1
|
Schoenmakers LLJ, den Uijl MJ, Postma JL, van den Akker TAP, Huck WTS, Driessen AJM. SecYEG-mediated translocation in a model synthetic cell. Synth Biol (Oxf) 2024; 9:ysae007. [PMID: 38807757 PMCID: PMC11131593 DOI: 10.1093/synbio/ysae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
Giant unilamellar vesicles (GUVs) provide a powerful model compartment for synthetic cells. However, a key challenge is the incorporation of membrane proteins that allow for transport, energy transduction, compartment growth and division. Here, we have successfully incorporated the membrane protein complex SecYEG-the key bacterial translocase that is essential for the incorporation of newly synthesized membrane proteins-in GUVs. Our method consists of fusion of small unilamellar vesicles containing reconstituted SecYEG into GUVs, thereby forming SecGUVs. These are suitable for large-scale experiments while maintaining a high protein:lipid ratio. We demonstrate that incorporation of SecYEG into GUVs does not inhibit its translocation efficiency. Robust membrane protein functionalized proteo-GUVs are promising and flexible compartments for use in the formation and growth of synthetic cells.
Collapse
Affiliation(s)
- Ludo L J Schoenmakers
- Physical-Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Max J den Uijl
- Groningen Biomolecular Sciences and Biotechnology, Molecular Biotechnology, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Jelle L Postma
- General Instrumentation, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Tim A P van den Akker
- Groningen Biomolecular Sciences and Biotechnology, Molecular Biotechnology, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Wilhelm T S Huck
- Physical-Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Arnold J M Driessen
- Groningen Biomolecular Sciences and Biotechnology, Molecular Biotechnology, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
2
|
den Uijl MJ, Driessen AJM. Phospholipid dependency of membrane protein insertion by the Sec translocon. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184232. [PMID: 37734458 DOI: 10.1016/j.bbamem.2023.184232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Membrane protein insertion into and translocation across the bacterial cytoplasmic membrane are essential processes facilitated by the Sec translocon. Membrane insertion occurs co-translationally whereby the ribosome nascent chain is targeted to the translocon via signal recognition particle and its receptor FtsY. The phospholipid dependence of membrane protein insertion has remained mostly unknown. Here we assessed in vitro the dependence of the SecA independent insertion of the mannitol permease MtlA into the membrane on the main phospholipid species present in Escherichia coli. We observed that insertion depends on the presence of phosphatidylglycerol and is due to the anionic nature of the polar headgroup, while insertion is stimulated by the zwitterionic phosphatidylethanolamine. We found an optimal insertion efficiency at about 30 mol% DOPG and 50 mol% DOPE which approaches the bulk membrane phospholipid composition of E. coli.
Collapse
Affiliation(s)
- Max J den Uijl
- University of Groningen, Groningen Biomolecular Sciences and Biotechnology, 9747 AG Groningen, the Netherlands
| | - Arnold J M Driessen
- University of Groningen, Groningen Biomolecular Sciences and Biotechnology, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
3
|
Njenga R, Boele J, Öztürk Y, Koch HG. Coping with stress: How bacteria fine-tune protein synthesis and protein transport. J Biol Chem 2023; 299:105163. [PMID: 37586589 PMCID: PMC10502375 DOI: 10.1016/j.jbc.2023.105163] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Maintaining a functional proteome under different environmental conditions is challenging for every organism, in particular for unicellular organisms, such as bacteria. In order to cope with changing environments and stress conditions, bacteria depend on strictly coordinated proteostasis networks that control protein production, folding, trafficking, and degradation. Regulation of ribosome biogenesis and protein synthesis are cornerstones of this cellular adaptation in all domains of life, which is rationalized by the high energy demand of both processes and the increased resistance of translationally silent cells against internal or external poisons. Reduced protein synthesis ultimately also reduces the substrate load for protein transport systems, which are required for maintaining the periplasmic, inner, and outer membrane subproteomes. Consequences of impaired protein transport have been analyzed in several studies and generally induce a multifaceted response that includes the upregulation of chaperones and proteases and the simultaneous downregulation of protein synthesis. In contrast, generally less is known on how bacteria adjust the protein targeting and transport machineries to reduced protein synthesis, e.g., when cells encounter stress conditions or face nutrient deprivation. In the current review, which is mainly focused on studies using Escherichia coli as a model organism, we summarize basic concepts on how ribosome biogenesis and activity are regulated under stress conditions. In addition, we highlight some recent developments on how stress conditions directly impair protein targeting to the bacterial membrane. Finally, we describe mechanisms that allow bacteria to maintain the transport of stress-responsive proteins under conditions when the canonical protein targeting pathways are impaired.
Collapse
Affiliation(s)
- Robert Njenga
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Julian Boele
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Allen WJ, Collinson I. A unifying mechanism for protein transport through the core bacterial Sec machinery. Open Biol 2023; 13:230166. [PMID: 37643640 PMCID: PMC10465204 DOI: 10.1098/rsob.230166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Encapsulation and compartmentalization are fundamental to the evolution of cellular life, but they also pose a challenge: how to partition the molecules that perform biological functions-the proteins-across impermeable barriers into sub-cellular organelles, and to the outside. The solution lies in the evolution of specialized machines, translocons, found in every biological membrane, which act both as gate and gatekeeper across and into membrane bilayers. Understanding how these translocons operate at the molecular level has been a long-standing ambition of cell biology, and one that is approaching its denouement; particularly in the case of the ubiquitous Sec system. In this review, we highlight the fruits of recent game-changing technical innovations in structural biology, biophysics and biochemistry to present a largely complete mechanism for the bacterial version of the core Sec machinery. We discuss the merits of our model over alternative proposals and identify the remaining open questions. The template laid out by the study of the Sec system will be of immense value for probing the many other translocons found in diverse biological membranes, towards the ultimate goal of altering or impeding their functions for pharmaceutical or biotechnological purposes.
Collapse
Affiliation(s)
- William J. Allen
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
5
|
Caliskan M, Poschmann G, Gudzuhn M, Waldera-Lupa D, Molitor R, Strunk CH, Streit WR, Jaeger KE, Stühler K, Kovacic F. Pseudomonas aeruginosa responds to altered membrane phospholipid composition by adjusting the production of two-component systems, proteases and iron uptake proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159317. [PMID: 37054907 DOI: 10.1016/j.bbalip.2023.159317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023]
Abstract
Membrane protein and phospholipid (PL) composition changes in response to environmental cues and during infections. To achieve these, bacteria use adaptation mechanisms involving covalent modification and remodelling of the acyl chain length of PLs. However, little is known about bacterial pathways regulated by PLs. Here, we investigated proteomic changes in the biofilm of P. aeruginosa phospholipase mutant (∆plaF) with altered membrane PL composition. The results revealed profound alterations in the abundance of many biofilm-related two-component systems (TCSs), including accumulation of PprAB, a key regulator of the transition to biofilm. Furthermore, a unique phosphorylation pattern of transcriptional regulators, transporters and metabolic enzymes, as well as differential production of several proteases, in ∆plaF, indicate that PlaF-mediated virulence adaptation involves complex transcriptional and posttranscriptional response. Moreover, proteomics and biochemical assays revealed the depletion of pyoverdine-mediated iron uptake pathway proteins in ∆plaF, while proteins from alternative iron-uptake systems were accumulated. These suggest that PlaF may function as a switch between different iron-acquisition pathways. The observation that PL-acyl chain modifying and PL synthesis enzymes were overproduced in ∆plaF reveals the interconnection of degradation, synthesis and modification of PLs for proper membrane homeostasis. Although the precise mechanism by which PlaF simultaneously affects multiple pathways remains to be elucidated, we suggest that alteration of PL composition in ∆plaF plays a role for the global adaptive response in P. aeruginosa mediated by TCSs and proteases. Our study revealed the global regulation of virulence and biofilm by PlaF and suggests that targeting this enzyme may have therapeutic potential.
Collapse
Affiliation(s)
- Muttalip Caliskan
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirja Gudzuhn
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Daniel Waldera-Lupa
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rebecka Molitor
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | | | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany.
| |
Collapse
|
6
|
Abstract
Secretory proteins are cotranslationally or posttranslationally translocated across lipid membranes via a protein-conducting channel named SecY in prokaryotes and Sec61 in eukaryotes. The vast majority of secretory proteins in bacteria are driven through the channel posttranslationally by SecA, a highly conserved ATPase. How a polypeptide chain is moved by SecA through the SecY channel is poorly understood. Here, we report electron cryomicroscopy structures of the active SecA-SecY translocon with a polypeptide substrate. The substrate is captured in different translocation states when clamped by SecA with different nucleotides. Upon binding of an ATP analog, SecA undergoes global conformational changes to push the polypeptide substrate toward the channel in a way similar to how the RecA-like helicases translocate their nucleic acid substrates. The movements of the polypeptide substrates in the SecA-SecY translocon share a similar structural basis to those in the ribosome-SecY complex during cotranslational translocation.
Collapse
|
7
|
Atomic Force Microscopy Reveals Complexity Underlying General Secretory System Activity. Int J Mol Sci 2022; 24:ijms24010055. [PMID: 36613499 PMCID: PMC9820662 DOI: 10.3390/ijms24010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The translocation of specific polypeptide chains across membranes is an essential activity for all life forms. The main components of the general secretory (Sec) system of E. coli include integral membrane translocon SecYEG, peripheral ATPase SecA, and SecDF, an ancillary complex that enhances polypeptide secretion by coupling translocation to proton motive force. Atomic force microscopy (AFM), a single-molecule imaging technique, is well suited to unmask complex, asynchronous molecular activities of membrane-associated proteins including those comprising the Sec apparatus. Using AFM, the dynamic structure of membrane-external protein topography of Sec system components can be directly visualized with high spatial-temporal precision. This mini-review is focused on AFM imaging of the Sec system in near-native fluid conditions where activity can be maintained and biochemically verified. Angstrom-scale conformational changes of SecYEG are reported on 100 ms timescales in fluid lipid bilayers. The association of SecA with SecYEG, forming membrane-bound SecYEG/SecA translocases, is directly visualized. Recent work showing topographical aspects of the translocation process that vary with precursor species is also discussed. The data suggests that the Sec system does not employ a single translocation mechanism. We posit that differences in the spatial frequency distribution of hydrophobic content within precursor sequences may be a determining factor in mechanism selection. Precise AFM investigations of active translocases are poised to advance our currently vague understanding of the complicated macromolecular movements underlying protein export across membranes.
Collapse
|
8
|
Roussel G, Lindner E, White SH. Topology of the SecA ATPase Bound to Large Unilamellar Vesicles. J Mol Biol 2022; 434:167607. [PMID: 35489383 PMCID: PMC10085631 DOI: 10.1016/j.jmb.2022.167607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/27/2022]
Abstract
The soluble cytoplasmic ATPase motor protein SecA powers protein transport across the Escherichia coli inner membrane via the SecYEG translocon. Although dimeric in solution, SecA associates monomerically with SecYEG during secretion according to several crystallographic and cryo-EM structural studies. The steps SecA follows from its dimeric cytoplasmic state to its active SecYEG monomeric state are largely unknown. We have previously shown that dimeric SecA in solution dissociates into monomers upon electrostatic binding to negatively charged lipid vesicles formed from E. coli lipids. Here we address the question of the disposition of SecA on the membrane prior to binding to membrane embedded SecYEG. We mutated to cysteine, one at a time, 25 surface-exposed residues of a Cys-free SecA. To each of these we covalently linked the polarity-sensitive fluorophore NBD whose intensity and fluorescence wavelength-shift change upon vesicle binding report on the the local membrane polarity. We established from these measurements the disposition of SecA bound to the membrane in the absence of SecYEG. Our results confirmed that SecA is anchored in the membrane interface primarily by the positive charges of the N terminus domain. But we found that a region of the nucleotide binding domain II is also important for binding. Both domains are rich in positively charged residues, consistent with electrostatic interactions playing the major role in membrane binding. Selective replacement of positively charged residues in these domains with alanine resulted in weaker binding to the membrane, which allowed us to quantitate the relative importance of the domains in stabilizing SecA on membranes. Fluorescence quenchers inside the vesicles had little effect on NBD fluorescence, indicating that SecA does not penetrate significantly across the membrane. Overall, the topology of SecA on the membrane is consistent with the conformation of SecA observed in crystallographic and cryo-EM structures of SecA-SecYEG complexes, suggesting that SecA can switch between the membrane-associated and the translocon-associated states without significant changes in conformation.
Collapse
Affiliation(s)
- Guillaume Roussel
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, United States
| | - Eric Lindner
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, United States
| | - Stephen H White
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, United States.
| |
Collapse
|
9
|
Kamel M, Löwe M, Schott-Verdugo S, Gohlke H, Kedrov A. Unsaturated fatty acids augment protein transport via the SecA:SecYEG translocon. FEBS J 2021; 289:140-162. [PMID: 34312977 DOI: 10.1111/febs.16140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/01/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022]
Abstract
The translocon SecYEG and the associated ATPase SecA form the primary protein secretion system in the cytoplasmic membrane of bacteria. The secretion is essentially dependent on the surrounding lipids, but the mechanistic understanding of their role in SecA : SecYEG activity is sparse. Here, we reveal that the unsaturated fatty acids (UFAs) of the membrane phospholipids, including tetraoleoyl-cardiolipin, stimulate SecA : SecYEG-mediated protein translocation up to ten-fold. Biophysical analysis and molecular dynamics simulations show that UFAs increase the area per lipid and cause loose packing of lipid head groups, where the N-terminal amphipathic helix of SecA docks. While UFAs do not affect the translocon folding, they promote SecA binding to the membrane, and the effect is enhanced up to fivefold at elevated ionic strength. Tight SecA : lipid interactions convert into the augmented translocation. Our results identify the fatty acid structure as a notable factor in SecA : SecYEG activity, which may be crucial for protein secretion in bacteria, which actively change their membrane composition in response to their habitat.
Collapse
Affiliation(s)
- Michael Kamel
- Synthetic Membrane Systems, Institute for Biochemistry, Heinrich Heine University Düsseldorf, Germany
| | - Maryna Löwe
- Synthetic Membrane Systems, Institute for Biochemistry, Heinrich Heine University Düsseldorf, Germany
| | - Stephan Schott-Verdugo
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Germany
| | - Alexej Kedrov
- Synthetic Membrane Systems, Institute for Biochemistry, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
10
|
Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. The Dynamic SecYEG Translocon. Front Mol Biosci 2021; 8:664241. [PMID: 33937339 PMCID: PMC8082313 DOI: 10.3389/fmolb.2021.664241] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal coordination of protein transport is an essential cornerstone of the bacterial adaptation to different environmental conditions. By adjusting the protein composition of extra-cytosolic compartments, like the inner and outer membranes or the periplasmic space, protein transport mechanisms help shaping protein homeostasis in response to various metabolic cues. The universally conserved SecYEG translocon acts at the center of bacterial protein transport and mediates the translocation of newly synthesized proteins into and across the cytoplasmic membrane. The ability of the SecYEG translocon to transport an enormous variety of different substrates is in part determined by its ability to interact with multiple targeting factors, chaperones and accessory proteins. These interactions are crucial for the assisted passage of newly synthesized proteins from the cytosol into the different bacterial compartments. In this review, we summarize the current knowledge about SecYEG-mediated protein transport, primarily in the model organism Escherichia coli, and describe the dynamic interaction of the SecYEG translocon with its multiple partner proteins. We furthermore highlight how protein transport is regulated and explore recent developments in using the SecYEG translocon as an antimicrobial target.
Collapse
Affiliation(s)
- Julia Oswald
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Robert Njenga
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Seinen AB, Spakman D, van Oijen AM, Driessen AJM. Cellular dynamics of the SecA ATPase at the single molecule level. Sci Rep 2021; 11:1433. [PMID: 33446830 PMCID: PMC7809386 DOI: 10.1038/s41598-021-81081-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/04/2021] [Indexed: 12/04/2022] Open
Abstract
In bacteria, the SecA ATPase provides the driving force for protein secretion via the SecYEG translocon. While the dynamic interplay between SecA and SecYEG in translocation is widely appreciated, it is not clear how SecA associates with the translocon in the crowded cellular environment. We use super-resolution microscopy to directly visualize the dynamics of SecA in Escherichia coli at the single-molecule level. We find that SecA is predominantly associated with and evenly distributed along the cytoplasmic membrane as a homodimer, with only a minor cytosolic fraction. SecA moves along the cell membrane as three distinct but interconvertible diffusional populations: (1) A state loosely associated with the membrane, (2) an integral membrane form, and (3) a temporarily immobile form. Disruption of the proton-motive-force, which is essential for protein secretion, re-localizes a significant portion of SecA to the cytoplasm and results in the transient location of SecA at specific locations at the membrane. The data support a model in which SecA diffuses along the membrane surface to gain access to the SecYEG translocon.
Collapse
Affiliation(s)
- Anne-Bart Seinen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.,AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - Dian Spakman
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | | | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
12
|
Koch S, Seinen AB, Kamel M, Kuckla D, Monzel C, Kedrov A, Driessen AJM. Single-molecule analysis of dynamics and interactions of the SecYEG translocon. FEBS J 2020; 288:2203-2221. [PMID: 33058437 DOI: 10.1111/febs.15596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
Protein translocation and insertion into the bacterial cytoplasmic membrane are the essential processes mediated by the Sec machinery. The core machinery is composed of the membrane-embedded translocon SecYEG that interacts with the secretion-dedicated ATPase SecA and translating ribosomes. Despite the simplicity and the available structural insights on the system, diverse molecular mechanisms and functional dynamics have been proposed. Here, we employ total internal reflection fluorescence microscopy to study the oligomeric state and diffusion of SecYEG translocons in supported lipid bilayers at the single-molecule level. Silane-based coating ensured the mobility of lipids and reconstituted translocons within the bilayer. Brightness analysis suggested that approx. 70% of the translocons were monomeric. The translocons remained in a monomeric form upon ribosome binding, but partial oligomerization occurred in the presence of nucleotide-free SecA. Individual trajectories of SecYEG in the lipid bilayer revealed dynamic heterogeneity of diffusion, as translocons commonly switched between slow and fast mobility modes with corresponding diffusion coefficients of 0.03 and 0.7 µm2 ·s-1 . Interactions with SecA ATPase had a minor effect on the lateral mobility, while bound ribosome:nascent chain complexes substantially hindered the diffusion of single translocons. Notably, the mobility of the translocon:ribosome complexes was not affected by the solvent viscosity or macromolecular crowding modulated by Ficoll PM 70, so it was largely determined by interactions within the lipid bilayer and at the interface. We suggest that the complex mobility of SecYEG arises from the conformational dynamics of the translocon and protein:lipid interactions.
Collapse
Affiliation(s)
- Sabrina Koch
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| | - Anne-Bart Seinen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands.,Biophysics, AMOLF, Amsterdam, The Netherlands
| | - Michael Kamel
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Germany
| | - Daniel Kuckla
- Experimental Medical Physics, Department of Physics, Heinrich Heine University Düsseldorf, Germany
| | - Cornelia Monzel
- Experimental Medical Physics, Department of Physics, Heinrich Heine University Düsseldorf, Germany
| | - Alexej Kedrov
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Germany
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| |
Collapse
|
13
|
Winkler K, Karner A, Horner A, Hannesschlaeger C, Knyazev D, Siligan C, Zimmermann M, Kuttner R, Pohl P, Preiner J. Interaction of the motor protein SecA and the bacterial protein translocation channel SecYEG in the absence of ATP. NANOSCALE ADVANCES 2020; 2:3431-3443. [PMID: 36134293 PMCID: PMC9418451 DOI: 10.1039/d0na00427h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/27/2020] [Indexed: 06/16/2023]
Abstract
Translocation of many secretory proteins through the bacterial plasma membrane is facilitated by a complex of the SecYEG channel with the motor protein SecA. The ATP-free complex is unstable in detergent, raising the question how SecA may perform several rounds of ATP hydrolysis without being released from the membrane embedded SecYEG. Here we show that dual recognition of (i) SecYEG and (ii) vicinal acidic lipids confers an apparent nanomolar affinity. High-speed atomic force microscopy visualizes the complexes between monomeric SecA and SecYEG as being stable for tens of seconds. These long-lasting events and complementary shorter ones both give rise to single ion channel openings of equal duration. Furthermore, luminescence resonance energy transfer reveals two conformations of the SecYEG-SecA complex that differ in the protrusion depth of SecA's two-helix finger into SecYEG's aqueous channel. Such movement of the finger is in line with the power stroke mechanism of protein translocation.
Collapse
Affiliation(s)
- Klemens Winkler
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Andreas Karner
- University of Applied Sciences Upper Austria, TIMED Center 4020 Linz Austria
| | - Andreas Horner
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | | | - Denis Knyazev
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Christine Siligan
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Mirjam Zimmermann
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Roland Kuttner
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Peter Pohl
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Johannes Preiner
- University of Applied Sciences Upper Austria, TIMED Center 4020 Linz Austria
| |
Collapse
|
14
|
Roussel G, White SH. The SecA ATPase motor protein binds to Escherichia coli liposomes only as monomers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183358. [PMID: 32416191 DOI: 10.1016/j.bbamem.2020.183358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 02/02/2023]
Abstract
The essential SecA motor ATPase acts in concert with the SecYEG translocon to secrete proteins into the periplasmic space of Escherichia coli. In aqueous solutions, SecA exists largely as dimers, but the oligomeric state on membranes is less certain. Crystallographic studies have suggested several possible solution dimeric states, but its oligomeric state when bound to membranes directly or indirectly via the translocon is controversial. We have shown using disulfide crosslinking that the principal solution dimer, corresponding to a crystallographic dimer (PDB 1M6N), binds only weakly to large unilamellar vesicles (LUV) formed from E. coli lipids. We report here that other soluble crosslinked crystallographic dimers also bind weakly, if at all, to LUV. Furthermore, using a simple glutaraldehyde crosslinking scheme, we show that SecA is always monomeric when bound to LUV formed from E. coli lipids.
Collapse
Affiliation(s)
- Guillaume Roussel
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Stephen H White
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, United States of America.
| |
Collapse
|
15
|
Del Val C, Bondar AN. Diversity and sequence motifs of the bacterial SecA protein motor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183319. [PMID: 32335021 DOI: 10.1016/j.bbamem.2020.183319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/17/2020] [Accepted: 04/19/2020] [Indexed: 12/24/2022]
Abstract
SecA is an essential component of the Sec protein secretion pathway in bacteria. Secretory proteins targeted to the Sec pathway by their N-terminal signal peptide bind to SecA, which couples binding and hydrolysis of adenosine triphosphate with movement of the secretory protein across the membrane-embedded SecYEG protein translocon. The phylogenetic diversity of bacteria raises the important question as to whether the region of SecA where the pre-protein binds has conserved sequence features that might impact the reaction mechanism of SecA. To address this question we established a large data set of SecA protein sequences and implemented a protocol to cluster and analyze these sequences according to features of two of the SecA functional domains, the protein binding domain and the nucleotide-binding domain 1. We identify remarkable sequence diversity of the protein binding domain, but also conserved motifs with potential role in protein binding. The N-terminus of SecA has sequence motifs that could help anchor SecA to the membrane. The overall sequence length and net estimated charge of SecA sequences depend on the organism.
Collapse
Affiliation(s)
- Coral Del Val
- University of Granada, Departmrent of Computer Science and Artificial Intelligence, E-18071 Granada, Spain; University of Granada, Andalusian Research Institute in Data Science and Computational Intelligence, E-18071 Granada, Spain.
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, D-14195 Berlin, Germany.
| |
Collapse
|
16
|
Cardiolipin is required in vivo for the stability of bacterial translocon and optimal membrane protein translocation and insertion. Sci Rep 2020; 10:6296. [PMID: 32286407 PMCID: PMC7156725 DOI: 10.1038/s41598-020-63280-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/25/2020] [Indexed: 01/05/2023] Open
Abstract
Translocation of preproteins across the Escherichia coli inner membrane requires anionic lipids by virtue of their negative head-group charge either in vivo or in situ. However, available results do not differentiate between the roles of monoanionic phosphatidylglycerol and dianionic cardiolipin (CL) in this essential membrane-related process. To define in vivo the molecular steps affected by the absence of CL in protein translocation and insertion, we analyzed translocon activity, SecYEG stability and its interaction with SecA in an E. coli mutant devoid of CL. Although no growth defects were observed, co- and post-translational translocation of α-helical proteins across inner membrane and the assembly of outer membrane β-barrel precursors were severely compromised in CL-lacking cells. Components of proton-motive force which could impair protein insertion into and translocation across the inner membrane, were unaffected. However, stability of the dimeric SecYEG complex and oligomerization properties of SecA were strongly compromised while the levels of individual SecYEG translocon components, SecA and insertase YidC were largely unaffected. These results demonstrate that CL is required in vivo for the stability of the bacterial translocon and its efficient function in co-translational insertion into and translocation across the inner membrane of E. coli.
Collapse
|
17
|
Matin TR, Utjesanovic M, Sigdel KP, Smith VF, Kosztin I, King GM. Characterizing the Locus of a Peripheral Membrane Protein-Lipid Bilayer Interaction Underlying Protein Export Activity in E. coli. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2143-2152. [PMID: 32011890 DOI: 10.1021/acs.langmuir.9b03606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantitative characterization of the strength of peripheral membrane protein-lipid bilayer interactions is fundamental in the understanding of many protein targeting pathways. SecA is a peripheral membrane protein that plays a central role in translocating precursor proteins across the inner membrane of E. coli. The membrane binding activity of the extreme N-terminus of SecA is critical for translocase function. Yet, the mechanical strength of the interaction and the kinetic pathways that this segment of SecA experiences when in proximity of an E. coli polar lipid bilayer has not been characterized. We directly measured the N-terminal SecA-lipid bilayer interaction using precision single molecule atomic force microscope (AFM)-based dynamic force spectroscopy. To provide conformational data inaccessible to AFM, we also performed all-atom molecular dynamics simulations and circular dichroism measurements. The N-terminal 10 amino acids of SecA have little secondary structure when bound to zwitterionic lipid head groups, but secondary structure, which rigidifies the lipid-bound protein segment, emerges when negatively charged lipids are present. Analysis of the single molecule protein-lipid dissociation data converged to a well-defined lipid-bound-state lifetime in the absence of force, τ0lipid = 0.9 s, which is well separated from and longer than the fundamental time scale of the secretion process, defined as the time required to translocate a single amino acid residue (∼50 ms). This value of τ0lipid is likely to represent a lower limit of the in vivo membrane-bound lifetime due to factors including the minimal system employed here.
Collapse
Affiliation(s)
- Tina R Matin
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Milica Utjesanovic
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Krishna P Sigdel
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Virginia F Smith
- Department of Chemistry, United States Naval Academy, Annapolis, Maryland 21402, United States
| | - Ioan Kosztin
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
18
|
Bartoschik T, Gupta A, Kern B, Hitchcock A, Adams NBP, Tschammer N. Quantifying the Interaction of Phosphite with ABC Transporters: MicroScale Thermophoresis and a Novel His-Tag Labeling Approach. Methods Mol Biol 2020; 2168:51-62. [PMID: 33582986 DOI: 10.1007/978-1-0716-0724-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The combination of MicroScale Thermophoresis (MST) and near-native site-specific His-tag labeling enables simple, robust, and reliable determination of the binding affinity between proteins and ligands. To demonstrate its applicability for periplasmic proteins, we provide a detailed protocol for determination of the binding affinity of phosphite to three ABC transporter periplasmic-binding proteins from environmental microorganisms. ABC transporters are central to many important biomedical phenomena, including resistance of cancers and pathogenic microbes to drugs. The protocol described here can be used to quantify protein-ligand and protein-protein interactions for other soluble, membrane-associated and integral membrane proteins.
Collapse
Affiliation(s)
| | - Amit Gupta
- NanoTemper Technologies GmbH, Munich, Germany
| | - Beate Kern
- NanoTemper Technologies GmbH, Munich, Germany
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Nathan B P Adams
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Nuska Tschammer
- CRELUX GmbH, a WuXi AppTec company, Planegg-Martinsried, Germany.
| |
Collapse
|
19
|
Roussel G, White SH. Binding of SecA ATPase monomers and dimers to lipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183112. [PMID: 31676370 DOI: 10.1016/j.bbamem.2019.183112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 11/29/2022]
Abstract
The Escherichia coli SecA ATPase motor protein is essential for secretion of proteins through the SecYEG translocon into the periplasmic space. Its function relies upon interactions with the surrounding lipid bilayer as well as SecYEG translocon. That negatively charged lipids are required for bilayer binding has been known for >25 years, but little systematic quantitative data is available. We have carried out an extensive investigation of SecA partitioning into large unilamellar vesicles (LUV) using a wide range of lipid and electrolyte compositions, including the principal cytoplasmic salt of E. coli, potassium glutamate, which we have shown stabilizes SecA. The water-to-bilayer transfer free energy is about -7.5 kcal mol-1 for typical E. coli lipid compositions. Although it has been established that SecA is dimeric in the cytoplasm, we find that the most widely cited dimer form (PDB 1M6N) binds only weakly to LUVs formed from E. coli lipids.
Collapse
Affiliation(s)
- Guillaume Roussel
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America
| | - Stephen H White
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America.
| |
Collapse
|
20
|
Kater L, Frieg B, Berninghausen O, Gohlke H, Beckmann R, Kedrov A. Partially inserted nascent chain unzips the lateral gate of the Sec translocon. EMBO Rep 2019; 20:e48191. [PMID: 31379073 PMCID: PMC6776908 DOI: 10.15252/embr.201948191] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022] Open
Abstract
The Sec translocon provides the lipid bilayer entry for ribosome-bound nascent chains and thus facilitates membrane protein biogenesis. Despite the appreciated role of the native environment in the translocon:ribosome assembly, structural information on the complex in the lipid membrane is scarce. Here, we present a cryo-electron microscopy-based structure of bacterial translocon SecYEG in lipid nanodiscs and elucidate an early intermediate state upon insertion of the FtsQ anchor domain. Insertion of the short nascent chain causes initial displacements within the lateral gate of the translocon, where α-helices 2b, 7, and 8 tilt within the membrane core to "unzip" the gate at the cytoplasmic side. Molecular dynamics simulations demonstrate that the conformational change is reversed in the absence of the ribosome, and suggest that the accessory α-helices of SecE subunit modulate the lateral gate conformation. Site-specific cross-linking validates that the FtsQ nascent chain passes the lateral gate upon insertion. The structure and the biochemical data suggest that the partially inserted nascent chain remains highly flexible until it acquires the transmembrane topology.
Collapse
Affiliation(s)
- Lukas Kater
- Gene Center MunichLudwig‐Maximilian‐UniversityMunichGermany
| | - Benedikt Frieg
- John von Neumann Institute for ComputingJülich Supercomputing CentreInstitute for Complex Systems ‐ Structural Biochemistry (ICS‐6)Forschungszentrum Jülich GmbHJülichGermany
| | | | - Holger Gohlke
- John von Neumann Institute for ComputingJülich Supercomputing CentreInstitute for Complex Systems ‐ Structural Biochemistry (ICS‐6)Forschungszentrum Jülich GmbHJülichGermany
- Institute for Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| | | | - Alexej Kedrov
- Gene Center MunichLudwig‐Maximilian‐UniversityMunichGermany
- Synthetic Membrane SystemsInstitute for BiochemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
21
|
Wang S, Jomaa A, Jaskolowski M, Yang CI, Ban N, Shan SO. The molecular mechanism of cotranslational membrane protein recognition and targeting by SecA. Nat Struct Mol Biol 2019; 26:919-929. [PMID: 31570874 PMCID: PMC6858539 DOI: 10.1038/s41594-019-0297-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022]
Abstract
Cotranslational protein targeting is a conserved process for membrane protein biogenesis. In Escherichia coli, the essential ATPase SecA was found to cotranslationally target a subset of nascent membrane proteins to the SecYEG translocase at the plasma membrane. The molecular mechanism of this pathway remains unclear. Here we use biochemical and cryoelectron microscopy analyses to show that the amino-terminal amphipathic helix of SecA and the ribosomal protein uL23 form a composite binding site for the transmembrane domain (TMD) on the nascent protein. This binding mode further enables recognition of charged residues flanking the nascent TMD and thus explains the specificity of SecA recognition. Finally, we show that membrane-embedded SecYEG promotes handover of the translating ribosome from SecA to the translocase via a concerted mechanism. Our work provides a molecular description of the SecA-mediated cotranslational targeting pathway and demonstrates an unprecedented role of the ribosome in shielding nascent TMDs.
Collapse
Affiliation(s)
- Shuai Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Chien-I Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
22
|
Chattrakun K, Hoogerheide DP, Mao C, Randall LL, King GM. Protein Translocation Activity in Surface-Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12246-12256. [PMID: 31448613 PMCID: PMC10906442 DOI: 10.1021/acs.langmuir.9b01928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-supported lipid bilayers are used widely throughout the nanoscience community as cellular membrane mimics. For example, they are frequently employed in single-molecule atomic force microscopy (AFM) studies to shed light on membrane protein conformational dynamics and folding. However, in AFM as well as in other surface-sensing techniques, the close proximity of the supporting surface raises questions about preservation of the biochemical activity. Employing the model translocase from the general secretory (Sec) system of Escherichia coli, here we quantify the activity via two biochemical assays in surface-supported bilayers. The first assesses ATP hydrolysis and the second assesses polypeptide translocation across the membrane via protection from added protease. Hydrolysis assays revealed distinct levels of activation ranging from medium (translocase-activated) to high (translocation-associated) that were similar to traditional solution experiments and further identified an adenosine triphosphatase population exhibiting characteristics of conformational hysteresis. Translocation assays revealed turn over numbers that were comparable to solution but with a 10-fold reduction in apparent rate constant. Despite differences in kinetics, the chemomechanical coupling (ATP hydrolyzed per residue translocated) only varied twofold on glass compared to solution. The activity changed with the topographic complexity of the underlying surface. Rough glass coverslips were favored over atomically flat mica, likely due to differences in frictional coupling between the translocating polypeptide and surface. Neutron reflectometry and AFM corroborated the biochemical measurements and provided structural characterization of the submembrane space and upper surface of the bilayer. Overall, the translocation activity was maintained for the surface-adsorbed Sec system, albeit with a slower rate-limiting step. More generally, polypeptide translocation activity measurements yield valuable quantitative metrics to assess the local environment about surface-supported lipid bilayers.
Collapse
Affiliation(s)
- Kanokporn Chattrakun
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - David P. Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Chunfeng Mao
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Linda L. Randall
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Gavin M. King
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| |
Collapse
|
23
|
Abstract
Bacterial protein transport via the conserved SecYEG translocon is generally classified as either cotranslational, i.e., when transport is coupled to translation, or posttranslational, when translation and transport are separated. We show here that the ATPase SecA, which is considered to bind its substrates posttranslationally, already scans the ribosomal tunnel for potential substrates. In the presence of a nascent chain, SecA retracts from the tunnel but maintains contact with the ribosomal surface. This is remarkably similar to the ribosome-binding mode of the signal recognition particle, which mediates cotranslational transport. Our data reveal a striking plasticity of protein transport pathways, which likely enable bacteria to efficiently recognize and transport a large number of highly different substrates within their short generation time. Bacteria execute a variety of protein transport systems for maintaining the proper composition of their different cellular compartments. The SecYEG translocon serves as primary transport channel and is engaged in transporting two different substrate types. Inner membrane proteins are cotranslationally inserted into the membrane after their targeting by the signal recognition particle (SRP). In contrast, secretory proteins are posttranslationally translocated by the ATPase SecA. Recent data indicate that SecA can also bind to ribosomes close to the tunnel exit. We have mapped the interaction of SecA with translating and nontranslating ribosomes and demonstrate that the N terminus and the helical linker domain of SecA bind to an acidic patch on the surface of the ribosomal protein uL23. Intriguingly, both also insert deeply into the ribosomal tunnel to contact the intratunnel loop of uL23, which serves as a nascent chain sensor. This binding pattern is remarkably similar to that of SRP and indicates an identical interaction mode of the two targeting factors with ribosomes. In the presence of a nascent chain, SecA retracts from the tunnel but maintains contact with the surface of uL23. Our data further demonstrate that ribosome and membrane binding of SecA are mutually exclusive, as both events depend on the N terminus of SecA. Our study highlights the enormous plasticity of bacterial protein transport systems and reveals that the discrimination between SRP and SecA substrates is already initiated at the ribosome.
Collapse
|
24
|
Koch S, Exterkate M, López CA, Patro M, Marrink SJ, Driessen AJM. Two distinct anionic phospholipid-dependent events involved in SecA-mediated protein translocation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183035. [PMID: 31394098 DOI: 10.1016/j.bbamem.2019.183035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
Protein translocation across the bacterial cytoplasmic membrane is an essential process catalyzed by the Sec translocase, which in its minimal form consists of the protein-conducting channel SecYEG, and the motor ATPase SecA. SecA binds via its positively charged N-terminus to membranes containing anionic phospholipids, leading to a lipid-bound intermediate. This interaction induces a conformational change in SecA, resulting in a high-affinity association with SecYEG, which initiates protein translocation. Here, we examined the effect of anionic lipids on the SecA-SecYEG interaction in more detail, and discovered a second, yet unknown, anionic lipid-dependent event that stimulates protein translocation. Based on molecular dynamics simulations we identified an anionic lipid-enriched region in vicinity of the lateral gate of SecY. Here, the anionic lipid headgroup accesses the lateral gate, thereby stabilizing the pre-open state of the channel. The simulations suggest flip-flop movement of phospholipid along the lateral gate. Electrostatic contribution of the anionic phospholipids at the lateral gate may directly stabilize positively charged residues of the signal sequence of an incoming preprotein. Such a mechanism allows for the correct positioning of the entrant peptide, thereby providing a long-sought explanation for the role of anionic lipids in signal sequence folding during protein translocation.
Collapse
Affiliation(s)
- Sabrina Koch
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Marten Exterkate
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Cesar A López
- Department of Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, NM, USA.
| | - Megha Patro
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Siewert J Marrink
- Department of Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
25
|
Komarudin AG, Driessen AJM. SecA-Mediated Protein Translocation through the SecYEG Channel. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0028-2019. [PMID: 31373268 PMCID: PMC10957188 DOI: 10.1128/microbiolspec.psib-0028-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 01/02/2023] Open
Abstract
In bacteria, the Sec translocase mediates the translocation of proteins into and across the cytoplasmic membrane. It consists of a protein conducting channel SecYEG, the ATP-dependent motor SecA, and the accessory SecDF complex. Here we discuss the function and structure of the Sec translocase.
Collapse
Affiliation(s)
- Amalina Ghaisani Komarudin
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|
26
|
Abstract
Membranes surrounding the biological cell and its internal compartments host proteins that catalyze chemical reactions essential for the functioning of the cell. Rather than being a passive structural matrix that holds membrane-embedded proteins in place, the membrane can largely shape the conformational energy landscape of membrane proteins and impact the energetics of their chemical reaction. Here, we highlight the challenges in understanding how lipids impact the conformational energy landscape of macromolecular membrane complexes whose functioning involves chemical reactions including proton transfer. We review here advances in our understanding of how chemical reactions occur at membrane interfaces gleaned with both theoretical and experimental advances using simple protein systems as guides. Our perspective is that of bridging experiments with theory to understand general physicochemical principles of membrane reactions, with a long term goal of furthering our understanding of the role of the lipids on the functioning of complex macromolecular assemblies at the membrane interface.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Freie Universität Berlin , Department of Physics, Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - M Joanne Lemieux
- University of Alberta , Department of Biochemistry, Membrane Protein Disease Research Group , Edmonton , Alberta T6G 2H7 , Canada
| |
Collapse
|
27
|
Exterkate M, Driessen AJM. Synthetic Minimal Cell: Self-Reproduction of the Boundary Layer. ACS OMEGA 2019; 4:5293-5303. [PMID: 30949617 PMCID: PMC6443216 DOI: 10.1021/acsomega.8b02955] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/01/2019] [Indexed: 05/09/2023]
Abstract
A critical aspect in the bottom-up construction of a synthetic minimal cell is to develop an entity that is capable of self-reproduction. A key role in this process is the expansion and division of the boundary layer that surrounds the compartment, a process in which content loss has to be avoided and the barrier function maintained. Here, we describe the latest developments regarding self-reproduction of a boundary layer with a focus on the growth and division of phospholipid-based membranes in the context of a synthetic minimal cell.
Collapse
Affiliation(s)
- Marten Exterkate
- Department of Molecular Microbiology,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|
28
|
Young J, Duong F. Investigating the stability of the SecA-SecYEG complex during protein translocation across the bacterial membrane. J Biol Chem 2019; 294:3577-3587. [PMID: 30602566 DOI: 10.1074/jbc.ra118.006447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/21/2018] [Indexed: 11/06/2022] Open
Abstract
During posttranslational translocation in Escherichia coli, polypeptide substrates are driven across the membrane through the SecYEG protein-conducting channel using the ATPase SecA, which binds to SecYEG and couples nucleotide hydrolysis to polypeptide movement. Recent studies suggest that SecA is a highly dynamic enzyme, able to repeatedly bind and dissociate from SecYEG during substrate translocation, but other studies indicate that these dynamics, here referred to as "SecA processivity," are not a requirement for transport. We employ a SecA mutant (PrlD23) that associates more tightly to membranes than WT SecA, in addition to a SecA-SecYEG cross-linked complex, to demonstrate that SecA-SecYEG binding and dissociation events are important for efficient transport of the periplasmic protein proPhoA. Strikingly however, we find that transport of the precursor of the outer membrane protein proOmpA does not depend on SecA processivity. By exchanging signal sequence and protein domains of similar size between PhoA and OmpA, we find that SecA processivity is not influenced by the sequence of the protein substrate. In contrast, using an extended proOmpA variant and a truncated derivative of proPhoA, we show that SecA processivity is affected by substrate length. These findings underscore the importance of the dynamic nature of SecA-SecYEG interactions as a function of the preprotein substrate, features that have not yet been reported using other biophysical or in vivo methods.
Collapse
Affiliation(s)
- John Young
- From the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Franck Duong
- From the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
29
|
Substrate Proteins Take Shape at an Improved Bacterial Translocon. J Bacteriol 2018; 201:JB.00618-18. [PMID: 30322856 DOI: 10.1128/jb.00618-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 11/20/2022] Open
Abstract
Characterization of Sec-dependent bacterial protein transport has often relied on an in vitro protein translocation system comprised in part of Escherichia coli inverted inner membrane vesicles or, more recently, purified SecYEG translocons reconstituted into liposomes using mostly a single substrate (proOmpA). A paper published in this issue (P. Bariya and L. Randall, J Bacteriol 201:e00493-18, 2019, https://doi.org/10.1128/JB.00493-18) finds that inclusion of SecA protein during SecYEG proteoliposome reconstitution dramatically improves the number of active translocons. This experimentally useful and intriguing result that may arise from SecA membrane integration properties is discussed here. Furthermore, determination of the rate-limiting transport step for nine different substrates implicates the mature region distal to the signal peptide in the observed rate constant differences, indicating that more nuanced transport models that respond to differences in protein sequence and structure are needed.
Collapse
|
30
|
Haruyama T, Sugano Y, Kodera N, Uchihashi T, Ando T, Tanaka Y, Konno H, Tsukazaki T. Single-Unit Imaging of Membrane Protein-Embedded Nanodiscs from Two Oriented Sides by High-Speed Atomic Force Microscopy. Structure 2018; 27:152-160.e3. [PMID: 30318467 DOI: 10.1016/j.str.2018.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/06/2018] [Accepted: 09/18/2018] [Indexed: 11/30/2022]
Abstract
Membrane proteins play important roles in various cellular functions. To analyze membrane proteins, nanodisc technology using membrane scaffold proteins allows single membrane protein units to be embedded into the lipid bilayer disc without detergents. Recent advancements in high-speed atomic force microscopy (HS-AFM) have enabled us to monitor the real-time dynamics of proteins in solution at the nanometer scale. In this study, we report HS-AFM imaging of membrane proteins reconstituted into nanodiscs using two membrane protein complexes, SecYEG complex and MgtE dimer. The observed images showed single particles of membrane protein-embedded nanodiscs in an end-up orientation whereby the membrane was fixed parallel to the supporting solid surface and in a side-on orientation whereby the membrane plane was vertically fixed to the solid surface, enabling the elucidation of domain fluctuations in membrane proteins. This technique provides a basic method for the high-resolution imaging of single membrane proteins by HS-AFM.
Collapse
Affiliation(s)
- Takamitsu Haruyama
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yasunori Sugano
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | | | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Yoshiki Tanaka
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Hiroki Konno
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan.
| | - Tomoya Tsukazaki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| |
Collapse
|
31
|
Knyazev DG, Kuttner R, Zimmermann M, Sobakinskaya E, Pohl P. Driving Forces of Translocation Through Bacterial Translocon SecYEG. J Membr Biol 2018; 251:329-343. [PMID: 29330604 PMCID: PMC6028853 DOI: 10.1007/s00232-017-0012-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/22/2017] [Indexed: 11/09/2022]
Abstract
This review focusses on the energetics of protein translocation via the Sec translocation machinery. First we complement structural data about SecYEG's conformational rearrangements by insight obtained from functional assays. These include measurements of SecYEG permeability that allow assessment of channel gating by ligand binding and membrane voltage. Second we will discuss the power stroke and Brownian ratcheting models of substrate translocation and the role that the two models assign to the putative driving forces: (i) ATP (SecA) and GTP (ribosome) hydrolysis, (ii) interaction with accessory proteins, (iii) membrane partitioning and folding, (iv) proton motive force (PMF), and (v) entropic contributions. Our analysis underlines how important energized membranes are for unravelling the translocation mechanism in future experiments.
Collapse
Affiliation(s)
- Denis G Knyazev
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria.
| | - Roland Kuttner
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria
| | - Mirjam Zimmermann
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria
| | | | - Peter Pohl
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria
| |
Collapse
|
32
|
Findik BT, Smith VF, Randall LL. Penetration into membrane of amino-terminal region of SecA when associated with SecYEG in active complexes. Protein Sci 2018; 27:681-691. [PMID: 29247569 DOI: 10.1002/pro.3362] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 11/12/2022]
Abstract
The general secretory (Sec) system of Escherichia coli translocates both periplasmic and outer membrane proteins through the cytoplasmic membrane. The pathway through the membrane is provided by a highly conserved translocon, which in E. coli comprises two heterotrimeric integral membrane complexes, SecY, SecE, and SecG (SecYEG), and SecD, SecF, and YajC (SecDF/YajC). SecA is an associated ATPase that is essential to the function of the Sec system. SecA plays two roles, it targets precursors to the translocon with the help of SecB and it provides energy via hydrolysis of ATP. SecA exists both free in the cytoplasm and integrally membrane associated. Here we describe details of association of the amino-terminal region of SecA with membrane. We use site-directed spin labelling and electron paramagnetic resonance spectroscopy to show that when SecA is co-assembled into lipids with SecYEG to yield highly active translocons, the N-terminal region of SecA penetrates the membrane and lies at the interface between the polar and the hydrophobic regions, parallel to the plane of the membrane at a depth of approximately 5 Å. When SecA is bound to SecYEG, preassembled into proteoliposomes, or nonspecifically bound to lipids in the absence of SecYEG, the N-terminal region penetrates more deeply (8 Å). Implications of partitioning of the SecA N-terminal region into lipids on the complex between SecB carrying a precursor and SecA are discussed.
Collapse
Affiliation(s)
- Bahar T Findik
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri, 65211
| | - Virginia F Smith
- Chemistry Department, U.S. Naval Academy, Annapolis, Maryland, 21402
| | - Linda L Randall
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri, 65211
| |
Collapse
|
33
|
Yazdi AK, Vezina GC, Shilton BH. An alternate mode of oligomerization for E. coli SecA. Sci Rep 2017; 7:11747. [PMID: 28924213 PMCID: PMC5603524 DOI: 10.1038/s41598-017-11648-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/29/2017] [Indexed: 11/08/2022] Open
Abstract
SecA is the ATPase of preprotein translocase. SecA is a dimer in solution and changes in its oligomeric state may function in preprotein translocation. The SecA-N68 construct, in which the C-terminal helical domains of SecA are deleted, was used to investigate the mechanism of SecA oligomerization. SecA-N68 is in equilibrium between monomers, dimers, and tetramers. Subunit interactions in the SecA-N68 tetramer are mediated entirely by unstructured regions at its N- and C-termini: when the termini are deleted to yield SecA-N68∆NC, the construct is completely monomeric. This monomeric construct yielded crystals diffracting to 2.6 Å that were used to solve the structure of SecA-N68, including the "preprotein crosslinking domain" (PPXD) that was missing from previous E. coli SecA structures. The SecA-N68 structure was combined with small angle X-ray scattering (SAXS) data to construct a model of the SecA-N68 tetramer that is consistent with the essential roles of the extreme N- and C-termini in oligomerization. This mode of oligomerization, which depends on binding of the extreme N-terminus to the DEAD motor domains, NBD1 and NBD2, was used to model a novel parallel and flexible SecA solution dimer that agrees well with SAXS data.
Collapse
Affiliation(s)
- Aliakbar Khalili Yazdi
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Grant C Vezina
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Brian H Shilton
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| |
Collapse
|
34
|
Abstract
Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|