD, which indicates that Rh4 may be a promising candidate for the clinical therapy of NAFLD.
Collapse
Affiliation(s)
- Siming Yang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotechnology & Biomed, Research Institute, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotechnology & Biomed, Research Institute, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Sen Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotechnology & Biomed, Research Institute, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Cuiying Fan
- Xi'an Giant Biogene Technology Co., Ltd., No. 20, Zone C, Venture R&D Park, No. 69, Jinye Road, High-tech Zone, Xi'an 710077, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotechnology & Biomed, Research Institute, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotechnology & Biomed, Research Institute, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotechnology & Biomed, Research Institute, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotechnology & Biomed, Research Institute, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| |
Collapse
|
2
|
Luo L, Chang Y, Sheng L. Gut-liver axis in the progression of nonalcoholic fatty liver disease: From the microbial derivatives-centered perspective. Life Sci 2023; 321:121614. [PMID: 36965522 DOI: 10.1016/j.lfs.2023.121614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the world's most common chronic liver diseases. However, its pathogenesis remains unclear. With the deepening of research, NAFLD is considered a metabolic syndrome associated with the environment, heredity, and metabolic disorders. Recently, the close relationship between the intestinal microbiome and NAFLD has been discovered, and the theory of the "gut-liver axis" has been proposed. In short, the gut bacteria directly reach the liver via the portal vein through the damaged intestinal wall or indirectly participate in the development of NAFLD through signaling pathways mediated by their components and metabolites. This review focuses on the roles of microbiota-derived lipopolysaccharide, DNA, peptidoglycan, bile acids, short-chain fatty acids, endogenous ethanol, choline and its metabolites, indole and its derivatives, and bilirubin and its metabolites in the progression of NAFLD, which may provide significative insights into the pathogenesis, diagnosis, and treatment for this highly prevalent liver disease.
Collapse
Affiliation(s)
- Lijun Luo
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Yongchun Chang
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Li Sheng
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
3
|
Hartmann P, Duan Y, Miyamoto Y, Demir M, Lang S, Hasa E, Stern P, Yamashita D, Conrad M, Eckmann L, Schnabl B. Colesevelam ameliorates non-alcoholic steatohepatitis and obesity in mice. Hepatol Int 2022; 16:359-370. [PMID: 35075592 PMCID: PMC9013343 DOI: 10.1007/s12072-022-10296-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Obesity, non-alcoholic fatty liver disease (NAFLD) and its more advanced form non-alcoholic steatohepatitis (NASH) are important causes of morbidity and mortality worldwide. Bile acid dysregulation is a pivotal part in their pathogenesis. The aim of this study was to evaluate the bile acid sequestrant colesevelam in a microbiome-humanized mouse model of diet-induced obesity and steatohepatitis. METHODS Germ-free C57BL/6 mice were associated with stool from patients with NASH and subjected to 20 weeks of Western diet feeding with and without colesevelam. RESULTS Colesevelam reduced Western diet-induced body and liver weight gain in microbiome-humanized mice compared with controls. It ameliorated Western diet-induced hepatic inflammation, steatosis, fibrosis and insulin resistance. Colesevelam increased de novo bile acid synthesis and decreased hepatic cholesterol content in microbiome-humanized mice fed a Western diet. It further induced the gene expression of the antimicrobials Reg3g and Reg3b in the distal small intestine and decreased plasma levels of LPS. CONCLUSIONS Colesevelam ameliorates Western diet-induced steatohepatitis and obesity in microbiome-humanized mice.
Collapse
Affiliation(s)
- Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yi Duan
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yukiko Miyamoto
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, Berlin, Germany
| | - Sonja Lang
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Elda Hasa
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | | | | | | | - Lars Eckmann
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
4
|
Song Y, Liu J, Zhao K, Gao L, Zhao J. Cholesterol-induced toxicity: An integrated view of the role of cholesterol in multiple diseases. Cell Metab 2021; 33:1911-1925. [PMID: 34562355 DOI: 10.1016/j.cmet.2021.09.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
High levels of cholesterol are generally considered to be associated with atherosclerosis. In the past two decades, however, a number of studies have shown that excess cholesterol accumulation in various tissues and organs plays a critical role in the pathogenesis of multiple diseases. Here, we summarize the effects of excess cholesterol on disease pathogenesis, including liver diseases, diabetes, chronic kidney disease, Alzheimer's disease, osteoporosis, osteoarthritis, pituitary-thyroid axis dysfunction, immune disorders, and COVID-19, while proposing that excess cholesterol-induced toxicity is ubiquitous. We believe this concept will help broaden the appreciation of the toxic effect of excess cholesterol, and thus potentially expand the therapeutic use of cholesterol-lowering medications.
Collapse
Affiliation(s)
- Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Junjun Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Ke Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China.
| |
Collapse
|
5
|
Non-alcoholic fatty liver disease: a metabolic burden promoting atherosclerosis. Clin Sci (Lond) 2021; 134:1775-1799. [PMID: 32677680 DOI: 10.1042/cs20200446] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/06/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the fastest growing chronic liver disease, with a prevalence of up to 25% worldwide. Individuals with NAFLD have a high risk of disease progression to cirrhosis, hepatocellular carcinoma (HCC), and liver failure. With the exception of intrahepatic burden, cardiovascular disease (CVD) and especially atherosclerosis (AS) are common complications of NAFLD. Furthermore, CVD is a major cause of death in NAFLD patients. Additionally, AS is a metabolic disorder highly associated with NAFLD, and individual NAFLD pathologies can greatly increase the risk of AS. It is increasingly clear that AS-associated endothelial cell damage, inflammatory cell activation, and smooth muscle cell proliferation are extensively impacted by NAFLD-induced systematic dyslipidemia, inflammation, oxidative stress, the production of hepatokines, and coagulations. In clinical trials, drug candidates for NAFLD management have displayed promising effects for the treatment of AS. In this review, we summarize the key molecular events and cellular factors contributing to the metabolic burden induced by NAFLD on AS, and discuss therapeutic strategies for the improvement of AS in individuals with NAFLD.
Collapse
|
6
|
Xia C, Zhang X, Cao T, Wang J, Li C, Yue L, Niu K, Shen Y, Ma G, Chen F. Hepatic Transcriptome Analysis Revealing the Molecular Pathogenesis of Type 2 Diabetes Mellitus in Zucker Diabetic Fatty Rats. Front Endocrinol (Lausanne) 2020; 11:565858. [PMID: 33329383 PMCID: PMC7732450 DOI: 10.3389/fendo.2020.565858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/22/2020] [Indexed: 01/22/2023] Open
Abstract
Around 9% of the adult population in the world (463 million) suffer from diabetes mellitus. Most of them (~90%) belong to type 2 diabetes mellitus (T2DM), which is a common chronic metabolic disorder, and the number of cases has been reported to increase each year. Zucker diabetic fatty (ZDF) rat provides a successful animal model to study the pathogenesis of T2DM. Although previous hepatic transcriptome studies revealed some novel genes associated with the occurrence and development of T2DM, there still lacks the comprehensive transcriptomic analysis for the liver tissues of ZDF rats. We performed comparative transcriptome analyses between the liver tissues of ZDF rats and healthy ZCL rats and also evaluated several clinical indices. We could identify 214 and 104 differentially expressed genes (DEGs) and lncRNAs in ZDF rats, respectively. Pathway and biofunction analyses showed a synergistic effect between mRNAs and lncRNAs. By comprehensively analyzing transcriptomic data and clinical indices, we detected some typical features of T2DM in ZDF rats, such as upregulated metabolism (significant increased lipid absorption/transport/utilization, gluconeogenesis, and protein hydrolysis), increased inflammation, liver injury and increased endoplasmic reticulum (ER) stress. In addition, of the 214 DEGs, 114 were known and 100 were putative T2DM-related genes, most of which have been associated with substance metabolism (particularly degradation), inflammation, liver injury and ER stress biofunctions. Our study provides an important reference and improves understanding of molecular pathogenesis of obesity-associated T2DM. Our data can also be used to identify potential diagnostic markers and therapeutic targets, which should strengthen the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Chengdong Xia
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuli Zhang
- China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianshu Cao
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jiannong Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cuidan Li
- China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Liya Yue
- China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Kaifeng Niu
- China National Center for Bioinformation, Beijing, China
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yicheng Shen
- China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guannan Ma
- China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fei Chen
- China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Chopyk DM, Grakoui A. Contribution of the Intestinal Microbiome and Gut Barrier to Hepatic Disorders. Gastroenterology 2020; 159:849-863. [PMID: 32569766 PMCID: PMC7502510 DOI: 10.1053/j.gastro.2020.04.077] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Intestinal barrier dysfunction and dysbiosis contribute to development of diseases in liver and other organs. Physical, immunologic, and microbiologic (bacterial, fungal, archaeal, viral, and protozoal) features of the intestine separate its nearly 100 trillion microbes from the rest of the human body. Failure of any aspect of this barrier can result in translocation of microbes into the blood and sustained inflammatory response that promote liver injury, fibrosis, cirrhosis, and oncogenic transformation. Alterations in intestinal microbial populations or their functions can also affect health. We review the mechanisms that regulate intestinal permeability and how changes in the intestinal microbiome contribute to development of acute and chronic liver diseases. We discuss individual components of the intestinal barrier and how these are disrupted during development of different liver diseases. Learning more about these processes will increase our understanding of the interactions among the liver, intestine, and its flora.
Collapse
Affiliation(s)
- Daniel M. Chopyk
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA
| | - Arash Grakoui
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
8
|
Bile Acid Sequestrant, Sevelamer Ameliorates Hepatic Fibrosis with Reduced Overload of Endogenous Lipopolysaccharide in Experimental Nonalcoholic Steatohepatitis. Microorganisms 2020; 8:microorganisms8060925. [PMID: 32575352 PMCID: PMC7357162 DOI: 10.3390/microorganisms8060925] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the use of various pharmacotherapeutic strategies, fibrosis due to nonalcoholic steatohepatitis (NASH) remains an unsatisfied clinical issue. We investigated the effect of sevelamer, a hydrophilic bile acid sequestrant, on hepatic fibrosis in a murine NASH model. Male C57BL/6J mice were fed a choline-deficient, L-amino acid-defined, high-fat (CDHF) diet for 12 weeks with or without orally administered sevelamer hydrochloride (2% per diet weight). Histological and biochemical analyses revealed that sevelamer prevented hepatic steatosis, macrophage infiltration, and pericellular fibrosis in CDHF-fed mice. Sevelamer reduced the portal levels of total bile acid and inhibited both hepatic and intestinal farnesoid X receptor activation. Gut microbiome analysis demonstrated that sevelamer improved a lower α-diversity and prevented decreases in Lactobacillaceae and Clostridiaceae as well as increases in Desulfovibrionaceae and Enterobacteriaceae in the CDHF-fed mice. Additionally, sevelamer bound to lipopolysaccharide (LPS) in the intestinal lumen and promoted its fecal excretion. Consequently, the sevelamer treatment restored the tight intestinal junction proteins and reduced the portal LPS levels, leading to the suppression of hepatic toll-like receptor 4 signaling pathway. Furthermore, sevelamer inhibited the LPS-mediated induction of fibrogenic activity in human hepatic stellate cells in vitro. Collectively, sevelamer inhibited the development of murine steatohepatitis by reducing hepatic LPS overload.
Collapse
|
9
|
Hovland A, Retterstøl K, Mollnes TE, Halvorsen B, Aukrust P, Lappegård KT. Anti-inflammatory effects of non-statin low-density lipoprotein cholesterol-lowering drugs: an unused potential? SCAND CARDIOVASC J 2020; 54:274-279. [PMID: 32500743 DOI: 10.1080/14017431.2020.1775878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objectives. Inflammatory responses are closely knit with low-density lipoprotein (LDL)-cholesterol in driving atherosclerosis. Even if LDL-cholesterol is causative to atherosclerotic diseases and LDL-cholesterol lowering reduces hard clinical endpoints, there is a residual risk for clinical events, possibly driven by inflammatory processes, in accordance with its role in autoimmune diseases. Design. As LDL-cholesterol treatment targets are reduced, the use of non-statin lipid-lowering drugs will probably increase. Atherosclerotic plaques evolve through lipid infiltration and modification in the intima, furthermore infiltration of cells including monocytes, macrophages, T-lymphocytes and neutrophils initiating inflammatory signaling. Here we briefly review inflammation in atherosclerosis and the effects of the non-statin lipid-lowering drugs on inflammation. The review is limited to the most common non-statin lipid lowering drugs, i.e. proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors, bile acid sequestrants (BAS) and cholesterol absorption inhibitors. Results. PCSK9 inhibition is mostly studied together with statins and is associated with a reduction of pro-inflammatory cytokines. Furthermore, PCSK9 inhibitors seem to have an effect on monocyte migration trough CCR2. They also have an interaction with sirtuins, possibly offering a therapeutic target. BAS have several interesting effects on inflammation, including reduction of pro-inflammatory cytokines and a reduction of the number of infiltrating macrophages, however there are relatively few reports considering that these drugs have been on the market for decades. Ezetimibe also has effects on inflammation including reduction of pro-inflammatory cytokines and adhesion molecules, however these effects are usually accomplished in tandem with statins. Conclusion. This topic adds an interesting piece to the puzzle of atherosclerosis, indicating that PCSK9 inhibition, BAS and ezetimibe all affect thromboinflammation.
Collapse
Affiliation(s)
- Anders Hovland
- Coronary Care Unit, Division of Internal Medicine, Nordland Hospital, Bodø, Norway.,Department of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Kjetil Retterstøl
- The Lipid Clinic, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Nutrition, University of Oslo, Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Clinical Medicine, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Institute of Immunology, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Knut Tore Lappegård
- Coronary Care Unit, Division of Internal Medicine, Nordland Hospital, Bodø, Norway.,Department of Clinical Medicine, University of Tromsø, Tromsø, Norway
| |
Collapse
|
10
|
Gupta B, Liu Y, Chopyk DM, Rai RP, Desai C, Kumar P, Farris AB, Nusrat A, Parkos CA, Anania FA, Raeman R. Western diet-induced increase in colonic bile acids compromises epithelial barrier in nonalcoholic steatohepatitis. FASEB J 2020; 34:7089-7102. [PMID: 32275114 DOI: 10.1096/fj.201902687r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/24/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022]
Abstract
There is compelling evidence implicating intestinal permeability in the pathogenesis of nonalcoholic steatohepatitis (NASH), but the underlying mechanisms remain poorly understood. Here we examined the role of bile acids (BA) in western diet (WD)-induced loss of colonic epithelial barrier (CEB) function in mice with a genetic impairment in intestinal epithelial barrier function, junctional adhesion molecule A knockout mice, F11r-/- . WD-fed knockout mice developed severe NASH, which was associated with increased BA concentration in the cecum and loss of CEB function. Analysis of cecal BA composition revealed selective increases in primary unconjugated BAs in the WD-fed mice, which correlated with increased abundance of microbial taxa linked to BA metabolism. In vitro permeability assays revealed that chenodeoxycholic acid (CDCA), which was elevated in the cecum of WD-fed mice, increased paracellular permeability, while the BA-binding resin sevelamer hydrochloride protected against CDCA-induced loss of barrier function. Sequestration of intestinal BAs by in vivo delivery of sevelamer to WD-fed knockout mice attenuated colonic mucosal inflammation and improved CEB. Sevelamer also reduced hepatic inflammation and fibrosis, and improved metabolic derangements associated with NASH. Collectively, these findings highlight a hitherto unappreciated role for BAs in WD-induced impairment of the intestinal epithelial barrier in NASH.
Collapse
Affiliation(s)
- Biki Gupta
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yunshan Liu
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Daniel M Chopyk
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Ravi P Rai
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chirayu Desai
- Department of Microbiology and Immunology, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Gujarat, India
| | - Pradeep Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Alton B Farris
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Frank A Anania
- Division of Gastroenterology and Inborn Error Products, Food and Drug Administration, Silver Spring, MD, USA
| | - Reben Raeman
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Takahashi S, Luo Y, Ranjit S, Xie C, Libby AE, Orlicky DJ, Dvornikov A, Wang XX, Myakala K, Jones BA, Bhasin K, Wang D, McManaman JL, Krausz KW, Gratton E, Ir D, Robertson CE, Frank DN, Gonzalez FJ, Levi M. Bile acid sequestration reverses liver injury and prevents progression of nonalcoholic steatohepatitis in Western diet-fed mice. J Biol Chem 2020; 295:4733-4747. [PMID: 32075905 DOI: 10.1074/jbc.ra119.011913] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease is a rapidly rising problem in the 21st century and is a leading cause of chronic liver disease that can lead to end-stage liver diseases, including cirrhosis and hepatocellular cancer. Despite this rising epidemic, no pharmacological treatment has yet been established to treat this disease. The rapidly increasing prevalence of nonalcoholic fatty liver disease and its aggressive form, nonalcoholic steatohepatitis (NASH), requires novel therapeutic approaches to prevent disease progression. Alterations in microbiome dynamics and dysbiosis play an important role in liver disease and may represent targetable pathways to treat liver disorders. Improving microbiome properties or restoring normal bile acid metabolism may prevent or slow the progression of liver diseases such as NASH. Importantly, aberrant systemic circulation of bile acids can greatly disrupt metabolic homeostasis. Bile acid sequestrants are orally administered polymers that bind bile acids in the intestine, forming nonabsorbable complexes. Bile acid sequestrants interrupt intestinal reabsorption of bile acids, decreasing their circulating levels. We determined that treatment with the bile acid sequestrant sevelamer reversed the liver injury and prevented the progression of NASH, including steatosis, inflammation, and fibrosis in a Western diet-induced NASH mouse model. Metabolomics and microbiome analysis revealed that this beneficial effect is associated with changes in the microbiota population and bile acid composition, including reversing microbiota complexity in cecum by increasing Lactobacillus and decreased Desulfovibrio The net effect of these changes was improvement in liver function and markers of liver injury and the positive effects of reversal of insulin resistance.
Collapse
Affiliation(s)
- Shogo Takahashi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, D.C., 20057.,National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Yuhuan Luo
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, D.C., 20057.,Department of Biomedical Engineering, Laboratory for Fluorescence Dynamics, University of California at Irvine, Irvine, California 92697
| | - Cen Xie
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrew E Libby
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, D.C., 20057
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Alexander Dvornikov
- Department of Biomedical Engineering, Laboratory for Fluorescence Dynamics, University of California at Irvine, Irvine, California 92697
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, D.C., 20057
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, D.C., 20057
| | - Bryce A Jones
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, D.C., 20057.,Department of Pharmacology and Physiology, Georgetown University, Washington, D.C., 20057
| | - Kanchan Bhasin
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, D.C., 20057
| | - Dong Wang
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - James L McManaman
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045.,Graduate Program in Integrated Physiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Kristopher W Krausz
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Enrico Gratton
- Department of Biomedical Engineering, Laboratory for Fluorescence Dynamics, University of California at Irvine, Irvine, California 92697
| | - Diana Ir
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Charles E Robertson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Daniel N Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Frank J Gonzalez
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, D.C., 20057
| |
Collapse
|
12
|
The nuclear receptor FXR inhibits Glucagon-Like Peptide-1 secretion in response to microbiota-derived Short-Chain Fatty Acids. Sci Rep 2020; 10:174. [PMID: 31932631 PMCID: PMC6957696 DOI: 10.1038/s41598-019-56743-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/16/2019] [Indexed: 02/08/2023] Open
Abstract
The gut microbiota participates in the control of energy homeostasis partly through fermentation of dietary fibers hence producing short-chain fatty acids (SCFAs), which in turn promote the secretion of the incretin Glucagon-Like Peptide-1 (GLP-1) by binding to the SCFA receptors FFAR2 and FFAR3 on enteroendocrine L-cells. We have previously shown that activation of the nuclear Farnesoid X Receptor (FXR) decreases the L-cell response to glucose. Here, we investigated whether FXR also regulates the SCFA-induced GLP-1 secretion. GLP-1 secretion in response to SCFAs was evaluated ex vivo in murine colonic biopsies and in colonoids of wild-type (WT) and FXR knock-out (KO) mice, in vitro in GLUTag and NCI-H716 L-cells activated with the synthetic FXR agonist GW4064 and in vivo in WT and FXR KO mice after prebiotic supplementation. SCFA-induced GLP-1 secretion was blunted in colonic biopsies from GW4064-treated mice and enhanced in FXR KO colonoids. In vitro FXR activation inhibited GLP-1 secretion in response to SCFAs and FFAR2 synthetic ligands, mainly by decreasing FFAR2 expression and downstream Gαq-signaling. FXR KO mice displayed elevated colonic FFAR2 mRNA levels and increased plasma GLP-1 levels upon local supply of SCFAs with prebiotic supplementation. Our results demonstrate that FXR activation decreases L-cell GLP-1 secretion in response to inulin-derived SCFA by reducing FFAR2 expression and signaling. Inactivation of intestinal FXR using bile acid sequestrants or synthetic antagonists in combination with prebiotic supplementation may be a promising therapeutic approach to boost the incretin axis in type 2 diabetes.
Collapse
|
13
|
Biruete A, Hill Gallant KM, Lindemann SR, Wiese GN, Chen NX, Moe SM. Phosphate Binders and Nonphosphate Effects in the Gastrointestinal Tract. J Ren Nutr 2020; 30:4-10. [PMID: 30846238 PMCID: PMC6722023 DOI: 10.1053/j.jrn.2019.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/03/2018] [Accepted: 01/13/2019] [Indexed: 12/21/2022] Open
Abstract
Phosphate binders are commonly prescribed in patients with end-stage kidney disease to prevent and treat hyperphosphatemia. These binders are usually associated with gastrointestinal distress, may bind molecules other than phosphate, and may alter the gut microbiota, altogether having systemic effects unrelated to phosphate control. Sevelamer is the most studied of the available binders for nonphosphate-related effects including binding to bile acids, endotoxins, gut microbiota-derived metabolites, and advanced glycation end products. Other binders (calcium- and noncalcium-based binders) may bind vitamins, such as vitamin K and folic acid. Moreover, the relatively new iron-based phosphate binders may alter the gut microbiota, as some of the iron or organic ligands may be used by the gastrointestinal bacteria. The objective of this narrative review is to provide the current evidence for the nonphosphate effects of phosphate binders on gastrointestinal function, nutrient and molecule binding, and the gut microbiome.
Collapse
Affiliation(s)
- Annabel Biruete
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kathleen M Hill Gallant
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Nutrition Science, Purdue University, West Lafayette, Indiana
| | - Stephen R Lindemann
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Department of Food Science, Purdue University, West Lafayette, Indiana
| | - Gretchen N Wiese
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana
| | - Neal X Chen
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sharon M Moe
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana.
| |
Collapse
|
14
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019; 10:21-56. [PMID: 31853951 PMCID: PMC7171925 DOI: 10.1002/cphy.c190007] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal reclamation of bile acids is crucial for the maintenance of their enterohepatic circulation. The majority of bile acids are actively absorbed via specific transport proteins that are highly expressed in the distal ileum. The uptake of bile acids by intestinal epithelial cells modulates the activation of cytosolic and membrane receptors such as the farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1), which has a profound effect on hepatic synthesis of bile acids as well as glucose and lipid metabolism. Extensive research has focused on delineating the processes of bile acid absorption and determining the contribution of dysregulated ileal signaling in the development of intestinal and hepatic disorders. For example, a decrease in the levels of the bile acid-induced ileal hormone FGF15/19 is implicated in bile acid-induced diarrhea (BAD). Conversely, the increase in bile acid absorption with subsequent overload of bile acids could be involved in the pathophysiology of liver and metabolic disorders such as fatty liver diseases and type 2 diabetes mellitus. This review article will attempt to provide a comprehensive overview of the mechanisms involved in the intestinal handling of bile acids, the pathological implications of disrupted intestinal bile acid homeostasis, and the potential therapeutic targets for the treatment of bile acid-related disorders. Published 2020. Compr Physiol 10:21-56, 2020.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
15
|
Chen J, Zheng M, Liu J, Luo Y, Yang W, Yang J, Liu J, Zhou J, Xu C, Zhao F, Su M, Zang S, Shi J. Ratio of Conjugated Chenodeoxycholic to Muricholic Acids is Associated with Severity of Nonalcoholic Steatohepatitis. Obesity (Silver Spring) 2019; 27:2055-2066. [PMID: 31657148 DOI: 10.1002/oby.22627] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Bile acids (BAs) are important molecules in the progression of nonalcoholic fatty liver disease. This study aimed to investigate BA profile alterations in Chinese nonalcoholic steatohepatitis (NASH) patients. METHODS BA profiles in serum and liver tissues were determined by ultraperformance liquid chromatography coupled to tandem mass spectrometry in patients from two different clinical centers. RESULTS A total of 134 participants were enrolled in this study to serve as the training (n = 87) and validation (n = 47) cohorts. The ratio of circulating conjugated chenodeoxycholic acids to muricholic acids (P = 0.001) was elevated from healthy controls to non-NASH individuals to NASH individuals in a stepwise manner in the training cohort and was positively associated with the histological severity of NASH: steatosis (R2 = 0.12), lobular inflammation (R2 = 0.12), ballooning (R2 = 0.11), and fibrosis stage (R2 = 0.18). The ratio was elevated in the validation cohort of NASH patients (P < 0.001), and it was able to predict NASH (area under the receiver operating characteristic curve: 75%) and significant fibrosis (area under the receiver operating characteristic curve: 71%) in these two cohorts. Moreover, this elevated ratio and impaired farnesoid X receptor signaling were found in the NASH liver. CONCLUSIONS Altered BA profile in NASH is closely associated with the severity of liver lesions, and it has the potential for predicting NASH development.
Collapse
Affiliation(s)
- Jin Chen
- Department of Gastroenterology, First People's Hospital of Yancheng City, Yancheng, Jiangsu, China
| | - Minghua Zheng
- Department of Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Liu
- Department of Endocrinology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yan Luo
- Department of Transformation Medical platform, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Wenjun Yang
- Department of Pathology, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Jing Yang
- Department of Transformation Medical platform, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Juan Liu
- Department of Pathology, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Jingxing Zhou
- Department of Statistics, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Chengfu Xu
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Faling Zhao
- Department of Statistics, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mingming Su
- Metabo-profile Biotechnology, Shanghai, China
| | - Shufei Zang
- Department of Endocrinology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Junping Shi
- Department of Liver Diseases, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | | |
Collapse
|
16
|
Chen YC, Chen HJ, Huang BM, Chen YC, Chang CF. Polyphenol-Rich Extracts from Toona sinensis Bark and Fruit Ameliorate Free Fatty Acid-Induced Lipogenesis through AMPK and LC3 Pathways. J Clin Med 2019; 8:E1664. [PMID: 31614650 PMCID: PMC6832244 DOI: 10.3390/jcm8101664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 01/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease found worldwide. The present study aimed to evaluate the mechanisms of inhibiting lipid accumulation in free fatty acid (FFA)-treated HepG2 cells caused by bark and fruit extracts of Toona sinensis (TSB and TSF). FFA induced lipid and triglyceride (TG) accumulation, which was attenuated by TSB and TSF. TSB and/or TSF promoted phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-coA carboxylase and peroxisome proliferator-activated receptor alpha upregulation. Furthermore, TSB and TSF suppressed FFA-induced liver X receptor, sterol regulatory element-binding transcription protein 1, fatty acid synthase, and stearoyl-CoA desaturase 1 protein expression. Moreover, TSB and/or TSF induced phosphorylation of Unc-51 like autophagy-activating kinase and microtubule-associated protein 1A/1B-light chain 3 expressions. Therefore, TSB and TSF relieve lipid accumulation by attenuating lipogenic protein expression, activating the AMPK pathway, and upregulating the autophagic flux to enhance lipid metabolism. Moreover, TSB and TSF reduced TG contents, implying the therapeutic use of TSB and TSF in NAFLD.
Collapse
Affiliation(s)
- Yung-Chia Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsin-Ju Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Bu-Miin Huang
- Department of Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Yu-Chi Chen
- Department of Urology, E-Da Hospital, Kaohsiung 82445, Taiwan.
- Department of Urology, E-Da Cancer Hospital, Kaohsiung 40402, Taiwan.
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40401, Taiwan.
| |
Collapse
|
17
|
Chen J, Liang B, Bian D, Luo Y, Yang J, Li Z, Zhuang Z, Zang S, Shi J. Knockout of neutrophil elastase protects against western diet induced nonalcoholic steatohepatitis in mice by regulating hepatic ceramides metabolism. Biochem Biophys Res Commun 2019; 518:691-697. [PMID: 31472960 DOI: 10.1016/j.bbrc.2019.08.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
|
18
|
Abstract
Bile acids have important roles in the regulation of lipid, glucose and energy metabolism. Metabolic diseases linked to obesity, including type 2 diabetes mellitus and non-alcoholic fatty liver disease, are associated with dysregulation of bile acid homeostasis. Here, the basic chemistry and regulation of bile acids as well as their metabolic effects will be reviewed. Changes in circulating bile acids associated with obesity and related diseases will be reviewed. Finally, pharmaceutical manipulation of bile acid homeostasis as therapy for metabolic diseases will be outlined.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Stephen R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| |
Collapse
|
19
|
Orlicky DJ, Libby AE, Bales ES, McMahan RH, Monks J, La Rosa FG, McManaman JL. Perilipin-2 promotes obesity and progressive fatty liver disease in mice through mechanistically distinct hepatocyte and extra-hepatocyte actions. J Physiol 2019; 597:1565-1584. [PMID: 30536914 PMCID: PMC6418763 DOI: 10.1113/jp277140] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Wild-type mice and mice with hepatocyte-specific or whole-body deletions of perilipin-2 (Plin2) were used to define hepatocyte and extra-hepatocyte effects of altered cellular lipid storage on obesity and non-alcoholic fatty liver disease (NAFLD) pathophysiology in a Western-diet (WD) model of these disorders. Extra-hepatocyte actions of Plin2 are responsible for obesity, adipose inflammation and glucose clearance abnormalities in WD-fed mice. Hepatocyte and extra-hepatic actions of Plin2 mediate fatty liver formation in WD-fed mice through distinct mechanisms. Hepatocyte-specific actions of Plin2 are primary mediators of immune cell infiltration and fibrotic injury in livers of obese mice. ABSTRACT Non-alcoholic fatty liver disease (NAFLD) is an obesity- and insulin resistance-related metabolic disorder with progressive pathology. Perilipin-2 (Plin2), a ubiquitously expressed cytoplasmic lipid droplet scaffolding protein, is hypothesized to contribute to NAFLD in humans and rodent models through effects on cellular lipid metabolism. In this study, we delineate hepatocyte-specific and extra-hepatocyte Plin2 mechanisms regulating the effects of obesity and insulin resistance on NAFLD pathophysiology in mice fed an obesogenic Western-style diet (WD). Total Plin2 deletion (Plin2-Null) fully protected WD-fed mice from obesity, insulin resistance, adipose inflammation, steatohepatitis (NASH) and liver fibrosis found in WT animals. Hepatocyte-specific Plin2 deletion (Plin2-HepKO) largely protected against NASH and fibrosis and partially protected against steatosis in WD-fed animals, but it did not protect against obesity, insulin resistance, or adipose inflammation. Significantly, total or hepatocyte-specific Plin2 deletion impaired WD-induced monocyte recruitment and pro-inflammatory macrophage polarization found in livers of WT mice. Analyses of the molecular and cellular processes mediating steatosis, inflammation and fibrosis identified differences in total and hepatocyte-specific actions of Plin2 on the mechanisms promoting NAFLD pathophysiology. Our results demonstrate that hepatocyte-specific actions of Plin2 are central to the initiation and pathological progression of NAFLD in obese and insulin-resistant mice through effects on immune cell recruitment and fibrogenesis. Conversely, extra-hepatocyte Plin2 actions promote NAFLD pathophysiology through effects on obesity, inflammation and insulin resistance. Our findings provide new insight into hepatocyte and extra-hepatocyte mechanisms underlying NAFLD development and progression.
Collapse
Affiliation(s)
- David J. Orlicky
- Department of PathologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Andrew E. Libby
- Graduate Program in Integrated PhysiologyUniversity of Colorado School of MedicineAuroraCOUSA
- Division of Reproductive SciencesUniversity of Colorado School of MedicineAuroraCOUSA
| | - Elise S. Bales
- Division of Reproductive SciencesUniversity of Colorado School of MedicineAuroraCOUSA
| | - Rachel H. McMahan
- Division of Gastroenterology and HepatologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Jenifer Monks
- Division of Reproductive SciencesUniversity of Colorado School of MedicineAuroraCOUSA
| | | | - James L. McManaman
- Graduate Program in Integrated PhysiologyUniversity of Colorado School of MedicineAuroraCOUSA
- Division of Reproductive SciencesUniversity of Colorado School of MedicineAuroraCOUSA
- Center for Human NutritionUniversity of Colorado School of MedicineAuroraCOUSA
| |
Collapse
|
20
|
Hajighasem A, Farzanegi P, Mazaheri Z, Naghizadeh M, Salehi G. Effects of resveratrol, exercises and their combination on Farnesoid X receptor, Liver X receptor and Sirtuin 1 gene expression and apoptosis in the liver of elderly rats with nonalcoholic fatty liver. PeerJ 2018; 6:e5522. [PMID: 30221089 PMCID: PMC6136396 DOI: 10.7717/peerj.5522] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/04/2018] [Indexed: 12/17/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. This study aims to consider effects of resveratrol, exercise and their combination on Farnesoid X receptor (Fxr), the liver X receptor (Lxr) and Sirtuin 1 (Sirt 1) genes expression in the liver of elderly rats with NAFLD. Methods Rats with NAFLD were randomly divided into seven groups including patient, saline, resveratrol (RSV), interval exercise, continuous exercise, interval exercise + RSV and continuous exercise + RSV. Levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) in the liver tissue were measured using specific ELISA kits. A TUNEL assay kit was used for the assessment of hepatic cells apoptosis. Lipid profiles were considered by measuring the serum triglyceride, cholesterol, LDL, and HDL. Expression of Sirt1, Lxr and Fxr genes was considered using RT-PCR. Results Resveratrol administration alone or combined with exercise training significantly improved the expression of Sirt1, Lxr and Fxr genes (p < 0.05) in the hepatic tissue of rats with NAFLD, while levels of AST, ALT, ALP enzymes, as well as apoptotic cells were significantly decreased (p < 0.05). Discussion Although resveratrol alone improves the expression of Sirt1, Lxr and Fxr, as well as liver function, combined therapy with exercise training is more effective to improve NAFLD.
Collapse
Affiliation(s)
- Amir Hajighasem
- Department of Exercise Physiology, Sari Branch, Islamic Azad University, Sari, Iran
| | - Parvin Farzanegi
- Department of Exercise Physiology, Sari Branch, Islamic Azad University, Sari, Iran
| | - Zohreh Mazaheri
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marjan Naghizadeh
- Department of Exercise Physiology, Sari Branch, Islamic Azad University, Sari, Iran
| | - Ghoncheh Salehi
- Department of Exercise Physiology, Sari Branch, Islamic Azad University, Sari, Iran
| |
Collapse
|
21
|
Brønden A, Mikkelsen K, Sonne DP, Hansen M, Våben C, Gabe MN, Rosenkilde M, Tremaroli V, Wu H, Bäckhed F, Rehfeld JF, Holst JJ, Vilsbøll T, Knop FK. Glucose-lowering effects and mechanisms of the bile acid-sequestering resin sevelamer. Diabetes Obes Metab 2018; 20:1623-1631. [PMID: 29493868 DOI: 10.1111/dom.13272] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 12/18/2022]
Abstract
AIMS Sevelamer, a non-absorbable amine-based resin used for treatment of hyperphosphataemia, has been demonstrated to have a marked bile acid-binding potential alongside beneficial effects on lipid and glucose metabolism. The aim of this study was to investigate the glucose-lowering effect and mechanism(s) of sevelamer in patients with type 2 diabetes. MATERIALS AND METHODS In this double-blinded randomized controlled trial, we randomized 30 patients with type 2 diabetes to sevelamer (n = 20) or placebo (n = 10). Participants were subjected to standardized 4-hour liquid meal tests at baseline and after 7 days of treatment. The main outcome measure was plasma glucagon-like peptide-1 excursions as measured by area under the curve. In addition, blood was sampled for measurements of glucose, lipids, glucose-dependent insulinotropic polypeptide, C-peptide, glucagon, fibroblast growth factor-19, cholecystokinin and bile acids. Assessments of gastric emptying, resting energy expenditure and gut microbiota composition were performed. RESULTS Sevelamer elicited a significant placebo-corrected reduction in plasma glucose with concomitant reduced fibroblast growth factor-19 concentrations, increased de novo synthesis of bile acids, a shift towards a more hydrophilic bile acid pool and increased lipogenesis. No glucagon-like peptide-1-mediated effects on insulin, glucagon or gastric emptying were evident, which points to a limited contribution of this incretin hormone to the glucose-lowering effect of sevelamer. Furthermore, no sevelamer-mediated effects on gut microbiota composition or resting energy expenditure were observed. CONCLUSIONS Sevelamer reduced plasma glucose concentrations in patients with type 2 diabetes by mechanisms that seemed to involve decreased intestinal and hepatic bile acid-mediated farnesoid X receptor activation.
Collapse
Affiliation(s)
- Andreas Brønden
- Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Kristian Mikkelsen
- Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - David P Sonne
- Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Morten Hansen
- Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Christoffer Våben
- Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Maria N Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Valentina Tremaroli
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Hao Wu
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Bile acids act as activating signals of endogenous renal receptors: the nuclear receptor farnesoid X receptor (FXR) and the membrane-bound G protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5). In recent years, bile acids have emerged as important for renal pathophysiology by activating FXR and TGR5 and transcription factors relevant for lipid, cholesterol and carbohydrate metabolism, as well as genes involved in inflammation and renal fibrosis. RECENT FINDINGS Activation of bile acid receptors has a promising therapeutic potential in prevention of diabetic nephropathy and obesity-induced renal damage, as well as in nephrosclerosis. During the past decade, progress has been made in understanding the biology and mechanisms of bile acid receptors in the kidney and in the development of specific bile acid receptor agonists. SUMMARY In this review, we discuss current knowledge on the roles of FXR and TGR5 in the physiology of the kidney and the latest advances made in development and characterization of bile acid analogues that activate bile acid receptors for treatment of renal disease.
Collapse
|
23
|
Abstract
Bile acids (BA), for decades considered only to have fat-emulsifying functions in the gut lumen, have recently emerged as novel cardio-metabolic modulators. They have real endocrine effects, acting via multiple intracellular receptors in various organs and tissues. BA affect energy homeostasis through the modulation of glucose and lipid metabolism, predominantly by activating the nuclear farnesoid X receptor (FXR), as well as the cytoplasmic membrane G protein-coupled BA receptor TGR5 in a variety of tissues; although numerous other intracellular targets of BA are also in play.The roles of BA in the pathogenesis of diabetes, obesity, metabolic syndrome, and cardiovascular diseases are seriously being considered, and BA and their derivatives seem to represent novel potential therapeutics to treat these diseases of civilization.
Collapse
Affiliation(s)
- Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, and 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
24
|
Townsend SA, Newsome PN. Review article: new treatments in non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2017; 46:494-507. [PMID: 28677333 DOI: 10.1111/apt.14210] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/13/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease is the fastest growing cause of liver disease in the Western world, yet there is no approved pharmacotherapy. While lifestyle modifications remain the mainstay of treatment, only a proportion of individuals are able to make or sustain them, and so more treatment options are required. AIM To review the potential benefit of drugs used in clinical practice, those entering phase II trials, and compounds being investigated in pre-clinical studies. METHODS A literature search was performed using PubMed to identify relevant studies; linked references were also reviewed. RESULTS Vitamin E and pioglitazone have shown efficacy in non-alcoholic steatohepatitis (NASH), but long-term safety concerns, specifically bladder cancer and osteoporosis with pioglitazone, have limited their use. GLP-1 analogues and SGLT-2 inhibitors are currently approved for use in diabetes, have shown early efficacy in NASH and also have beneficial cardiovascular effects. Peroxisome proliferator-activator receptors and FXR agonists have potent effects on lipogenesis, inflammation and fibrosis, respectively, with their efficacy and safety being currently tested in phase 3. As inflammation and apoptosis are key features of NASH agents modulating these pathways are of interest; CCR2/5 antagonists downregulate inflammatory pathways and reduce fibrosis with caspase and apoptosis signal-regulating kinase 1 inhibitors reducing apoptosis and fibrosis. CONCLUSIONS Rising demand and an improved understanding of NASH pathophysiology has led to a surge in development of new therapies. Tailoring pharmacotherapy to the dominant pathogenic pathway in a given patient along with use of combination therapy is likely to represent the future direction in treatment of patients with NASH.
Collapse
Affiliation(s)
- S A Townsend
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, UK.,Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - P N Newsome
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, UK.,Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
25
|
Chow MD, Lee YH, Guo GL. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mol Aspects Med 2017; 56:34-44. [PMID: 28442273 DOI: 10.1016/j.mam.2017.04.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/11/2017] [Accepted: 04/20/2017] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease is growing in prevalence worldwide. It is marked by the presence of macrosteatosis on liver histology but is often clinically asymptomatic. However, it can progress into nonalcoholic steatohepatitis which is a more severe form of liver disease characterized by inflammation and fibrosis. Further progression leads to cirrhosis, which predisposes patients to hepatocellular carcinoma or liver failure. The mechanism by which simple steatosis progresses to steatohepatitis is not entirely clear. However, multiple pathways have been proposed. A common link amongst many of these pathways is disruption of the homeostasis of bile acids. Other than aiding in the absorption of lipids and lipid-soluble vitamins, bile acids act as ligands. For example, they bind to farnesoid X receptor, which is critically involved in many of the pathways responsible for maintaining bile acid, glucose, and lipid homeostasis. Alterations to these pathways can lead to dysregulation of energy balance and increased inflammation and fibrosis. Repeated insults over time may be the key to development of steatohepatitis. For this reason, current drug therapies target aspects of these pathways to try to reduce and halt inflammation and fibrosis. This review will focus on the role of bile acids in these various pathways and how changes in these pathways may result in steatohepatitis. While there is no approved pharmaceutical treatment for either hepatic steatosis or steatohepatitis, this review will also touch upon the multitude of potential therapies.
Collapse
Affiliation(s)
- Monica D Chow
- Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yi-Horng Lee
- Division of Pediatric Surgery, Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Grace L Guo
- Department of Pharmacy and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
26
|
Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology 2017; 152:1679-1694.e3. [PMID: 28214524 DOI: 10.1053/j.gastro.2017.01.055] [Citation(s) in RCA: 646] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 02/06/2023]
Abstract
Bile acids are signaling molecules that coordinately regulate metabolism and inflammation via the nuclear farnesoid X receptor (FXR) and the Takeda G protein-coupled receptor 5 (TGR5). These receptors activate transcriptional networks and signaling cascades controlling the expression and activity of genes involved in bile acid, lipid and carbohydrate metabolism, energy expenditure, and inflammation by acting predominantly in enterohepatic tissues, but also in peripheral organs. In this review, we discuss the most recent findings on the inter-organ signaling and interplay with the gut microbiota of bile acids and their receptors in meta-inflammation, with a focus on their pathophysiologic roles in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic steatohepatitis, and their potential therapeutic applications.
Collapse
Affiliation(s)
- Oscar Chávez-Talavera
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Anne Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France.
| |
Collapse
|