1
|
Rea M, Kimmerer G, Mittendorf S, Xiong X, Green M, Chandler D, Saintilnord W, Blackburn J, Gao T, Fondufe-Mittendorf YN. A dynamic model of inorganic arsenic-induced carcinogenesis reveals an epigenetic mechanism for epithelial-mesenchymal plasticity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123586. [PMID: 38467368 PMCID: PMC11005477 DOI: 10.1016/j.envpol.2024.123586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Inorganic arsenic (iAs) causes cancer by initiating dynamic transitions between epithelial and mesenchymal cell phenotypes. These transitions transform normal cells into cancerous cells, and cancerous cells into metastatic cells. Most in vitro models assume that transitions between states are binary and complete, and do not consider the possibility that intermediate, stable cellular states might exist. In this paper, we describe a new, two-hit in vitro model of iAs-induced carcinogenesis that extends to 28 weeks of iAs exposure. Through week 17, the model faithfully recapitulates known and expected phenotypic, genetic, and epigenetic characteristics of iAs-induced carcinogenesis. By 28 weeks, however, exposed cells exhibit stable, intermediate phenotypes and epigenetic properties, and key transcription factor promoters (SNAI1, ZEB1) enter an epigenetically poised or bivalent state. These data suggest that key epigenetic transitions and cellular states exist during iAs-induced epithelial-to-mesenchymal transition (EMT), and that it is important for our in vitro models to encapsulate all aspects of EMT and the mesenchymal-to-epithelial transition (MET). In so doing, and by understanding the epigenetic systems controlling these transitions, we might find new, unexpected opportunities for developing targeted, cell state-specific therapeutics.
Collapse
Affiliation(s)
- Matthew Rea
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA
| | - Greg Kimmerer
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Shania Mittendorf
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Xiaopeng Xiong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Meghan Green
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Darrell Chandler
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA
| | - Wesley Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Jessica Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | | |
Collapse
|
2
|
Hasani S, Young LEA, Van Nort W, Banerjee M, Rivas DR, Kim J, Xiong X, Sun RC, Gentry MS, Sesaki H, Gao T. Inhibition of mitochondrial fission activates glycogen synthesis to support cell survival in colon cancer. Cell Death Dis 2023; 14:664. [PMID: 37816729 PMCID: PMC10564897 DOI: 10.1038/s41419-023-06202-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Metabolic reprogramming has been recognized as one of the major mechanisms that fuel tumor initiation and progression. Our previous studies demonstrate that activation of Drp1 promotes fatty acid oxidation and downstream Wnt signaling. Here we investigate the role of Drp1 in regulating glycogen metabolism in colon cancer. Knockdown of Drp1 decreases mitochondrial respiration without increasing glycolysis. Analysis of cellular metabolites reveals that the levels of glucose-6-phosphate, a precursor for glycogenesis, are significantly elevated whereas pyruvate and other TCA cycle metabolites remain unchanged in Drp1 knockdown cells. Additionally, silencing Drp1 activates AMPK to stimulate the expression glycogen synthase 1 (GYS1) mRNA and promote glycogen storage. Using 3D organoids from Apcf/f/Villin-CreERT2 models, we show that glycogen levels are elevated in tumor organoids upon genetic deletion of Drp1. Similarly, increased GYS1 expression and glycogen accumulation are detected in xenograft tumors derived from Drp1 knockdown colon cancer cells. Functionally, increased glycogen storage provides survival advantage to Drp1 knockdown cells. Co-targeting glycogen phosphorylase-mediated glycogenolysis sensitizes Drp1 knockdown cells to chemotherapy drug treatment. Taken together, our results suggest that Drp1-loss activates glucose uptake and glycogenesis as compensative metabolic pathways to promote cell survival. Combined inhibition of glycogen metabolism may enhance the efficacy of chemotherapeutic agents for colon cancer treatment.
Collapse
Affiliation(s)
- Sumati Hasani
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Warren Van Nort
- College of Agriculture, Food & Environment, University of Kentucky, Lexington, KY, USA
| | - Moumita Banerjee
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0679, USA
| | - Dylan R Rivas
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0679, USA
| | - Jinhwan Kim
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0679, USA
| | - Xiaopeng Xiong
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0679, USA
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Matthew S Gentry
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0679, USA.
| |
Collapse
|
3
|
Crossay E, Jullian V, Trinel M, Sagnat D, Hamel D, Groppi E, Rolland C, Stigliani JL, Mejia K, Cabanillas BJ, Alric L, Buscail E, El Kalamouni C, Mavingui P, Deraison C, Racaud-Sultan C, Fabre N. Daphnanes diterpenes from the latex of Hura crepitans L. and their PKCζ-dependent anti-proliferative activity on colorectal cancer cells. Bioorg Med Chem 2023; 90:117366. [PMID: 37329676 DOI: 10.1016/j.bmc.2023.117366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/04/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
Hura crepitans L. (Euphorbiaceae) is a thorn-covered tree widespread in South America, Africa and Asia which produces an irritating milky latex containing numerous secondary metabolites, notably daphnane-type diterpenes known as Protein Kinase C activators. Fractionation of a dichloromethane extract of the latex led to the isolation of five new daphnane diterpenes (1-5), along with two known analogs (6-7) including huratoxin. Huratoxin (6) and 4',5'-epoxyhuratoxin (4) were found to exhibit significant and selective cell growth inhibition against colorectal cancer cell line Caco-2 and primary colorectal cancer cells cultured as colonoids. The underlying mechanism of 4 and 6 was further investigated revealing the involvement of PKCζ in the cytostatic activity.
Collapse
Affiliation(s)
- Elise Crossay
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| | | | - Manon Trinel
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| | - David Sagnat
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France; Toulouse Organoids Platform, Institut de Recherche en Santé Digestive, INSERM, Toulouse, France
| | - Dimitri Hamel
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France; LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Emie Groppi
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France
| | | | - Kember Mejia
- Instituto de Investigaciones de la Amazonia Peruana (IIAP), Iquitos, Peru
| | - Billy Joel Cabanillas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Laurent Alric
- Pole Digestif, Centre Hospitalier Universitaire, Toulouse, France
| | - Etienne Buscail
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France; Département de Chirurgie Digestive, Unité de Chirurgie Colorectale, Centre Hospitalier Universitaire, Toulouse, France
| | - Chaker El Kalamouni
- UMR PIMIT, Université de La Réunion, INSERM U1187, CNRS 9192, IRD 249, La Réunion, France
| | - Patrick Mavingui
- UMR PIMIT, Université de La Réunion, INSERM U1187, CNRS 9192, IRD 249, La Réunion, France
| | - Céline Deraison
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France
| | | | - Nicolas Fabre
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France.
| |
Collapse
|
4
|
Xiong X, Hasani S, Young LEA, Rivas DR, Skaggs AT, Martinez R, Wang C, Weiss HL, Gentry MS, Sun RC, Gao T. Activation of Drp1 promotes fatty acids-induced metabolic reprograming to potentiate Wnt signaling in colon cancer. Cell Death Differ 2022; 29:1913-1927. [PMID: 35332310 PMCID: PMC9525627 DOI: 10.1038/s41418-022-00974-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/09/2022] Open
Abstract
Cancer cells are known for their ability to adapt variable metabolic programs depending on the availability of specific nutrients. Our previous studies have shown that uptake of fatty acids alters cellular metabolic pathways in colon cancer cells to favor fatty acid oxidation. Here, we show that fatty acids activate Drp1 to promote metabolic plasticity in cancer cells. Uptake of fatty acids (FAs) induces mitochondrial fragmentation by promoting ERK-dependent phosphorylation of Drp1 at the S616 site. This increased phosphorylation of Drp1 enhances its dimerization and interaction with Mitochondrial Fission Factor (MFF) at the mitochondria. Consequently, knockdown of Drp1 or MFF attenuates fatty acid-induced mitochondrial fission. In addition, uptake of fatty acids triggers mitophagy via a Drp1- and p62-dependent mechanism to protect mitochondrial integrity. Moreover, results from metabolic profiling analysis reveal that silencing Drp1 disrupts cellular metabolism and blocks fatty acid-induced metabolic reprograming by inhibiting fatty acid utilization. Functionally, knockdown of Drp1 decreases Wnt/β-catenin signaling by preventing fatty acid oxidation-dependent acetylation of β-catenin. As a result, Drp1 depletion inhibits the formation of tumor organoids in vitro and xenograft tumor growth in vivo. Taken together, our study identifies Drp1 as a key mediator that connects mitochondrial dynamics with fatty acid metabolism and cancer cell signaling.
Collapse
Affiliation(s)
- Xiaopeng Xiong
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0679, USA
| | - Sumati Hasani
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536-0679, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536-0679, USA
| | - Dylan R Rivas
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0679, USA
| | - Ashley T Skaggs
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536-0679, USA
| | - Rebecca Martinez
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0679, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0679, USA
| | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0679, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536-0679, USA
| | - Ramon C Sun
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0679, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536-0679, USA
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0679, USA.
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536-0679, USA.
| |
Collapse
|
5
|
Guo B, Xiong X, Hasani S, Wen YA, Li AT, Martinez R, Skaggs AT, Gao T. Downregulation of PHLPP induced by endoplasmic reticulum stress promotes eIF2α phosphorylation and chemoresistance in colon cancer. Cell Death Dis 2021; 12:960. [PMID: 34663797 PMCID: PMC8523518 DOI: 10.1038/s41419-021-04251-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
Aberrant activation of endoplasmic reticulum (ER) stress by extrinsic and intrinsic factors contributes to tumorigenesis and resistance to chemotherapies in various cancer types. Our previous studies have shown that the downregulation of PHLPP, a novel family of Ser/Thr protein phosphatases, promotes tumor initiation, and progression. Here we investigated the functional interaction between the ER stress and PHLPP expression in colon cancer. We found that induction of ER stress significantly decreased the expression of PHLPP proteins through a proteasome-dependent mechanism. Knockdown of PHLPP increased the phosphorylation of eIF2α as well as the expression of autophagy-associated genes downstream of the eIF2α/ATF4 signaling pathway. In addition, results from immunoprecipitation experiments showed that PHLPP interacted with eIF2α and this interaction was enhanced by ER stress. Functionally, knockdown of PHLPP improved cell survival under ER stress conditions, whereas overexpression of a degradation-resistant mutant PHLPP1 had the opposite effect. Taken together, our studies identified ER stress as a novel mechanism that triggers PHLPP downregulation; and PHLPP-loss promotes chemoresistance by upregulating the eIF2α/ATF4 signaling axis in colon cancer cells.
Collapse
Affiliation(s)
- Bianqin Guo
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiaopeng Xiong
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Sumati Hasani
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Yang-An Wen
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Austin T Li
- Paul Laurence Dunbar High School, Lexington, KY, USA
- Princeton University, Princeton, NJ, USA
| | - Rebecca Martinez
- Agricultural and Medical Biotechnology Program, College of Agriculture, Food & Environment, University of Kentucky, Lexington, KY, USA
| | - Ashley T Skaggs
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
6
|
PHLPPing the balance: restoration of protein kinase C in cancer. Biochem J 2021; 478:341-355. [PMID: 33502516 DOI: 10.1042/bcj20190765] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022]
Abstract
Protein kinase signalling, which transduces external messages to mediate cellular growth and metabolism, is frequently deregulated in human disease, and specifically in cancer. As such, there are 77 kinase inhibitors currently approved for the treatment of human disease by the FDA. Due to their historical association as the receptors for the tumour-promoting phorbol esters, PKC isozymes were initially targeted as oncogenes in cancer. However, a meta-analysis of clinical trials with PKC inhibitors in combination with chemotherapy revealed that these treatments were not advantageous, and instead resulted in poorer outcomes and greater adverse effects. More recent studies suggest that instead of inhibiting PKC, therapies should aim to restore PKC function in cancer: cancer-associated PKC mutations are generally loss-of-function and high PKC protein is protective in many cancers, including most notably KRAS-driven cancers. These recent findings have reframed PKC as having a tumour suppressive function. This review focusses on a potential new mechanism of restoring PKC function in cancer - through targeting of its negative regulator, the Ser/Thr protein phosphatase PHLPP. This phosphatase regulates PKC steady-state levels by regulating the phosphorylation of a key site, the hydrophobic motif, whose phosphorylation is necessary for the stability of the enzyme. We also consider whether the phosphorylation of the potent oncogene KRAS provides a mechanism by which high PKC expression may be protective in KRAS-driven human cancers.
Collapse
|
7
|
Mattson AM, Begun DL, Molstad DHH, Meyer MA, Oursler MJ, Westendorf JJ, Bradley EW. Deficiency in the phosphatase PHLPP1 suppresses osteoclast-mediated bone resorption and enhances bone formation in mice. J Biol Chem 2019; 294:11772-11784. [PMID: 31189651 DOI: 10.1074/jbc.ra119.007660] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Enhanced osteoclast-mediated bone resorption and diminished formation may promote bone loss. Pleckstrin homology (PH) domain and leucine-rich repeat protein phosphatase 1 (Phlpp1) regulates protein kinase C (PKC) and other proteins in the control of bone mass. Germline Phlpp1 deficiency reduces bone volume, but the mechanisms remain unknown. Here, we found that conditional Phlpp1 deletion in murine osteoclasts increases their numbers, but also enhances bone mass. Despite elevating osteoclasts, Phlpp1 deficiency did not increase serum markers of bone resorption, but elevated serum markers of bone formation. These results suggest that Phlpp1 suppresses osteoclast formation and production of paracrine factors controlling osteoblast activity. Phlpp1 deficiency elevated osteoclast numbers and size in ex vivo osteoclastogenesis assays, accompanied by enhanced expression of proto-oncogene C-Fms (C-Fms) and hyper-responsiveness to macrophage colony-stimulating factor (M-CSF) in bone marrow macrophages. Although Phlpp1 deficiency increased TRAP+ cell numbers, it suppressed actin-ring formation and bone resorption in these assays. We observed that Phlpp1 deficiency increases activity of PKCζ, a PKC isoform controlling cell polarity, and that addition of a PKCζ pseudosubstrate restores osteoclastogenesis and bone resorption of Phlpp1-deficient osteoclasts. Moreover, Phlpp1 deficiency increased expression of the bone-coupling factor collagen triple helix repeat-containing 1 (Cthrc1). Conditioned growth medium derived from Phlpp1-deficient osteoclasts enhanced mineralization of ex vivo osteoblast cultures, an effect that was abrogated by Cthrc1 knockdown. In summary, Phlpp1 critically regulates osteoclast numbers, and Phlpp1 deficiency enhances bone mass despite higher osteoclast numbers because it apparently disrupts PKCζ activity, cell polarity, and bone resorption and increases secretion of bone-forming Cthrc1.
Collapse
Affiliation(s)
- Anna M Mattson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - Dana L Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - David H H Molstad
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - Margaret A Meyer
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - Merry Jo Oursler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55901.,Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55901.,Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55901
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55901
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901 .,Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, Minnesota 55901
| |
Collapse
|
8
|
Stevens PD, Wen YA, Xiong X, Zaytseva YY, Li AT, Wang C, Stevens AT, Farmer TN, Gan T, Weiss HL, Inagaki M, Marchetto S, Borg JP, Gao T. Erbin Suppresses KSR1-Mediated RAS/RAF Signaling and Tumorigenesis in Colorectal Cancer. Cancer Res 2018; 78:4839-4852. [PMID: 29980571 DOI: 10.1158/0008-5472.can-17-3629] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/01/2018] [Accepted: 07/02/2018] [Indexed: 01/07/2023]
Abstract
Erbin belongs to the LAP (leucine-rich repeat and PDZ domain) family of scaffolding proteins that plays important roles in orchestrating cell signaling. Here, we show that Erbin functions as a tumor suppressor in colorectal cancer. Analysis of Erbin expression in colorectal cancer patient specimens revealed that Erbin was downregulated at both mRNA and protein levels in tumor tissues. Knockdown of Erbin disrupted epithelial cell polarity and increased cell proliferation in 3D culture. In addition, silencing Erbin resulted in increased amplitude and duration of signaling through Akt and RAS/RAF pathways. Erbin loss induced epithelial-mesenchymal transition, which coincided with a significant increase in cell migration and invasion. Erbin interacted with kinase suppressor of Ras 1 (KSR1) and displaced it from the RAF/MEK/ERK complex to prevent signal propagation. Furthermore, genetic deletion of Erbin in Apc knockout mice promoted tumorigenesis and significantly reduced survival. Tumor organoids derived from Erbin/Apc double knockout mice displayed increased tumor initiation potential and activation of Wnt signaling. Results from gene set enrichment analysis revealed that Erbin expression associated positively with the E-cadherin adherens junction pathway and negatively with Wnt signaling in human colorectal cancer. Taken together, our study identifies Erbin as a negative regulator of tumor initiation and progression by suppressing Akt and RAS/RAF signaling in vivoSignificance: These findings establish the scaffold protein Erbin as a negative regulator of EMT and tumorigenesis in colorectal cancer through direct suppression of Akt and RAS/RAF signaling. Cancer Res; 78(17); 4839-52. ©2018 AACR.
Collapse
Affiliation(s)
- Payton D Stevens
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky
| | - Yang-An Wen
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Xiaopeng Xiong
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Yekaterina Y Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Austin T Li
- Paul Laurence Dunbar High School, Lexington, Kentucky
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Ashley T Stevens
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky
| | - Trevor N Farmer
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Tong Gan
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky.,Department of Surgery, University of Kentucky, Lexington, Kentucky
| | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Sylvie Marchetto
- Centre de Recherche en Cancérologie de Marseille (CRCM), 'Cell Polarity, Cell Signalling, and Cancer', Equipe Labellisée Ligue Contre le Cancer, Inserm U1068, Marseille, France.,CNRS, UMR7258, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille University, UM 105, Marseille, France
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille (CRCM), 'Cell Polarity, Cell Signalling, and Cancer', Equipe Labellisée Ligue Contre le Cancer, Inserm U1068, Marseille, France.,CNRS, UMR7258, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille University, UM 105, Marseille, France
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky. .,Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
9
|
Molecular mechanism of the TP53-MDM2-AR-AKT signalling network regulation by USP12. Oncogene 2018; 37:4679-4691. [DOI: 10.1038/s41388-018-0283-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 12/20/2017] [Accepted: 03/23/2018] [Indexed: 11/08/2022]
|
10
|
Mathur A, Pandey VK, Kakkar P. PHLPP: a putative cellular target during insulin resistance and type 2 diabetes. J Endocrinol 2017; 233:R185-R198. [PMID: 28428363 DOI: 10.1530/joe-17-0081] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/20/2017] [Indexed: 12/29/2022]
Abstract
Progressive research in the past decade converges to the impact of PHLPP in regulating the cellular metabolism through PI3K/AKT inhibition. Aberrations in PKB/AKT signaling coordinates with impaired insulin secretion and insulin resistance, identified during T2D, obesity and cardiovascular disorders which brings in the relevance of PHLPPs in the metabolic paradigm. In this review, we discuss the impact of PHLPP isoforms in insulin signaling and its associated cellular events including mitochondrial dysfunction, DNA damage, autophagy and cell death. The article highlights the plausible molecular targets that share the role during insulin-resistant states, whose understanding can be extended into treatment responses to facilitate targeted drug discovery for T2D and allied metabolic syndromes.
Collapse
Affiliation(s)
- Alpana Mathur
- Herbal Research LaboratoryCSIR-Indian Institute of Toxicology Research, Lucknow, India
- Babu Banarasi Das UniversityBBD City, Lucknow, India
| | - Vivek Kumar Pandey
- Herbal Research LaboratoryCSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative ResearchCSIR-IITR, Lucknow, India
| | - Poonam Kakkar
- Herbal Research LaboratoryCSIR-Indian Institute of Toxicology Research, Lucknow, India
- Babu Banarasi Das UniversityBBD City, Lucknow, India
- Academy of Scientific and Innovative ResearchCSIR-IITR, Lucknow, India
| |
Collapse
|