1
|
Petrachkova T, Soldatkina O, Leduy L, Nepveu A. The BCL11A transcription factor stimulates the enzymatic activities of the OGG1 DNA glycosylase. Biol Chem 2024:hsz-2024-0088. [PMID: 39272221 DOI: 10.1515/hsz-2024-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
The BCL11A transcription factor has previously been shown to interact with and stimulate the enzymatic activities of the NTHL1 DNA glycosylase and Pol β polymerase. Here we show that BCL11A and a smaller peptide encompassing amino acids 160 to 520 can interact with the 8-oxoguanine DNA glycosylase, OGG1, increase the binding of OGG1 to DNA that contains an 8-oxoguanine base and stimulate the glycosylase activity of OGG1. Following BCL11A knockdown, we observed an increase in oxidized purines in the genome using comet assays, while immunoassays reveal an increase in 8-oxoG bases. Structure-function analysis indicates that the stimulation of OGG1 by BCL11A requires the zinc fingers 1, 2 and 3 as well as the proline-rich region between the first and second zing finger, but a glutamate-rich region downstream of zinc finger 3 is dispensable. Ectopic expression of a small peptide that contains the three zinc fingers can rescue the increase in 8-oxoguanine caused by BCL11A knockdown. These findings, together with previous results showing that BCL11A stimulates the enzymatic activities of NTHL1 and the Pol β polymerase, suggest that high expression of BCL11A is important to protect cancer cells against oxidative DNA damage.
Collapse
Affiliation(s)
- Tetiana Petrachkova
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Olha Soldatkina
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Lam Leduy
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Alain Nepveu
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
- Departments of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
- Departments of Medicine, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
- Departments of Oncology, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| |
Collapse
|
2
|
Qi W, Bai J, Wang R, Zeng X, Zhang L. SATB1, senescence and senescence-related diseases. J Cell Physiol 2024; 239:e31327. [PMID: 38801120 DOI: 10.1002/jcp.31327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Aging leads to an accumulation of cellular mutations and damage, increasing the risk of senescence, apoptosis, and malignant transformation. Cellular senescence, which is pivotal in aging, acts as both a guard against cellular transformation and as a check against cancer progression. It is marked by stable cell cycle arrest, widespread macromolecular changes, a pro-inflammatory profile, and altered gene expression. However, it remains to be determined whether these differing subsets of senescent cells result from unique intrinsic programs or are influenced by their environmental contexts. Multiple transcription regulators and chromatin modifiers contribute to these alterations. Special AT-rich sequence-binding protein 1 (SATB1) stands out as a crucial regulator in this process, orchestrating gene expression by structuring chromatin into loop domains and anchoring DNA elements. This review provides an overview of cellular senescence and delves into the role of SATB1 in senescence-related diseases. It highlights SATB1's potential in developing antiaging and anticancer strategies, potentially contributing to improved quality of life and addressing aging-related diseases.
Collapse
Affiliation(s)
- Wenjing Qi
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Jinping Bai
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| | - Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Xianlu Zeng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Lihui Zhang
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| |
Collapse
|
3
|
Zhang Z, Zou Z, Zhang H, Zhang DM. Regulatory network analysis based on integrated miRNA-TF reveals key genes in heart failure. Sci Rep 2024; 14:13896. [PMID: 38886500 PMCID: PMC11183224 DOI: 10.1038/s41598-024-64732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
The etiology and pathophysiology of heart failure are still unknown. Increasing evidence suggests that abnormal microRNAs (miRNAs) and transcription factors (TFs) expression may be associated with the development of heart failure. Therefore, this study aims to explore key miRNAs, TFs, and related genes in heart failure to gain a greater understanding of the pathogenesis of heart failure. To search and download the dataset of mRNA chips related to heart failure from the GEO database (GSE59867, GSE9128, and GSE134766), we analyzed differential genes and screened the common differentially expressed genes on two chips using R language software. The binary interactions and circuits among miRNAs, TFs, and corresponding genes were determined by Pearson correlation coefficient. A regulatory network of miRNAs, TFs, and target genes was constructed based on bioinformatics. By comparing the sequences of patients with and without heart failure, five downregulated genes with hypermethylated mRNA and three upregulated genes with hypomethylated mRNA were identified. The miRNA-TF gene regulatory network consisted of 26 miRNAs, 22 TFs and six genes. GO and KEGG analysis results revealed that BP terms like cellular response to organic substance, cellular response to cytokine stimulus, and KEGG pathways like osteoclast differentiation, MAPK signaling pathway, and legionellosis were enriched of the DEGs. TMEM87A, PPP2R2A, DUSP1, and miR-92a have great potential as biomarkers for heart failure. The integrated analysis of the mRNA expression spectrum and microRNA-transcription factor-gene revealed the regulatory network of heart failure, which may provide clues to its alternative treatment.
Collapse
Affiliation(s)
- Ziyue Zhang
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211112, Jiangsu, People's Republic of China
| | - Ziying Zou
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211112, Jiangsu, People's Republic of China
| | - Hui Zhang
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211112, Jiangsu, People's Republic of China
| | - Dai-Min Zhang
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211112, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Vickridge E, Faraco CCF, Lo F, Rahimian H, Liu Z, Tehrani P, Djerir B, Ramdzan ZM, Leduy L, Maréchal A, Gingras AC, Nepveu A. The function of BCL11B in base excision repair contributes to its dual role as an oncogene and a haplo-insufficient tumor suppressor gene. Nucleic Acids Res 2024; 52:223-242. [PMID: 37956270 PMCID: PMC10783527 DOI: 10.1093/nar/gkad1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Genetic studies in mice and human cancers established BCL11B as a haploinsufficient tumor suppressor gene. Paradoxically, BCL11B is overexpressed in some human cancers where its knockdown is synthetic lethal. We identified the BCL11B protein in a proximity-dependent biotinylation screen performed with the DNA glycosylase NTHL1. In vitro DNA repair assays demonstrated that both BCL11B and a small recombinant BCL11B213-560 protein lacking transcription regulation potential can stimulate the enzymatic activities of two base excision repair (BER) enzymes: NTHL1 and Pol β. In cells, BCL11B is rapidly recruited to sites of DNA damage caused by laser microirradiation. BCL11B knockdown delays, whereas ectopic expression of BCL11B213-560 accelerates, the repair of oxidative DNA damage. Inactivation of one BCL11B allele in TK6 lymphoblastoid cells causes an increase in spontaneous and radiation-induced mutation rates. In turn, ectopic expression of BCL11B213-560 cooperates with the RAS oncogene in cell transformation by reducing DNA damage and cellular senescence. These findings indicate that BCL11B functions as a BER accessory factor, safeguarding normal cells from acquiring mutations. Paradoxically, it also enables the survival of cancer cells that would otherwise undergo senescence or apoptosis due to oxidative DNA damage resulting from the elevated production of reactive oxygen species.
Collapse
Affiliation(s)
- Elise Vickridge
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Camila C F Faraco
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Fanny Lo
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Hedyeh Rahimian
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Zi Yang Liu
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Payman S Tehrani
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario Canada
| | - Billel Djerir
- Department of Biology and Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Zubaidah M Ramdzan
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Lam Leduy
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Alexandre Maréchal
- Department of Biology and Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alain Nepveu
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Medicine, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Oncology, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
5
|
Thomas M, Bruzeau C, Martin OA, Pollet J, Bender S, Carrion C, Le Noir S, Pinaud E. A dual function for the chromatin organizer Special A-T rich Binding Protein 1 in B-lineage cells. Cell Mol Immunol 2023; 20:1114-1126. [PMID: 37544964 PMCID: PMC10541883 DOI: 10.1038/s41423-023-01069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/17/2023] [Indexed: 08/08/2023] Open
Abstract
SATB1 (Special A-T rich Binding protein 1) is a cell type-specific factor that regulates the genetic network in developing T cells and neurons. In T cells, SATB1 is required for lineage commitment, VDJ recombination, development and maturation. Considering that its expression varies during B-cell differentiation, the involvement of SATB1 needs to be clarified in this lineage. Using a KO mouse model in which SATB1 was deleted from the pro-B-cell stage, we examined the consequences of SATB1 deletion in naive and activated B-cell subsets. Our model indicates first, unlike its essential function in T cells, that SATB1 is dispensable for B-cell development and the establishment of a broad IgH repertoire. Second, we show that SATB1 exhibits an ambivalent function in mature B cells, acting sequentially as a positive and negative regulator of Ig gene transcription in naive and activated cells, respectively. Third, our study indicates that the negative regulatory function of SATB1 in B cells extends to the germinal center response, in which this factor limits somatic hypermutation of Ig genes.
Collapse
Affiliation(s)
- Morgane Thomas
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
- Laboratoire Suivi des Thérapies Innovantes, Institut de Génétique Humaine, UMR 9002 CNRS-UM, Montpellier, France
| | - Charlotte Bruzeau
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Ophélie Alyssa Martin
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Justine Pollet
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Sébastien Bender
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
- Centre Hospitalier Universitaire Dupuytren, Service d'Immunopathologie, Limoges, France
- Centre Hospitalier Universitaire de Limoges, Centre National de l'Amylose AL et Autres Maladies par Dépôt d'Immunoglobulines Monoclonales, Limoges, France
| | - Claire Carrion
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Sandrine Le Noir
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France.
| | - Eric Pinaud
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France.
| |
Collapse
|
6
|
Leyva-Díaz E. CUT homeobox genes: transcriptional regulation of neuronal specification and beyond. Front Cell Neurosci 2023; 17:1233830. [PMID: 37744879 PMCID: PMC10515288 DOI: 10.3389/fncel.2023.1233830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
CUT homeobox genes represent a captivating gene class fulfilling critical functions in the development and maintenance of multiple cell types across a wide range of organisms. They belong to the larger group of homeobox genes, which encode transcription factors responsible for regulating gene expression patterns during development. CUT homeobox genes exhibit two distinct and conserved DNA binding domains, a homeodomain accompanied by one or more CUT domains. Numerous studies have shown the involvement of CUT homeobox genes in diverse developmental processes such as body axis formation, organogenesis, tissue patterning and neuronal specification. They govern these processes by exerting control over gene expression through their transcriptional regulatory activities, which they accomplish by a combination of classic and unconventional interactions with the DNA. Intriguingly, apart from their roles as transcriptional regulators, they also serve as accessory factors in DNA repair pathways through protein-protein interactions. They are highly conserved across species, highlighting their fundamental importance in developmental biology. Remarkably, evolutionary analysis has revealed that CUT homeobox genes have experienced an extraordinary degree of rearrangements and diversification compared to other classes of homeobox genes, including the emergence of a novel gene family in vertebrates. Investigating the functions and regulatory networks of CUT homeobox genes provides significant understanding into the molecular mechanisms underlying embryonic development and tissue homeostasis. Furthermore, aberrant expression or mutations in CUT homeobox genes have been associated with various human diseases, highlighting their relevance beyond developmental processes. This review will overview the well known roles of CUT homeobox genes in nervous system development, as well as their functions in other tissues across phylogeny.
Collapse
|
7
|
Martin OA, Thomas M, Marquet M, Bruzeau C, Garot A, Brousse M, Bender S, Carrion C, Choi JE, Vuong BQ, Gearhart PJ, Maul RW, Le Noir S, Pinaud E. The IgH Eµ-MAR regions promote UNG-dependent error-prone repair to optimize somatic hypermutation. Front Immunol 2023; 14:1030813. [PMID: 36865553 PMCID: PMC9971809 DOI: 10.3389/fimmu.2023.1030813] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
Intoduction Two scaffold/matrix attachment regions (5'- and 3'-MARsEµ ) flank the intronic core enhancer (cEµ) within the immunoglobulin heavy chain locus (IgH). Besides their conservation in mice and humans, the physiological role of MARsEµ is still unclear and their involvement in somatic hypermutation (SHM) has never been deeply evaluated. Methods Our study analyzed SHM and its transcriptional control in a mouse model devoid of MARsEµ , further combined to relevant models deficient for base excision repair and mismatch repair. Results We observed an inverted substitution pattern in of MARsEµ -deficient animals: SHM being decreased upstream from cEµ and increased downstream of it. Strikingly, the SHM defect induced by MARsEµ -deletion was accompanied by an increase of sense transcription of the IgH V region, excluding a direct transcription-coupled effect. Interestingly, by breeding to DNA repair-deficient backgrounds, we showed that the SHM defect, observed upstream from cEµ in this model, was not due to a decrease in AID deamination but rather the consequence of a defect in base excision repair-associated unfaithful repair process. Discussion Our study pointed out an unexpected "fence" function of MARsEµ regions in limiting the error-prone repair machinery to the variable region of Ig gene loci.
Collapse
Affiliation(s)
- Ophélie A Martin
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Morgane Thomas
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Marie Marquet
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Charlotte Bruzeau
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Armand Garot
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Mylène Brousse
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Sébastien Bender
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France.,Centre Hospitalier Universitaire Dupuytren, Service d'Immunopathologie, Limoges, France
| | - Claire Carrion
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Jee Eun Choi
- The Graduate Center, The City University of New York, New York, NY, United States
| | - Bao Q Vuong
- The Graduate Center, The City University of New York, New York, NY, United States
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Sandrine Le Noir
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Eric Pinaud
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| |
Collapse
|
8
|
Vickridge E, Faraco CCF, Tehrani PS, Ramdzan ZM, Djerir B, Rahimian H, Leduy L, Maréchal A, Gingras AC, Nepveu A. The DNA repair function of BCL11A suppresses senescence and promotes continued proliferation of triple-negative breast cancer cells. NAR Cancer 2022; 4:zcac028. [PMID: 36186110 PMCID: PMC9516615 DOI: 10.1093/narcan/zcac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
We identified the BCL11A protein in a proximity-dependent biotinylation screen performed with the DNA glycosylase NTHL1. In vitro, DNA repair assays demonstrate that both BCL11A and a small recombinant BCL11A160-520 protein that is devoid of DNA binding and transcription regulatory domains can stimulate the enzymatic activities of two base excision repair enzymes: NTHL1 and DNA Pol β. Increased DNA repair efficiency, in particular of the base excision repair pathway, is essential for many cancer cells to proliferate in the presence of elevated reactive oxygen species (ROS) produced by cancer-associated metabolic changes. BCL11A is highly expressed in triple-negative breast cancers (TNBC) where its knockdown was reported to reduce clonogenicity and cause tumour regression. We show that BCL11A knockdown in TNBC cells delays repair of oxidative DNA damage, increases the number of oxidized bases and abasic sites in genomic DNA, slows down proliferation and induces cellular senescence. These phenotypes are rescued by ectopic expression of the short BCL11A160-520 protein. We further show that the BCL11A160-520 protein accelerates the repair of oxidative DNA damage and cooperates with RAS in cell transformation assays, thereby enabling cells to avoid senescence and continue to proliferate in the presence of high ROS levels.
Collapse
Affiliation(s)
- Elise Vickridge
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Camila C F Faraco
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Payman S Tehrani
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zubaidah M Ramdzan
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Billel Djerir
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Hedyeh Rahimian
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Lam Leduy
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Alexandre Maréchal
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alain Nepveu
- To whom correspondence should be addressed. Tel: +1 514 398 5839; Fax: +1 514 398 6769;
| |
Collapse
|
9
|
Vickridge E, Faraco CCF, Nepveu A. Base excision repair accessory factors in senescence avoidance and resistance to treatments. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:703-720. [PMID: 36176767 PMCID: PMC9511810 DOI: 10.20517/cdr.2022.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 06/16/2023]
Abstract
Cancer cells, in which the RAS and PI3K pathways are activated, produce high levels of reactive oxygen species (ROS), which cause oxidative DNA damage and ultimately cellular senescence. This process has been documented in tissue culture, mouse models, and human pre-cancerous lesions. In this context, cellular senescence functions as a tumour suppressor mechanism. Some rare cancer cells, however, manage to adapt to avoid senescence and continue to proliferate. One well-documented mode of adaptation involves increased production of antioxidants often associated with inactivation of the KEAP1 tumour suppressor gene and the resulting upregulation of the NRF2 transcription factor. In this review, we detail an alternative mode of adaptation to oxidative DNA damage induced by ROS: the increased activity of the base excision repair (BER) pathway, achieved through the enhanced expression of BER enzymes and DNA repair accessory factors. These proteins, exemplified here by the CUT domain proteins CUX1, CUX2, and SATB1, stimulate the activity of BER enzymes. The ensued accelerated repair of oxidative DNA damage enables cancer cells to avoid senescence despite high ROS levels. As a by-product of this adaptation, these cancer cells exhibit increased resistance to genotoxic treatments including ionizing radiation, temozolomide, and cisplatin. Moreover, considering the intrinsic error rate associated with DNA repair and translesion synthesis, the elevated number of oxidative DNA lesions caused by high ROS leads to the accumulation of mutations in the cancer cell population, thereby contributing to tumour heterogeneity and eventually to the acquisition of resistance, a major obstacle to clinical treatment.
Collapse
Affiliation(s)
- Elise Vickridge
- Goodman Cancer Institute, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- These authors contributed equally to this work
| | - Camila C. F. Faraco
- Goodman Cancer Institute, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Departments of Biochemistry, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- These authors contributed equally to this work
| | - Alain Nepveu
- Goodman Cancer Institute, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Departments of Biochemistry, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Medicine, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Oncology, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
| |
Collapse
|
10
|
Ramdzan ZM, Vickridge E, Faraco CCF, Nepveu A. CUT Domain Proteins in DNA Repair and Cancer. Cancers (Basel) 2021; 13:cancers13122953. [PMID: 34204734 PMCID: PMC8231510 DOI: 10.3390/cancers13122953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary Genetic integrity is ensured by complex groups of proteins involved in DNA repair. In particular, base damage is repaired by enzymes of the base excision repair pathway. Recent studies have revealed that some transcription factors can function as accessory factors that stimulate the enzymatic activities of these DNA repair enzymes. It is well known that defects in DNA repair mechanisms cause the accumulation of changes in DNA, called mutations, that increase the possibility that cells become tumorigenic. Paradoxically, once they have emerged certain cancer cells are acutely dependent on the heightened activities of base excision repair enzymes because their metabolism generates highly reactive molecules that cause multiple types of damage to bases. In this context, the function of accessory factors becomes essential to cancer cell survival. As a by-product of this adaptation, cancer cells become more resistant to therapies that cause DNA damage, such as chemotherapy and radiation. Abstract Recent studies revealed that CUT domains function as accessory factors that accelerate DNA repair by stimulating the enzymatic activities of the base excision repair enzymes OGG1, APE1, and DNA pol β. Strikingly, the role of CUT domain proteins in DNA repair is exploited by cancer cells to facilitate their survival. Cancer cells in which the RAS pathway is activated produce an excess of reactive oxygen species (ROS) which, if not counterbalanced by increased production of antioxidants, causes sustained oxidative DNA damage and, ultimately, cell senescence. These cancer cells can adapt by increasing their capacity to repair oxidative DNA damage in part through elevated expression of CUT domain proteins such as CUX1, CUX2, or SATB1. In particular, CUX1 overexpression was shown to cooperate with RAS in the formation of mammary and lung tumors in mice. Conversely, knockdown of CUX1, CUX2, or SATB1 was found to be synthetic lethal in cancer cells exhibiting high ROS levels as a consequence of activating mutations in KRAS, HRAS, BRAF, or EGFR. Importantly, as a byproduct of their adaptation, cancer cells that overexpress CUT domain proteins exhibit increased resistance to genotoxic treatments such as ionizing radiation, temozolomide, and cisplatin.
Collapse
Affiliation(s)
- Zubaidah M. Ramdzan
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada; (Z.M.R.); (E.V.); (C.C.F.F.)
| | - Elise Vickridge
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada; (Z.M.R.); (E.V.); (C.C.F.F.)
| | - Camila C. F. Faraco
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada; (Z.M.R.); (E.V.); (C.C.F.F.)
- Departments of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
| | - Alain Nepveu
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada; (Z.M.R.); (E.V.); (C.C.F.F.)
- Departments of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
- Departments of Medicine, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
- Departments of Oncology, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
- Correspondence: ; Tel.: +514-398-5839; Fax: +514-398-6769
| |
Collapse
|
11
|
Ramdzan ZM, Vickridge E, Li L, Faraco CCF, Djerir B, Leduy L, Maréchal A, Nepveu A. CUT Domains Stimulate Pol β Enzymatic Activities to Accelerate Completion of Base Excision Repair. J Mol Biol 2021; 433:166806. [PMID: 33450246 DOI: 10.1016/j.jmb.2020.166806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/11/2020] [Accepted: 12/30/2020] [Indexed: 01/19/2023]
Abstract
The full-length CUX1 protein isoform was previously shown to function as an auxiliary factor in base excision repair (BER). Specifically, CUT domains within CUX1 stimulate the enzymatic activities of the OGG1 DNA glycosylase and APE1 endonuclease. Moreover, ectopic expression of CUX1 or CUT domains increased the resistance of cancer cells to treatments that cause oxidative DNA damage and mono-alkylation of bases. Stimulation of OGG1 AP/lyase and APE1 endonuclease activities, however, cannot explain how CUT domains confer resistance to these treatments since these enzymes produce DNA single-strand breaks that are highly toxic to cells. In the present study, we show that CUT domains stimulate the polymerase and deoxyribose phosphate (dRP)-lyase activities of DNA polymerase β to promote BER completion. In agreement with these results, CUX1 knockdown decreases BER completion in cell extracts and causes an increase in the number of abasic sites in genomic DNA following temozolomide treatment. We also show that CUT domains stimulate bypass of intrastrand G-crosslinks by Pol β in vitro, while the resistance of cancer cells to cisplatin treatment is reduced by CUX1 knockdown but restored by ectopic expression of CUT domains. Altogether our results establish CUX1 as an important auxiliary factor that stimulates multiple steps of base excision repair, from the recognition and removal of altered bases to the addition of new nucleotides and removal of 5'-deoxyribose phosphate required for ligation and BER completion. These findings provide a mechanistic explanation for the observed correlation between CUX1 expression and the resistance of cancer cells to genotoxic treatments.
Collapse
Affiliation(s)
- Zubaidah M Ramdzan
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Elise Vickridge
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Li Li
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Camila C F Faraco
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada; Departments of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Billel Djerir
- Department of Biology, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Lam Leduy
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Alexandre Maréchal
- Department of Biology, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Alain Nepveu
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada; Departments of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada; Medicine, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada; Oncology, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada.
| |
Collapse
|
12
|
Madders ECET, Parsons JL. Base Excision Repair in Chromatin and the Requirement for Chromatin Remodelling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:59-75. [PMID: 32383116 DOI: 10.1007/978-3-030-41283-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Base excision repair (BER) is a co-ordinated DNA repair pathway that recognises and repairs chemically modified bases and DNA single strand breaks. It is essential for the maintenance of genome integrity and thus in the prevention of the development of human diseases, including premature ageing, neurodegenerative diseases and cancer. Within the cell, DNA is usually packaged with histone proteins to form chromatin which imposes major constraints on the capacity of cells to perform BER. Therefore chromatin remodelling, stimulated through histone post-translational modifications (PTMs) or ATP-dependent chromatin remodelling complexes (ACRs), are required to stimulate access to the DNA damage and therefore enhance the BER process. Despite this, the molecular mechanisms through which this is co-ordinated and the specific enzymes that promote chromatin remodelling required for BER remain elusive. In this review, we summarise the multitude of in vitro studies utilising mononucleosome substrates containing site-specific DNA base damage that demonstrate the requirement for chromatin remodelling to facilitate BER, particularly in occluded regions. We also highlight preliminary evidence to date for the identity of ACRs, their mechanisms and the role of histone PTMs in modulating the cellular capacity for BER.
Collapse
Affiliation(s)
- Eleanor C E T Madders
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Jason L Parsons
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
13
|
Liu N, Sun Q, Wan L, Wang X, Feng Y, Luo J, Wu H. CUX1, A Controversial Player in Tumor Development. Front Oncol 2020; 10:738. [PMID: 32547943 PMCID: PMC7272708 DOI: 10.3389/fonc.2020.00738] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/17/2020] [Indexed: 01/19/2023] Open
Abstract
CUX1 belongs to the homeodomain transcription factor family and is evolutionarily and functionally conserved from Drosophila to humans. In addition to the involvement in various physiological events including tissue development, cell proliferation, differentiation and migration, and DNA damage response, CUX1 has been implicated in tumorigenesis. Interestingly, CUX1 has been recently recognized as a haploinsufficient tumor suppressor, which is paradoxically overexpressed in tumor cells. While loss of heterozygosity and/or mutations of CUX1 have been frequently detected in many types of cancers, genomic amplification, and overexpression of CUX1 have also been reported in cancer tissues and are correlated with higher tumor grade and poor prognosis. Therefore, deciphering the roles of different CUX1 isoforms and in different tumor stages is required to establish a CUX1-based therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Ning Liu
- Department of Clinical Oncology, Taian City Central Hospital, Tai'an, China
| | - Qiliang Sun
- Department of Respiratory Medicine, Taian City Central Hospital, Tai'an, China
| | - Long Wan
- Department of Clinical Oncology, Taian City Central Hospital, Tai'an, China
| | - Xuan Wang
- Department of Liver Diseases, Central Laboratory, Institute of Clinical Immunology, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yu Feng
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Judong Luo
- Department of Radiation Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Hailong Wu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
14
|
Yokoi A, Villar-Prados A, Oliphint PA, Zhang J, Song X, De Hoff P, Morey R, Liu J, Roszik J, Clise-Dwyer K, Burks JK, O’Halloran TJ, Laurent LC, Sood AK. Mechanisms of nuclear content loading to exosomes. SCIENCE ADVANCES 2019; 5:eaax8849. [PMID: 31799396 PMCID: PMC6867874 DOI: 10.1126/sciadv.aax8849] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/24/2019] [Indexed: 05/20/2023]
Abstract
Exosome cargoes are highly varied and include proteins, small RNAs, and genomic DNA (gDNA). The presence of gDNA suggests that different intracellular compartments contribute to exosome loading, resulting in distinct exosome subpopulations. However, the loading of gDNA and other nuclear contents into exosomes (nExo) remains poorly understood. Here, we identify the relationship between cancer cell micronuclei (MN), which are markers of genomic instability, and nExo formation. Imaging flow cytometry analyses reveal that 10% of exosomes derived from cancer cells and <1% of exosomes derived from blood and ascites from patients with ovarian cancer carry nuclear contents. Treatment with genotoxic drugs resulted in increased MN and nExos both in vitro and in vivo. We observed that multivesicular body precursors and exosomal markers, such as the tetraspanins, directly interact with MN. Collectively, this work provides new insights related to nExos, which have implications for cancer biomarker development.
Collapse
Affiliation(s)
- Akira Yokoi
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alejandro Villar-Prados
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Paul Allen Oliphint
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter De Hoff
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Robert Morey
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Jinsong Liu
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Roszik
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen Clise-Dwyer
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared K. Burks
- Department of Leukemia and Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Theresa J. O’Halloran
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
15
|
Dowrey T, Schwager EE, Duong J, Merkuri F, Zarate YA, Fish JL. Satb2 regulates proliferation and nuclear integrity of pre-osteoblasts. Bone 2019; 127:488-498. [PMID: 31325654 PMCID: PMC6708767 DOI: 10.1016/j.bone.2019.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/08/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022]
Abstract
Special AT-rich sequence binding protein 2 (Satb2) is a matrix attachment region (MAR) binding protein. Satb2 impacts skeletal development by regulating gene transcription required for osteogenic differentiation. Although its role as a high-order transcription factor is well supported, other roles for Satb2 in skeletal development remain unclear. In particular, the impact of dosage sensitivity (heterozygous mutations) and variance on phenotypic severity is still not well understood. To further investigate molecular and cellular mechanisms of Satb2-mediated skeletal defects, we used the CRISPR/Cas9 system to generate Satb2 mutations in MC3T3-E1 cells. Our data suggest that, in addition to its role in differentiation, Satb2 regulates progenitor proliferation. We also find that mutations in Satb2 cause chromatin defects including nuclear blebbing and donut-shaped nuclei. These defects may contribute to a slight increase in apoptosis in mutant cells, but apoptosis is insufficient to explain the proliferation defects. Satb2 expression exhibits population-level variation and is most highly expressed from late G1 to late G2. Based on these data, we hypothesize that Satb2 may regulate proliferation through two separate mechanisms. First, Satb2 may regulate the expression of genes necessary for cell cycle progression in pre-osteoblasts. Second, similar to other MAR-binding proteins, Satb2 may participate in DNA replication. We also hypothesize that variation in the severity or penetrance of Satb2-mediated proliferation defects is due to stochastic variation in Satb2 binding to DNA, which may be buffered in some genetic backgrounds. Further elucidation of the role of Satb2 in proliferation has potential impacts on our understanding of both skeletal defects and cancer.
Collapse
Affiliation(s)
- Todd Dowrey
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Evelyn E Schwager
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Julieann Duong
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Fjodor Merkuri
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America.
| |
Collapse
|
16
|
Kaur S, Ramdzan ZM, Guiot MC, Li L, Leduy L, Ramotar D, Sabri S, Abdulkarim B, Nepveu A. CUX1 stimulates APE1 enzymatic activity and increases the resistance of glioblastoma cells to the mono-alkylating agent temozolomide. Neuro Oncol 2019; 20:484-493. [PMID: 29036362 DOI: 10.1093/neuonc/nox178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Cut Like homeobox 1 (CUX1), which encodes an auxiliary factor in base excision repair, resides on 7q22.1, the most frequently and highly amplified chromosomal region in glioblastomas. The resistance of glioblastoma cells to the mono-alkylating agent temozolomide is determined to some extent by the activity of apurinic/apyrimidinic endonuclease 1 (APE1). Methods To monitor the effect of CUX1 and its CUT domains on APE1 activity, DNA repair assays were performed with purified proteins and cell extracts. CUX1 protein expression was analyzed by immunohistochemistry using a tumor microarray of 150 glioblastoma samples. The effect of CUX1 knockdown and overexpression on the resistance of glioblastoma cell lines to temozolomide was investigated. Results We show that CUT domains stimulate APE1 activity. In agreement with these findings, CUX1 knockdown causes an increase in the number of abasic sites in genomic DNA and a decrease in APE1 activity as measured in cell extracts. Conversely, ectopic CUX1 expression increases APE1 activity and lowers the number of abasic sites. Having established that CUX1 is expressed at high levels in most glioblastomas, we next show that the resistance of glioblastoma cells to temozolomide and to a combined treatment of temozolomide and ionizing radiation is reduced following CUX1 knockdown, but increased by overexpression of CUX1 or a short protein containing only 2 CUT domains, which is active in DNA repair but devoid of transcriptional activity. Conclusion These findings indicate that CUX1 expression level impacts on the response of glioblastoma cells to treatment and identifies the CUT domains as potential therapeutic targets.
Collapse
Affiliation(s)
- Simran Kaur
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Departments of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Zubaidah M Ramdzan
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Marie-Christine Guiot
- Pathology, McGill University, Montreal, Quebec, Canada.,Departments of Pathology, Neurology, and Neurosurgery, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Li Li
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Lam Leduy
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Dindial Ramotar
- Maisonneuve-Rosemont Hospital, Research Center, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Siham Sabri
- Oncology, McGill University, Montreal, Quebec, Canada
| | | | - Alain Nepveu
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Departments of Biochemistry, McGill University, Montreal, Quebec, Canada.,Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Fredholm S, Willerslev-Olsen A, Met Ö, Kubat L, Gluud M, Mathiasen SL, Friese C, Blümel E, Petersen DL, Hu T, Nastasi C, Lindahl LM, Buus TB, Krejsgaard T, Wasik MA, Kopp KL, Koralov SB, Persson JL, Bonefeld CM, Geisler C, Woetmann A, Iversen L, Becker JC, Ødum N. SATB1 in Malignant T Cells. J Invest Dermatol 2018; 138:1805-1815. [PMID: 29751003 DOI: 10.1016/j.jid.2018.03.1526] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/20/2022]
Abstract
Deficient expression of SATB1 hampers thymocyte development and results in inept T-cell lineages. Recent data implicate dysregulated SATB1 expression in the pathogenesis of mycosis fungoides, the most frequent variant of cutaneous T-cell lymphoma. Here, we report on a disease stage-associated decrease of SATB1 expression and an inverse expression of STAT5 and SATB1 in situ. STAT5 inhibited SATB1 expression through induction of microRNA-155. Decreased SATB1 expression triggered enhanced expression of IL-5 and IL-9 (but not IL-6 and IL-32), whereas increased SATB1 expression had the opposite effect, indicating that the microRNA-155 target SATB1 is a repressor of IL-5 and IL-9 in malignant T cells. In accordance, inhibition of STAT5 and its upstream activator JAK3 triggered increased SATB1 expression and a concomitant suppression of IL-5 and IL-9 expression in malignant T cells. In conclusion, we provide a mechanistic link between the proto-oncogenic JAK3/STAT5/microRNA-155 pathway, SATB1, and cytokines linked to CTCL severity and progression, indicating that SATB1 dysregulation is involved in cutaneous T-cell lymphoma pathogenesis.
Collapse
Affiliation(s)
- Simon Fredholm
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Özcan Met
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark; Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Linda Kubat
- Translational Skin Cancer Research, German Cancer Consortium (DKTK and DKFZ), Partner Site Essen, Essen, Germany
| | - Maria Gluud
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sarah L Mathiasen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Christina Friese
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Edda Blümel
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - David L Petersen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tengpeng Hu
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Nastasi
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lise M Lindahl
- Department of Dermatology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | - Terkild B Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katharina L Kopp
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Jenny L Persson
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden; Division of Basal Tumor Biology, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Charlotte M Bonefeld
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | - Jürgen C Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK and DKFZ), Partner Site Essen, Essen, Germany.
| | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Moor NA, Lavrik OI. Protein–Protein Interactions in DNA Base Excision Repair. BIOCHEMISTRY (MOSCOW) 2018; 83:411-422. [DOI: 10.1134/s0006297918040120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Ba X, Boldogh I. 8-Oxoguanine DNA glycosylase 1: Beyond repair of the oxidatively modified base lesions. Redox Biol 2017; 14:669-678. [PMID: 29175754 PMCID: PMC5975208 DOI: 10.1016/j.redox.2017.11.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/08/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and the resulting damage to genomic DNA are inevitable consequences of endogenous physiological processes, and they are amplified by cellular responses to environmental exposures. One of the most frequent reactions of reactive oxygen species with DNA is the oxidation of guanine to pre-mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG). Despite the vulnerability of guanine to oxidation, vertebrate genes are primarily embedded in GC-rich genomic regions, and over 72% of the promoters of human genes belong to a class with a high GC content. In the promoter, 8-oxoG may serve as an epigenetic mark, and when complexed with the oxidatively inactivated repair enzyme 8-oxoguanine DNA glycosylase 1, provide a platform for the coordination of the initial steps of DNA repair and the assembly of the transcriptional machinery to launch the prompt and preferential expression of redox-regulated genes. Deviations/variations from this artful coordination may be the etiological links between guanine oxidation and various cellular pathologies and diseases during ageing processes.
Collapse
Affiliation(s)
- Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China; School of Life Science, Northeast Normal University, Changchun, Jilin 130024, China.
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| |
Collapse
|
20
|
Pan L, Zhu B, Hao W, Zeng X, Vlahopoulos SA, Hazra TK, Hegde ML, Radak Z, Bacsi A, Brasier AR, Ba X, Boldogh I. Oxidized Guanine Base Lesions Function in 8-Oxoguanine DNA Glycosylase-1-mediated Epigenetic Regulation of Nuclear Factor κB-driven Gene Expression. J Biol Chem 2016; 291:25553-25566. [PMID: 27756845 DOI: 10.1074/jbc.m116.751453] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/14/2016] [Indexed: 11/06/2022] Open
Abstract
A large percentage of redox-responsive gene promoters contain evolutionarily conserved guanine-rich clusters; guanines are the bases most susceptible to oxidative modification(s). Consequently, 7,8-dihydro-8-oxoguanine (8-oxoG) is one of the most abundant base lesions in promoters and is primarily repaired via the 8-oxoguanine DNA glycosylase-1 (OOG1)-initiated base excision repair pathway. In view of a prompt cellular response to oxidative challenge, we hypothesized that the 8-oxoG lesion and the cognate repair protein OGG1 are utilized in transcriptional gene activation. Here, we document TNFα-induced enrichment of both 8-oxoG and OGG1 in promoters of pro-inflammatory genes, which precedes interaction of NF-κB with its DNA-binding motif. OGG1 bound to 8-oxoG upstream from the NF-κB motif increased its DNA occupancy by promoting an on-rate of both homodimeric and heterodimeric forms of NF-κB. OGG1 depletion decreased both NF-κB binding and gene expression, whereas Nei-like glycosylase-1 and -2 had a marginal effect. These results are the first to document a novel paradigm wherein the DNA repair protein OGG1 bound to its substrate is coupled to DNA occupancy of NF-κB and functions in epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Lang Pan
- From the Departments of Microbiology and Immunology and.,the Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China, and
| | - Bing Zhu
- From the Departments of Microbiology and Immunology and
| | - Wenjing Hao
- the Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China, and
| | - Xianlu Zeng
- the Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China, and
| | | | - Tapas K Hazra
- Medicine, and.,the Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Muralidhar L Hegde
- the Department of Radiation Oncology and Neurology, Methodist Research Institute, Houston, Texas 77030
| | - Zsolt Radak
- From the Departments of Microbiology and Immunology and
| | - Attila Bacsi
- From the Departments of Microbiology and Immunology and
| | - Allan R Brasier
- Medicine, and.,the Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Xueqing Ba
- From the Departments of Microbiology and Immunology and .,the Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China, and
| | - Istvan Boldogh
- From the Departments of Microbiology and Immunology and .,the Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|