1
|
Barman P, Chakraborty P, Guha S, Kaja A, Bhaumik R, Bhaumik SR. TAP-MS analysis of FACT interactions and regulation by a ubiquitin ligase, San1. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025:195077. [PMID: 39855624 DOI: 10.1016/j.bbagrm.2025.195077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 12/20/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
An evolutionarily conserved heterodimeric FACT (Facilitates chromatin transcription) regulates transcription, DNA repair, replication and other cellular processes via its interactions with other proteins. FACT is recently found to be regulated via ubiquitylation and 26S proteasomal degradation, alteration of which is associated with aberrant transcription and genome integrity. However, there has not been a systematic study to analyze FACT interactions proteome-wide in the presence and absence of its UPS (Ubiquitin-proteasome system) regulation, which could reveal new FACT interactors with mechanistic and functional implications. Here, we have adopted a proteome-wide approach via TAP (Tandem affinity purification)-mediated pull-down of FACT and its interactors from the soluble and insoluble cellular fractions followed by MS (Mass-spectrometry) analysis. We find distinct interactors of FACT in the soluble and insoluble fractions in addition to a common set in both. While a set of all these interactors overlaps with previously known FACT partners, many are new, which are involved in different cellular processes such as transcription, DNA repair and chromatin regulation. Further, an intrinsically disordered ubiquitin ligase, San1, that ubiquitylates the Spt16 component of FACT for proteasomal degradation to regulate chromatin, transcription and genome integrity is found to influence the interactions of FACT with a set of proteins including epigenetic, transcription and DNA repair factors. Collectively, our results unveil proteome-wide FACT interactions and regulation by a ubiquitin ligase, hence shedding much light on FACT networks with functional and mechanistic implications.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Amala Kaja
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Rhea Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA.
| |
Collapse
|
2
|
Žumer K, Ochmann M, Aljahani A, Zheenbekova A, Devadas A, Maier KC, Rus P, Neef U, Oudelaar AM, Cramer P. FACT maintains chromatin architecture and thereby stimulates RNA polymerase II pausing during transcription in vivo. Mol Cell 2024; 84:2053-2069.e9. [PMID: 38810649 DOI: 10.1016/j.molcel.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/06/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
Facilitates chromatin transcription (FACT) is a histone chaperone that supports transcription through chromatin in vitro, but its functional roles in vivo remain unclear. Here, we analyze the in vivo functions of FACT with the use of multi-omics analysis after rapid FACT depletion from human cells. We show that FACT depletion destabilizes chromatin and leads to transcriptional defects, including defective promoter-proximal pausing and elongation, and increased premature termination of RNA polymerase II. Unexpectedly, our analysis revealed that promoter-proximal pausing depends not only on the negative elongation factor (NELF) but also on the +1 nucleosome, which is maintained by FACT.
Collapse
Affiliation(s)
- Kristina Žumer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Moritz Ochmann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Abrar Aljahani
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Am Fassberg 11, 37077 Göttingen, Germany
| | - Aiturgan Zheenbekova
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Arjun Devadas
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kerstin Caroline Maier
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Petra Rus
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ute Neef
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - A Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
3
|
Zhao H, Li D, Xiao X, Liu C, Chen G, Su X, Yan Z, Gu S, Wang Y, Li G, Feng J, Li W, Chen P, Yang J, Li Q. Pluripotency state transition of embryonic stem cells requires the turnover of histone chaperone FACT on chromatin. iScience 2024; 27:108537. [PMID: 38213626 PMCID: PMC10783625 DOI: 10.1016/j.isci.2023.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/06/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
The differentiation of embryonic stem cells (ESCs) begins with the transition from the naive to the primed state. The formative state was recently established as a critical intermediate between the two states. Here, we demonstrate the role of the histone chaperone FACT in regulating the naive-to-formative transition. We found that the Q265K mutation in the FACT subunit SSRP1 increased the binding of FACT to histone H3-H4, impaired nucleosome disassembly in vitro, and reduced the turnover of FACT on chromatin in vivo. Strikingly, mouse ESCs harboring this mutation showed elevated naive-to-formative transition. Mechanistically, the SSRP1-Q265K mutation enriched FACT at the enhancers of formative-specific genes to increase targeted gene expression. Together, these findings suggest that the turnover of FACT on chromatin is crucial for regulating the enhancers of formative-specific genes, thereby mediating the naive-to-formative transition. This study highlights the significance of FACT in fine-tuning cell fate transition during early development.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Di Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xue Xiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guifang Chen
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Xiaoyu Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhenxin Yan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shijia Gu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yizhou Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Wei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiayi Yang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Wang P, Fan N, Yang W, Cao P, Liu G, Zhao Q, Guo P, Li X, Lin X, Jiang N, Nashun B. Transcriptional regulation of FACT involves Coordination of chromatin accessibility and CTCF binding. J Biol Chem 2024; 300:105538. [PMID: 38072046 PMCID: PMC10808957 DOI: 10.1016/j.jbc.2023.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Histone chaperone FACT (facilitates chromatin transcription) is well known to promote chromatin recovery during transcription. However, the mechanism how FACT regulates genome-wide chromatin accessibility and transcription factor binding has not been fully elucidated. Through loss-of-function studies, we show here that FACT component Ssrp1 is required for DNA replication and DNA damage repair and is also essential for progression of cell phase transition and cell proliferation in mouse embryonic fibroblast cells. On the molecular level, absence of the Ssrp1 leads to increased chromatin accessibility, enhanced CTCF binding, and a remarkable change in dynamic range of gene expression. Our study thus unequivocally uncovers a unique mechanism by which FACT complex regulates transcription by coordinating genome-wide chromatin accessibility and CTCF binding.
Collapse
Affiliation(s)
- Peijun Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China; School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Na Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wanting Yang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China
| | - Pengbo Cao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China
| | - Guojun Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Qi Zhao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Pengfei Guo
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xihe Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Buhe Nashun
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
5
|
Jonas F, Vidavski M, Benuck E, Barkai N, Yaakov G. Nucleosome retention by histone chaperones and remodelers occludes pervasive DNA-protein binding. Nucleic Acids Res 2023; 51:8496-8513. [PMID: 37493599 PMCID: PMC10484674 DOI: 10.1093/nar/gkad615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/07/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023] Open
Abstract
DNA packaging within chromatin depends on histone chaperones and remodelers that form and position nucleosomes. Cells express multiple such chromatin regulators with overlapping in-vitro activities. Defining specific in-vivo activities requires monitoring histone dynamics during regulator depletion, which has been technically challenging. We have recently generated histone-exchange sensors in Saccharomyces cerevisiae, which we now use to define the contributions of 15 regulators to histone dynamics genome-wide. While replication-independent exchange in unperturbed cells maps to promoters, regulator depletions primarily affected gene bodies. Depletion of Spt6, Spt16 or Chd1 sharply increased nucleosome replacement sequentially at the beginning, middle or end of highly expressed gene bodies. They further triggered re-localization of chaperones to affected gene body regions, which compensated for nucleosome loss during transcription complex passage, but concurred with extensive TF binding in gene bodies. We provide a unified quantitative screen highlighting regulator roles in retaining nucleosome binding during transcription and preserving genomic packaging.
Collapse
Affiliation(s)
- Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Matan Vidavski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eli Benuck
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Pan Y, Hu C, Hou LJ, Chen YL, Shi J, Liu JC, Zhou JQ. Swc4 protects nucleosome-free rDNA, tDNA and telomere loci to inhibit genome instability. DNA Repair (Amst) 2023; 127:103512. [PMID: 37230009 DOI: 10.1016/j.dnarep.2023.103512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
In the baker's yeast Saccharomyces cerevisiae, NuA4 and SWR1-C, two multisubunit complexes, are involved in histone acetylation and chromatin remodeling, respectively. Eaf1 is the assembly platform subunit of NuA4, Swr1 is the assembly platform and catalytic subunit of SWR1-C, while Swc4, Yaf9, Arp4 and Act1 form a functional module, and is present in both NuA4 and SWR1 complexes. ACT1 and ARP4 are essential for cell survival. Deletion of SWC4, but not YAF9, EAF1 or SWR1 results in a severe growth defect, but the underlying mechanism remains largely unknown. Here, we show that swc4Δ, but not yaf9Δ, eaf1Δ, or swr1Δ cells display defects in DNA ploidy and chromosome segregation, suggesting that the defects observed in swc4Δ cells are independent of NuA4 or SWR1-C integrity. Swc4 is enriched in the nucleosome-free regions (NFRs) of the genome, including characteristic regions of RDN5s, tDNAs and telomeres, independently of Yaf9, Eaf1 or Swr1. In particular, rDNA, tDNA and telomere loci are more unstable and prone to recombination in the swc4Δ cells than in wild-type cells. Taken together, we conclude that the chromatin associated Swc4 protects nucleosome-free chromatin of rDNA, tDNA and telomere loci to ensure genome integrity.
Collapse
Affiliation(s)
- Yue Pan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Can Hu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lin-Jun Hou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Long Chen
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiantao Shi
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jin-Qiu Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
7
|
Jeronimo C, Robert F. The histone chaperone FACT: a guardian of chromatin structure integrity. Transcription 2022; 13:16-38. [PMID: 35485711 PMCID: PMC9467567 DOI: 10.1080/21541264.2022.2069995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The identification of FACT as a histone chaperone enabling transcription through chromatin in vitro has strongly shaped how its roles are envisioned. However, FACT has been implicated in essentially all aspects of chromatin biology, from transcription to DNA replication, DNA repair, and chromosome segregation. In this review, we focus on recent literature describing the role and mechanisms of FACT during transcription. We highlight the prime importance of FACT in preserving chromatin integrity during transcription and challenge its role as an elongation factor. We also review evidence for FACT's role as a cell-type/gene-specificregulator of gene expression and briefly summarize current efforts at using FACT inhibition as an anti-cancerstrategy.
Collapse
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
8
|
Goswami I, Sandlesh P, Stablewski A, Toshkov I, Safina AF, Magnitov M, Wang J, Gurova K. FACT maintains nucleosomes during transcription and stem cell viability in adult mice. EMBO Rep 2022; 23:e53684. [PMID: 35179289 PMCID: PMC8982582 DOI: 10.15252/embr.202153684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Preservation of nucleosomes during replication has been extensively studied, while the maintenance of nucleosomes during transcription has gotten less attention. The histone chaperone FACT has a role in transcription elongation, although whether it disassembles or assembles nucleosomes during this process is unclear. To elucidate the function of FACT in mammals, we deleted the Ssrp1 subunit of FACT in adult mice. FACT loss is lethal, possibly due to the loss of the earliest progenitors in bone marrow and intestine, while more differentiated cells are not affected. Using cells isolated from several tissues, we show that FACT loss reduces the viability of stem cells but not of cells differentiated in vitro. FACT depletion increases chromatin accessibility in a transcription-dependent manner in adipose mesenchymal stem cells, indicating that nucleosomes are lost in these cells during transcription in the absence of FACT. We also observe activation of interferon (IFN) signaling and the accumulation of immunocytes in organs sensitive to FACT loss. Our data indicate that FACT maintains chromatin integrity during transcription in mammalian adult stem cells, suggesting that chromatin transcription in stem cells and differentiated cells is different.
Collapse
Affiliation(s)
- Imon Goswami
- Department of Cell Stress BiologyRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | - Poorva Sandlesh
- Department of Cell Stress BiologyRoswell Park Comprehensive Cancer CenterBuffaloNYUSA,Present address:
Department of Neurological SurgeryUniversity of PittsburghPittsburghPAUSA,Present address:
Department of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Aimee Stablewski
- Transgenic Shared FacilityRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | | | - Alfiya F Safina
- Department of Cell Stress BiologyRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | - Mikhail Magnitov
- Institute of Gene BiologyRussian Academy of SciencesMoscowRussia
| | - Jianmin Wang
- Department of Biostatistics and BioinformaticsRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | - Katerina Gurova
- Department of Cell Stress BiologyRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| |
Collapse
|
9
|
Bhakat KK, Ray S. The FAcilitates Chromatin Transcription (FACT) complex: Its roles in DNA repair and implications for cancer therapy. DNA Repair (Amst) 2021; 109:103246. [PMID: 34847380 DOI: 10.1016/j.dnarep.2021.103246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/07/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022]
Abstract
Genomic DNA in the nucleus is wrapped around nucleosomes, a repeating unit of chromatin. The nucleosome, consisting of octamer of core histones, is a barrier for several cellular processes that require access to the naked DNA. The FAcilitates Chromatin Transcription (FACT), a histone chaperone complex, is involved in nucleosome remodeling via eviction or assembly of histones during transcription, replication, and DNA repair. Increasing evidence suggests that FACT plays an important role in multiple DNA repair pathways including transcription-coupled nucleotide excision repair (TC-NER) of UV-induced damage, DNA single- and double-strand breaks (DSBs) repair, and base excision repair (BER) of oxidized or alkylated damaged bases. Further, studies have shown overexpression of FACT in multiple types of cancer and its association with drug resistance and patients' poor prognosis. In this review, we discuss how FACT is accumulated at the damage site and what functions it performs. We describe the known mechanisms by which FACT facilitates repair of different types of DNA damage. Further, we highlight the recent advances in a class of FACT inhibitors, called curaxins, which show promise as a new adjuvant therapy to sensitize multiple types of cancer to chemotherapy and radiation.
Collapse
Affiliation(s)
- Kishor K Bhakat
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA 68198; Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA 68198.
| | - Sutapa Ray
- Department of Pediatric, Division of Hematology/oncology, University of Nebraska Medical Center, Omaha, NE, USA 68198; Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA 68198
| |
Collapse
|
10
|
Chang YC, Oram MK, Bielinsky AK. SUMO-Targeted Ubiquitin Ligases and Their Functions in Maintaining Genome Stability. Int J Mol Sci 2021; 22:ijms22105391. [PMID: 34065507 PMCID: PMC8161396 DOI: 10.3390/ijms22105391] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)-targeted E3 ubiquitin ligases (STUbLs) are specialized enzymes that recognize SUMOylated proteins and attach ubiquitin to them. They therefore connect the cellular SUMOylation and ubiquitination circuits. STUbLs participate in diverse molecular processes that span cell cycle regulated events, including DNA repair, replication, mitosis, and transcription. They operate during unperturbed conditions and in response to challenges, such as genotoxic stress. These E3 ubiquitin ligases modify their target substrates by catalyzing ubiquitin chains that form different linkages, resulting in proteolytic or non-proteolytic outcomes. Often, STUbLs function in compartmentalized environments, such as the nuclear envelope or kinetochore, and actively aid in nuclear relocalization of damaged DNA and stalled replication forks to promote DNA repair or fork restart. Furthermore, STUbLs reside in the same vicinity as SUMO proteases and deubiquitinases (DUBs), providing spatiotemporal control of their targets. In this review, we focus on the molecular mechanisms by which STUbLs help to maintain genome stability across different species.
Collapse
|
11
|
Wang P, Yang W, Zhao S, Nashun B. Regulation of chromatin structure and function: insights into the histone chaperone FACT. Cell Cycle 2021; 20:465-479. [PMID: 33590780 DOI: 10.1080/15384101.2021.1881726] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In eukaryotic cells, changes in chromatin accessibility are necessary for chromatin to maintain its highly dynamic nature at different times during the cell cycle. Histone chaperones interact with histones and regulate chromatin dynamics. Facilitates chromatin transcription (FACT) is an important histone chaperone that plays crucial roles during various cellular processes. Here, we analyze the structural characteristics of FACT, discuss how FACT regulates nucleosome/chromatin reorganization and summarize possible functions of FACT in transcription, replication, and DNA repair. The possible involvement of FACT in cell fate determination is also discussed.Abbreviations: FACT: facilitates chromatin transcription, Spt16: suppressor of Ty16, SSRP1: structure-specific recognition protein-1, NTD: N-terminal domain, DD: dimerization domain, MD: middle domain, CTD: C-terminus domain, IDD: internal intrinsically disordered domain, HMG: high mobility group, CID: C-terminal intrinsically disordered domain, Nhp6: non-histone chromosomal protein 6, RNAPII: RNA polymerase II, CK2: casein kinase 2, AID: acidic inner disorder, PIC: pre-initiation complex, IR: ionizing radiation, DDSB: DNA double-strand break, PARlation: poly ADP-ribosylation, BER: base-excision repair, UVSSA: UV-stimulated scaffold protein A, HR: homologous recombination, CAF-1: chromatin assembly factor 1, Asf1: anti-silencing factor 1, Rtt106: regulator of Ty1 transposition protein 106, H3K56ac: H3K56 acetylation, KD: knock down, SETD2: SET domain containing 2, H3K36me3: trimethylation of lysine36 in histone H3, H2Bub: H2B ubiquitination, iPSCs: induced pluripotent stem cells, ESC: embryonic stem cell, H3K4me3: trimethylation of lysine 4 on histone H3 protein subunit, CHD1: chromodomain protein.
Collapse
Affiliation(s)
- Peijun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wanting Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shuxin Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Buhe Nashun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
12
|
Zhang H, Lu Z, Zhan Y, Rodriguez J, Lu C, Xue Y, Lin Z. Distinct roles of nucleosome sliding and histone modifications in controlling the fidelity of transcription initiation. RNA Biol 2021; 18:1642-1652. [PMID: 33280509 DOI: 10.1080/15476286.2020.1860389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Regulation of gene expression starts from the transcription initiation. Regulated transcription initiation is critical for generating correct transcripts with proper abundance. The impact of epigenetic control, such as histone modifications and chromatin remodelling, on gene regulation has been extensively investigated, but their specific role in regulating transcription initiation is far from well understood. Here we aimed to better understand the roles of genes involved in histone H3 methylations and chromatin remodelling on the regulation of transcription initiation at a genome-scale using the budding yeast as a study system. We obtained and compared maps of transcription start site (TSS) at single-nucleotide resolution by nAnT-iCAGE for a strain with depletion of MINC (Mot1-Ino80C-Nc2) by Mot1p and Ino80p anchor-away (Mot1&Ino80AA) and a strain with loss of histone methylation (set1Δset2Δdot1Δ) to their wild-type controls. Our study showed that the depletion of MINC stimulated transcription initiation from many new sites flanking the dominant TSS of genes, while the loss of histone methylation generates more TSSs in the coding region. Moreover, the depletion of MINC led to less confined boundaries of TSS clusters (TCs) and resulted in broader core promoters, and such patterns are not present in the ssdΔ mutant. Our data also exhibits that the MINC has distinctive impacts on TATA-containing and TATA-less promoters. In conclusion, our study shows that MINC is required for accurate identification of bona fide TSSs, particularly in TATA-containing promoters, and histone methylation contributes to the repression of transcription initiation in coding regions.
Collapse
Affiliation(s)
- Huiming Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Yu Zhan
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Judith Rodriguez
- Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Chen Lu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yong Xue
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Shukla A, Bhalla P, Potdar PK, Jampala P, Bhargava P. Transcription-dependent enrichment of the yeast FACT complex influences nucleosome dynamics on the RNA polymerase III-transcribed genes. RNA (NEW YORK, N.Y.) 2020; 27:rna.077974.120. [PMID: 33277439 PMCID: PMC7901838 DOI: 10.1261/rna.077974.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 05/04/2023]
Abstract
The FACT (FAcilitates Chromatin Transactions) complex influences transcription initiation and enables passage of RNA polymerase (pol) II through gene body nucleosomes during elongation. In the budding yeast, ~280 non-coding RNA genes highly transcribed in vivo by pol III are found in the nucleosome-free regions bordered by positioned nucleosomes. The downstream nucleosome dynamics was found to regulate transcription via controlling the gene terminator accessibility and hence, terminator-dependent pol III recycling. As opposed to the enrichment at the 5'-ends of pol II-transcribed genes, our genome-wide mapping found transcription-dependent enrichment of the FACT subunit Spt16 near the 3'-end of all pol III-transcribed genes. Spt16 physically associates with the pol III transcription complex and shows gene-specific occupancy levels on the individual genes. On the non-tRNA pol III-transcribed genes, Spt16 facilitates transcription by reducing the nucleosome occupany on the gene body. On the tRNA genes, it maintains the position of the nucleosome at the 3' gene-end and affects transcription in gene-specific manner. Under nutritional stress, Spt16 enrichment is abolished in the gene downstream region of all pol III-transcribed genes and reciprocally changed on the induced or repressed pol II-transcribed ESR genes. Under the heat and replicative stress, its occupancy on the pol III-transcribed genes increases significantly. Our results show that Spt16 elicits a differential, gene-specific and stress-responsive dynamics, which provides a novel stress-sensor mechanism of regulating transcription against external stress. By primarily influencing the nucleosomal organization, FACT links the downstream nucleosome dynamics to transcription and environmental stress on the pol III-transcribed genes.
Collapse
|
14
|
Lu Z, Lin Z. The origin and evolution of a distinct mechanism of transcription initiation in yeasts. Genome Res 2020; 31:51-63. [PMID: 33219055 PMCID: PMC7849388 DOI: 10.1101/gr.264325.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
The molecular process of transcription by RNA Polymerase II is highly conserved among eukaryotes (“classic model”). A distinct way of locating transcription start sites (TSSs) has been identified in a budding yeast Saccharomyces cerevisiae (“scanning model”). Herein, we applied genomic approaches to elucidate the origin of the scanning model and its underlying genetic mechanisms. We first identified TSSs at single-nucleotide resolution for 12 yeast species using the nAnT-iCAGE technique, which significantly improved the annotations of these genomes by providing accurate 5′ boundaries for protein-coding genes. We then inferred the initiation mechanism of each species based on its TSS maps and genome sequences. We discovered that the scanning model likely originated after the split of Yarrowia lipolytica and the other budding yeasts. Species that use the scanning model showed an adenine-rich region immediately upstream of the TSS that might facilitate TSS selection. Both initiation mechanisms share a strong preference for pyrimidine–purine dinucleotides surrounding the TSS. Our results suggest that the purine is required to accurately recruit the first nucleotide, thereby increasing the chances of a messenger RNA of being capped during mRNA maturation, which is critical for efficient translation initiation during protein biosynthesis. Based on our findings, we propose a model for TSS selection in the scanning-model species, as well as a model for the stepwise process responsible for the origin and evolution of the scanning model.
Collapse
Affiliation(s)
- Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, Missouri 63104, USA
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, Missouri 63104, USA
| |
Collapse
|
15
|
Chen F, Zhang W, Xie D, Gao T, Dong Z, Lu X. Histone chaperone FACT represses retrotransposon MERVL and MERVL-derived cryptic promoters. Nucleic Acids Res 2020; 48:10211-10225. [PMID: 32894293 PMCID: PMC7544220 DOI: 10.1093/nar/gkaa732] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Endogenous retroviruses (ERVs) were usually silenced by various histone modifications on histone H3 variants and respective histone chaperones in embryonic stem cells (ESCs). However, it is still unknown whether chaperones of other histones could repress ERVs. Here, we show that H2A/H2B histone chaperone FACT plays a critical role in silencing ERVs and ERV-derived cryptic promoters in ESCs. Loss of FACT component Ssrp1 activated MERVL whereas the re-introduction of Ssrp1 rescued the phenotype. Additionally, Ssrp1 interacted with MERVL and suppressed cryptic transcription of MERVL-fused genes. Remarkably, Ssrp1 interacted with and recruited H2B deubiquitinase Usp7 to Ssrp1 target genes. Suppression of Usp7 caused similar phenotypes as loss of Ssrp1. Furthermore, Usp7 acted by deubiquitinating H2Bub and thereby repressed the expression of MERVL-fused genes. Taken together, our study uncovers a unique mechanism by which FACT complex silences ERVs and ERV-derived cryptic promoters in ESCs.
Collapse
Affiliation(s)
- Fuquan Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, People's Republic of China
- College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Weiyu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, People's Republic of China
- College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Dan Xie
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, People's Republic of China
- College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Tingting Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, People's Republic of China
- College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhiqiang Dong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, People's Republic of China
- College of Life Sciences, Nankai University, Tianjin 300307, People's Republic of China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, People's Republic of China
- College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
16
|
Jeronimo C, Poitras C, Robert F. Histone Recycling by FACT and Spt6 during Transcription Prevents the Scrambling of Histone Modifications. Cell Rep 2020; 28:1206-1218.e8. [PMID: 31365865 DOI: 10.1016/j.celrep.2019.06.097] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/28/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022] Open
Abstract
Genomic DNA is framed by additional layers of information, referred to as the epigenome. Epigenomic marks such as DNA methylation, histone modifications, and histone variants are concentrated on specific genomic sites, where they can both instruct and reflect gene expression. How this information is maintained, notably in the face of transcription, is not completely understood. Specifically, the extent to which modified histones themselves are retained through RNA polymerase II passage is unclear. Here, we show that several histone modifications are mislocalized when the transcription-coupled histone chaperones FACT or Spt6 are disrupted in Saccharomyces cerevisiae. In the absence of functional FACT or Spt6, transcription generates nucleosome loss, which is partially compensated for by the increased activity of non-transcription-coupled histone chaperones. The random incorporation of transcription-evicted modified histones scrambles epigenomic information. Our work highlights the importance of local recycling of modified histones by FACT and Spt6 during transcription in the maintenance of the epigenomic landscape.
Collapse
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Christian Poitras
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, QC, Canada.
| |
Collapse
|
17
|
Histone chaperone FACT is essential to overcome replication stress in mammalian cells. Oncogene 2020; 39:5124-5137. [PMID: 32533099 PMCID: PMC7343669 DOI: 10.1038/s41388-020-1346-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 05/11/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
The histone chaperone FACT is upregulated during mammary tumorigenesis and necessary for the viability and growth of breast tumor cells. We established that only proliferating tumor cells are sensitive to FACT knockdown, suggesting that FACT functions during DNA replication in tumor cells but not in normal cells. We hypothesized that the basal level of replication stress defines the FACT dependence of cells. Using genetic and chemical tools, we demonstrated that FACT is needed to overcome replication stress. In the absence of FACT during replication stress, the MCM2-7 helicase dissociates from chromatin, resulting in the absence of ssDNA accumulation, RPA binding, and activation of the ATR/CHK1 checkpoint response. Without this response, stalled replication forks are not stabilized, and new origin firing cannot be prevented, leading to the accumulation of DNA damage and cell death. Thus, we propose a novel role for FACT as a factor preventing helicase dissociation from chromatin during replication stress.
Collapse
|
18
|
Murawska M, Schauer T, Matsuda A, Wilson MD, Pysik T, Wojcik F, Muir TW, Hiraoka Y, Straub T, Ladurner AG. The Chaperone FACT and Histone H2B Ubiquitination Maintain S. pombe Genome Architecture through Genic and Subtelomeric Functions. Mol Cell 2020; 77:501-513.e7. [PMID: 31837996 PMCID: PMC7007867 DOI: 10.1016/j.molcel.2019.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/01/2019] [Accepted: 11/15/2019] [Indexed: 12/31/2022]
Abstract
The histone chaperone FACT and histone H2B ubiquitination (H2Bub) facilitate RNA polymerase II (Pol II) passage through chromatin, yet it is not clear how they cooperate mechanistically. We used genomics, genetic, biochemical, and microscopic approaches to dissect their interplay in Schizosaccharomyces pombe. We show that FACT and H2Bub globally repress antisense transcripts near the 5' end of genes and inside gene bodies, respectively. The accumulation of these transcripts is accompanied by changes at genic nucleosomes and Pol II redistribution. H2Bub is required for FACT activity in genic regions. In the H2Bub mutant, FACT binding to chromatin is altered and its association with histones is stabilized, which leads to the reduction of genic nucleosomes. Interestingly, FACT depletion globally restores nucleosomes in the H2Bub mutant. Moreover, in the absence of Pob3, the FACT Spt16 subunit controls the 3' end of genes. Furthermore, FACT maintains nucleosomes in subtelomeric regions, which is crucial for their compaction.
Collapse
Affiliation(s)
- Magdalena Murawska
- Biomedical Center, Physiological Chemistry, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Tamas Schauer
- Biomedical Center, Bioinformatics Unit, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Atsushi Matsuda
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Marcus D Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Thomas Pysik
- Biomedical Center, Physiological Chemistry, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Felix Wojcik
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Tobias Straub
- Biomedical Center, Bioinformatics Unit, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Andreas G Ladurner
- Biomedical Center, Physiological Chemistry, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
19
|
McMillan J, Lu Z, Rodriguez JS, Ahn TH, Lin Z. YeasTSS: an integrative web database of yeast transcription start sites. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5479513. [PMID: 31032841 PMCID: PMC6484093 DOI: 10.1093/database/baz048] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022]
Abstract
The transcription initiation landscape of eukaryotic genes is complex and highly dynamic. In eukaryotes, genes can generate multiple transcript variants that differ in 5' boundaries due to usages of alternative transcription start sites (TSSs), and the abundance of transcript isoforms are highly variable. Due to a large number and complexity of the TSSs, it is not feasible to depict details of transcript initiation landscape of all genes using text-format genome annotation files. Therefore, it is necessary to provide data visualization of TSSs to represent quantitative TSS maps and the core promoters (CPs). In addition, the selection and activity of TSSs are influenced by various factors, such as transcription factors, chromatin remodeling and histone modifications. Thus, integration and visualization of functional genomic data related to these features could provide a better understanding of the gene promoter architecture and regulatory mechanism of transcription initiation. Yeast species play important roles for the research and human society, yet no database provides visualization and integration of functional genomic data in yeast. Here, we generated quantitative TSS maps for 12 important yeast species, inferred their CPs and built a public database, YeasTSS (www.yeastss.org). YeasTSS was designed as a central portal for visualization and integration of the TSS maps, CPs and functional genomic data related to transcription initiation in yeast. YeasTSS is expected to benefit the research community and public education for improving genome annotation, studies of promoter structure, regulated control of transcription initiation and inferring gene regulatory network.
Collapse
Affiliation(s)
- Jonathan McMillan
- Department of Biology, Saint Louis University, St. Louis, MO, USA.,Parks College of Engineering, Aviation and Technology, Program in Computer Engineering, Saint Louis University, St. Louis, MO, USA
| | - Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, MO, USA
| | - Judith S Rodriguez
- Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO, USA
| | - Tae-Hyuk Ahn
- Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO, USA.,Department of Computer Sciences, Saint Louis University, St. Louis, MO, USA
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO, USA.,Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
20
|
Cucinotta CE, Hildreth AE, McShane BM, Shirra MK, Arndt KM. The nucleosome acidic patch directly interacts with subunits of the Paf1 and FACT complexes and controls chromatin architecture in vivo. Nucleic Acids Res 2019; 47:8410-8423. [PMID: 31226204 PMCID: PMC6895269 DOI: 10.1093/nar/gkz549] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
The nucleosome core regulates DNA-templated processes through the highly conserved nucleosome acidic patch. While structural and biochemical studies have shown that the acidic patch controls chromatin factor binding and activity, few studies have elucidated its functions in vivo. We employed site-specific crosslinking to identify proteins that directly bind the acidic patch in Saccharomyces cerevisiae and demonstrated crosslinking of histone H2A to Paf1 complex subunit Rtf1 and FACT subunit Spt16. Rtf1 bound to nucleosomes through its histone modification domain, supporting its role as a cofactor in H2B K123 ubiquitylation. An acidic patch mutant showed defects in nucleosome positioning and occupancy genome-wide. Our results provide new information on the chromatin engagement of two central players in transcription elongation and emphasize the importance of the nucleosome core as a hub for proteins that regulate chromatin during transcription.
Collapse
Affiliation(s)
- Christine E Cucinotta
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - A Elizabeth Hildreth
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Brendan M McShane
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Margaret K Shirra
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
21
|
Chang HW, Nizovtseva EV, Razin SV, Formosa T, Gurova KV, Studitsky VM. Histone Chaperone FACT and Curaxins: Effects on Genome Structure and Function. ACTA ACUST UNITED AC 2019; 5. [PMID: 31853507 DOI: 10.20517/2394-4722.2019.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The histone chaperone FACT plays important roles in essentially every chromatin-associated process and is an important indirect target of the curaxin class of anti-cancer drugs. Curaxins are aromatiс compounds that intercalate into DNA and can trap FACT in bulk chromatin, thus interfering with its distribution and its functions in cancer cells. Recent studies have provided mechanistic insight into how FACT and curaxins cooperate to promote unfolding of nucleosomes and chromatin fibers, resulting in genome-wide disruption of contact chromatin domain boundaries, perturbation of higher order chromatin organization, and global disregulation of gene expression. Here, we discuss the implications of these insights for cancer biology.
Collapse
Affiliation(s)
- Han-Wen Chang
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA
| | - Ekaterina V Nizovtseva
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA
| | - Sergey V Razin
- Institute of Gene Biology RAS, 34/5 Vavilov Str., 119334 Moscow, Russia.,Biology Faculty, Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
| | - Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | - Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY14263, USA
| | - Vasily M Studitsky
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA.,Biology Faculty, Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
| |
Collapse
|
22
|
Heiss G, Ploetz E, Voith von Voithenberg L, Viswanathan R, Glaser S, Schluesche P, Madhira S, Meisterernst M, Auble DT, Lamb DC. Conformational changes and catalytic inefficiency associated with Mot1-mediated TBP-DNA dissociation. Nucleic Acids Res 2019; 47:2793-2806. [PMID: 30649478 PMCID: PMC6451094 DOI: 10.1093/nar/gky1322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 11/12/2022] Open
Abstract
The TATA-box Binding Protein (TBP) plays a central role in regulating gene expression and is the first step in the process of pre-initiation complex (PIC) formation on promoter DNA. The lifetime of TBP at the promoter site is controlled by several cofactors including the Modifier of transcription 1 (Mot1), an essential TBP-associated ATPase. Based on ensemble measurements, Mot1 can use adenosine triphosphate (ATP) hydrolysis to displace TBP from DNA and various models for how this activity is coupled to transcriptional regulation have been proposed. However, the underlying molecular mechanism of Mot1 action is not well understood. In this work, the interaction of Mot1 with the DNA/TBP complex was investigated by single-pair Förster resonance energy transfer (spFRET). Upon Mot1 binding to the DNA/TBP complex, a transition in the DNA/TBP conformation was observed. Hydrolysis of ATP by Mot1 led to a conformational change but was not sufficient to efficiently disrupt the complex. SpFRET measurements of dual-labeled DNA suggest that Mot1's ATPase activity primes incorrectly oriented TBP for dissociation from DNA and additional Mot1 in solution is necessary for TBP unbinding. These findings provide a framework for understanding how the efficiency of Mot1's catalytic activity is tuned to establish a dynamic pool of TBP without interfering with stable and functional TBP-containing complexes.
Collapse
Affiliation(s)
- Gregor Heiss
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Evelyn Ploetz
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Lena Voith von Voithenberg
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Ramya Viswanathan
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Samson Glaser
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Peter Schluesche
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Sushi Madhira
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Michael Meisterernst
- Institut für Molekulare Tumorbiologie, Westfälische Wilhelms-Universität, Münster 48149, Germany
| | - David T Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Don C Lamb
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| |
Collapse
|
23
|
Oberbeckmann E, Wolff M, Krietenstein N, Heron M, Ellins JL, Schmid A, Krebs S, Blum H, Gerland U, Korber P. Absolute nucleosome occupancy map for the Saccharomyces cerevisiae genome. Genome Res 2019; 29:1996-2009. [PMID: 31694866 PMCID: PMC6886505 DOI: 10.1101/gr.253419.119] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/31/2019] [Indexed: 12/23/2022]
Abstract
Mapping of nucleosomes, the basic DNA packaging unit in eukaryotes, is fundamental for understanding genome regulation because nucleosomes modulate DNA access by their positioning along the genome. A cell-population nucleosome map requires two observables: nucleosome positions along the DNA ("Where?") and nucleosome occupancies across the population ("In how many cells?"). All available genome-wide nucleosome mapping techniques are yield methods because they score either nucleosomal (e.g., MNase-seq, chemical cleavage-seq) or nonnucleosomal (e.g., ATAC-seq) DNA but lose track of the total DNA population for each genomic region. Therefore, they only provide nucleosome positions and maybe compare relative occupancies between positions, but cannot measure absolute nucleosome occupancy, which is the fraction of all DNA molecules occupied at a given position and time by a nucleosome. Here, we established two orthogonal and thereby cross-validating approaches to measure absolute nucleosome occupancy across the Saccharomyces cerevisiae genome via restriction enzymes and DNA methyltransferases. The resulting high-resolution (9-bp) map shows uniform absolute occupancies. Most nucleosome positions are occupied in most cells: 97% of all nucleosomes called by chemical cleavage-seq have a mean absolute occupancy of 90 ± 6% (±SD). Depending on nucleosome position calling procedures, there are 57,000 to 60,000 nucleosomes per yeast cell. The few low absolute occupancy nucleosomes do not correlate with highly transcribed gene bodies, but correlate with increased presence of the nucleosome-evicting chromatin structure remodeling (RSC) complex, and are enriched upstream of highly transcribed or regulated genes. Our work provides a quantitative method and reference frame in absolute terms for future chromatin studies.
Collapse
Affiliation(s)
- Elisa Oberbeckmann
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Michael Wolff
- Physik Department, Technische Universität München, 85748 Garching, Germany
| | - Nils Krietenstein
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Mark Heron
- Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Gene Center, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Jessica L Ellins
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Andrea Schmid
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Stefan Krebs
- Laboratory of Functional Genome Analysis (LAFUGA), Gene Center, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory of Functional Genome Analysis (LAFUGA), Gene Center, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Ulrich Gerland
- Physik Department, Technische Universität München, 85748 Garching, Germany
| | - Philipp Korber
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
24
|
Lu Z, Lin Z. Pervasive and dynamic transcription initiation in Saccharomyces cerevisiae. Genome Res 2019; 29:1198-1210. [PMID: 31076411 PMCID: PMC6633255 DOI: 10.1101/gr.245456.118] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
Transcription initiation is finely regulated to ensure proper expression and function of genes. The regulated transcription initiation in response to various environmental stimuli in a classic model organism Saccharomyces cerevisiae has not been systematically investigated. In this study, we generated quantitative maps of transcription start sites (TSSs) at a single-nucleotide resolution for S. cerevisiae grown in nine different conditions using no-amplification nontagging Cap analysis of gene expression (nAnT-iCAGE) sequencing. We mapped ∼1 million well-supported TSSs, suggesting highly pervasive transcription initiation in the compact genome of the budding yeast. The comprehensive TSS maps allowed us to identify core promoters for ∼96% verified protein-coding genes. We corrected misannotation of translation start codon for 122 genes and suggested an alternative start codon for 57 genes. We found that 56% of yeast genes are controlled by multiple core promoters, and alternative core promoter usage by a gene is widespread in response to changing environments. Most core promoter shifts are coupled with altered gene expression, indicating that alternative core promoter usage might play an important role in controlling gene transcriptional activities. Based on their activities in responding to environmental cues, we divided core promoters into constitutive class (55%) and inducible class (45%). The two classes of core promoters display distinctive patterns in transcriptional abundance, chromatin structure, promoter shape, and sequence context. In summary, our study improved the annotation of the yeast genome and demonstrated a much more pervasive and dynamic nature of transcription initiation in yeast than previously recognized.
Collapse
Affiliation(s)
- Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, Missouri 63104, USA
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, Missouri 63104, USA
| |
Collapse
|
25
|
Gurova KV. Chromatin Stability as a Target for Cancer Treatment. Bioessays 2019; 41:e1800141. [PMID: 30566250 PMCID: PMC6522245 DOI: 10.1002/bies.201800141] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/29/2018] [Indexed: 12/14/2022]
Abstract
In this essay, I propose that DNA-binding anti-cancer drugs work more via chromatin disruption than DNA damage. Success of long-awaited drugs targeting cancer-specific drivers is limited by the heterogeneity of tumors. Therefore, chemotherapy acting via universal targets (e.g., DNA) is still the mainstream treatment for cancer. Nevertheless, the problem with targeting DNA is insufficient efficacy due to high toxicity. I propose that this problem stems from the presumption that DNA damage is critical for the anti-cancer activity of these drugs. DNA in cells exists as chromatin, and many DNA-targeting drugs alter chromatin structure by destabilizing nucleosomes and inducing histone eviction from chromatin. This effect has been largely ignored because DNA damage is seen as the major reason for anti-cancer activity. I discuss how DNA-binding molecules destabilize chromatin, why this effect is more toxic to tumoral than normal cells, and why cells die as a result of chromatin destabilization.
Collapse
Affiliation(s)
- Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263. Tel 1-716-845-4760,
| |
Collapse
|
26
|
Martin BJE, Chruscicki AT, Howe LJ. Transcription Promotes the Interaction of the FAcilitates Chromatin Transactions (FACT) Complex with Nucleosomes in Saccharomyces cerevisiae. Genetics 2018; 210:869-881. [PMID: 30237209 PMCID: PMC6218215 DOI: 10.1534/genetics.118.301349] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
The FACT (FAcilitates Chromatin Transactions) complex is a conserved complex that maintains chromatin structure on transcriptionally active genes. Consistent with this, FACT is enriched on highly expressed genes, but how it is targeted to these regions is unknown. In vitro, FACT binds destabilized nucleosomes, supporting the hypothesis that FACT is targeted to transcribed chromatin through recognition of RNA polymerase (RNAP)-disrupted nucleosomes. In this study, we used high-resolution analysis of FACT occupancy in Saccharomyces cerevisiae to test this hypothesis. We demonstrate that FACT interacts with nucleosomes in vivo and that its interaction with chromatin is dependent on transcription by any of the three RNAPs. Deep sequencing of micrococcal nuclease-resistant fragments shows that FACT-bound nucleosomes exhibit differing nuclease sensitivity compared to bulk chromatin, consistent with a modified nucleosome structure being the preferred ligand for this complex. Interestingly, a subset of FACT-bound nucleosomes may be "overlapping dinucleosomes," in which one histone octamer invades the ∼147-bp territory normally occupied by the adjacent nucleosome. While the differing nuclease sensitivity of FACT-bound nucleosomes could also be explained by the demonstrated ability of FACT to alter nucleosome structure, transcription inhibition restores nuclease resistance, suggesting that it is not due to FACT interaction alone. Collectively, these results are consistent with a model in which FACT is targeted to transcribed genes through preferential interaction with RNAP-disrupted nucleosomes.
Collapse
Affiliation(s)
- Benjamin J E Martin
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Adam T Chruscicki
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - LeAnn J Howe
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
27
|
Gurova K, Chang HW, Valieva ME, Sandlesh P, Studitsky VM. Structure and function of the histone chaperone FACT - Resolving FACTual issues. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30159-7. [PMID: 30055319 PMCID: PMC6349528 DOI: 10.1016/j.bbagrm.2018.07.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022]
Abstract
FAcilitates Chromatin Transcription (FACT) has been considered essential for transcription through chromatin mostly based on cell-free experiments. However, FACT inactivation in cells does not cause a significant reduction in transcription. Moreover, not all mammalian cells require FACT for viability. Here we synthesize information from different organisms to reveal the core function(s) of FACT and propose a model that reconciles the cell-free and cell-based observations. We describe FACT structure and nucleosomal interactions, and their roles in FACT-dependent transcription, replication and repair. The variable requirements for FACT among different tumor and non-tumor cells suggest that various FACT-dependent processes have significantly different levels of relative importance in different eukaryotic cells. We propose that the stability of chromatin, which might vary among different cell types, dictates these diverse requirements for FACT to support cell viability. Since tumor cells are among the most sensitive to FACT inhibition, this vulnerability could be exploited for cancer treatment.
Collapse
Affiliation(s)
- Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Han-Wen Chang
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Maria E Valieva
- Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Poorva Sandlesh
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Vasily M Studitsky
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biology Faculty, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
28
|
Mylonas C, Tessarz P. Transcriptional repression by FACT is linked to regulation of chromatin accessibility at the promoter of ES cells. Life Sci Alliance 2018; 1:e201800085. [PMID: 30456357 PMCID: PMC6238418 DOI: 10.26508/lsa.201800085] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022] Open
Abstract
Depletion of FACT in murine embryonic stem cells show mild changes on the nucleosomal landscape but widespread changes in the transcriptome, faster proliferation, and neuronal differentiation rates. The conserved and essential histone chaperone, facilitates chromatin transcription (FACT), reorganizes nucleosomes during DNA transcription, replication, and repair and ensures both efficient elongation of RNA Pol II and nucleosome integrity. In mammalian cells, FACT is a heterodimer, consisting of SSRP1 and SUPT16. Here, we show that in contrast to yeast, FACT accumulates at the transcription start site of genes reminiscent of RNA polymerase II profile. Depletion of FACT in mouse embryonic stem cells leads to deregulation of developmental and pro-proliferative genes concomitant with hyper-proliferation of mES cells. Using MNase-seq, Assay for Transposase-Accessible Chromatin sequencing, and nascent elongating transcript sequencing, we show that up-regulation of genes coincides with loss of nucleosomes upstream of the transcription start site and concomitant increase in antisense transcription, indicating that FACT impacts the promoter architecture to regulate the expression of these genes. Finally, we demonstrate a role for FACT in cell fate determination and show that FACT depletion primes embryonic stem cells for the neuronal lineage.
Collapse
Affiliation(s)
| | - Peter Tessarz
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing Associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
29
|
Fei J, Ishii H, Hoeksema MA, Meitinger F, Kassavetis GA, Glass CK, Ren B, Kadonaga JT. NDF, a nucleosome-destabilizing factor that facilitates transcription through nucleosomes. Genes Dev 2018; 32:682-694. [PMID: 29759984 PMCID: PMC6004073 DOI: 10.1101/gad.313973.118] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022]
Abstract
Our understanding of transcription by RNA polymerase II (Pol II) is limited by our knowledge of the factors that mediate this critically important process. Here we describe the identification of NDF, a nucleosome-destabilizing factor that facilitates Pol II transcription in chromatin. NDF has a PWWP motif, interacts with nucleosomes near the dyad, destabilizes nucleosomes in an ATP-independent manner, and facilitates transcription by Pol II through nucleosomes in a purified and defined transcription system as well as in cell nuclei. Upon transcriptional induction, NDF is recruited to the transcribed regions of thousands of genes and colocalizes with a subset of H3K36me3-enriched regions. Notably, the recruitment of NDF to gene bodies is accompanied by an increase in the transcript levels of many of the NDF-enriched genes. In addition, the global loss of NDF results in a decrease in the RNA levels of many genes. In humans, NDF is present at high levels in all tested tissue types, is essential in stem cells, and is frequently overexpressed in breast cancer. These findings indicate that NDF is a nucleosome-destabilizing factor that is recruited to gene bodies during transcriptional activation and facilitates Pol II transcription through nucleosomes.
Collapse
Affiliation(s)
- Jia Fei
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Haruhiko Ishii
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California 92093, USA
| | - Marten A Hoeksema
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
- Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Franz Meitinger
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California 92093, USA
| | - George A Kassavetis
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
- Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
- Center for Epigenomics, Institute of Genome Medicine, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | - James T Kadonaga
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|