1
|
González-Burguera I, Lin G, López de Jesús M, Saumell-Esnaola M, Barrondo S, García Del Caño G, Sallés J, Scarlata S. PLCβ1 by-passes early growth response -1 to induce the differentiation of neuronal cells. Cell Death Discov 2024; 10:250. [PMID: 38789419 PMCID: PMC11126630 DOI: 10.1038/s41420-024-02009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The Gαq/phospholipase C-β (PLCβ) signaling system mediates calcium responses to a variety of hormones and neurotransmitters. Recent studies suggest that PLCβ1 expression plays a role in the differentiation of two types of cultured neuronal cells (PC12 and SK-N-SH) through a mechanism independent of Gαq. Here, we show that, similar to that observed in PC12 and SK-N-SH cells, PLCβ1 expression increases when human NT2 cells are induced to differentiate either through cytosine-β-D-arabinofuranoside or retinoic acid. Preventing this increase, abolishes differentiation, and down-regulating PLCβ1 in rat primary astrocytes causes cells to adapt an undifferentiated morphology. Surprisingly, transfecting PLCβ1 into undifferentiated PC12 or NT2 cells induces differentiation without the need for differentiating agents. Studies to uncover the underlying mechanism focused on the transcription factor early growth response 1 (Egr-1) which mediates PLCβ1 expression early in differentiation. Over-expressing PLCβ1 in HEK293 cells enhances Egr-1 expression and induces morphological changes. We show that increased levels of cytosolic PLCβ1 in undifferentiated PC12 cells disrupts the association between Egr-1 and its cytosolic binding partner (Tar RNA binding protein), promoting relocalization of Egr-1 to the nucleus, which promotes transcription of proteins needed for differentiation. These studies show a novel mechanism through which differentiation can be modulated.
Collapse
Affiliation(s)
- Imanol González-Burguera
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Neurofarmacología Celular y Molecular, 01006, Vitoria-Gasteiz, Spain
| | - Guanyu Lin
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, 01609, USA
| | - Maider López de Jesús
- Bioaraba, Neurofarmacología Celular y Molecular, 01006, Vitoria-Gasteiz, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain
| | - Miquel Saumell-Esnaola
- Bioaraba, Neurofarmacología Celular y Molecular, 01006, Vitoria-Gasteiz, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain
| | - Sergio Barrondo
- Bioaraba, Neurofarmacología Celular y Molecular, 01006, Vitoria-Gasteiz, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain
| | - Gontzal García Del Caño
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Neurofarmacología Celular y Molecular, 01006, Vitoria-Gasteiz, Spain
| | - Joan Sallés
- Bioaraba, Neurofarmacología Celular y Molecular, 01006, Vitoria-Gasteiz, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, 01609, USA.
| |
Collapse
|
2
|
Scarlata S. Unraveling Hidden Cell Signaling Pathways Using Biophysical Methods: Application to the Gαq/Phospholipase Cβ Signaling System. J Phys Chem B 2024; 128:2057-2064. [PMID: 38388346 DOI: 10.1021/acs.jpcb.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The success of pharmaceutical therapies relies on how well cells respond to a particular drug, but accurately predicting responses can be difficult due to the complex and numerous potential molecular interactions that are possible in cells, and the responses of individuals can be variable due to cryptic and unexpected interactions. With the advancement of proteomics and fluorescence imaging methods, it is now possible to elucidate novel secondary signaling pathways and predict unexpected responses that might otherwise be missed, allowing for the development of better therapeutics. The Gαq/PLCβ signaling pathway is activated by agents that mediate allergic responses, neurotransmission, and heart rate, as well as other functions that are critical for survival. This Review describes the factors that must be considered in delineating signaling pathways and describes the novel translational role that we have uncovered for this signaling pathway.
Collapse
Affiliation(s)
- Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| |
Collapse
|
3
|
Rennie M, Lin G, Scarlata S. Multiple functions of phospholipase Cβ1 at a glance. J Cell Sci 2022; 135:276667. [PMID: 36125065 DOI: 10.1242/jcs.260282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipase Cβ (PLCβ) is the main effector of the Gq family of heterotrimeric G proteins that transduces signals from hormones and neurotransmitters into Ca2+ signals. While PLCβ is critical for Ca2+ responses, recent studies have suggested that PLCβ has additional roles independent of its lipase activity. These novel functions are carried out by a cytosolic population of PLCβ that binds and inhibits the component 3 promoter of RNA-induced silencing complex (C3PO) to impact cytosolic RNA populations. Additionally, cytosolic PLCβ binds to stress granule proteins, keeping them dispersed and thus inhibiting stress granule formation. Upon activation of the Gα subunit of Gq (Gαq), cytosolic PLCβ relocalizes to the membrane, releasing C3PO and stress granule proteins, which in turn promotes activation of C3PO and RNA processing, as well as sequestration of specific transcripts into newly formed stress granules. As highlighted in this Cell Science at a Glance and the accompanying poster, the link between Gαq signaling, increased intracellular Ca2+ and changes in RNA processing impacts neuronal cell differentiation and may also affect neuronal development and dysfunction.
Collapse
Affiliation(s)
- Madison Rennie
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Guanyu Lin
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| |
Collapse
|
4
|
Hoshino F, Nakayama M, Furuta M, Murakami C, Kato A, Sakane F. Phosphatidylinositol 4,5-bisphosphate-specific phospholipase C β1 selectively binds dipalmitoyl and distearoyl phosphatidic acids via Lys946 and Lys951. Lipids 2022; 57:289-302. [PMID: 36054018 DOI: 10.1002/lipd.12356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/31/2022] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
Phospholipase C (PLC) β1 hydrolyzes 1-stearoyl-2-arachidonoyl (18:0/20:4)-phosphatidylinositol (PtdIns) 4,5-bisphosphate to produce diacylglycerol, which is converted to phosphatidic acid (PtdOH), in the PtdIns cycle and plays pivotal roles in intracellular signal transduction. The present study identified PLCβ1 as a PtdOH-binding protein using PtdOH-containing liposomes. Moreover, the comparison of the binding of PLCβ1 to various PtdOH species, including 14:0/14:0-PtdOH, 16:0/16:0-PtdOH, 16:0/18:1-PtdOH, 18:0/18:1-PtdOH, 18:0/18:0-PtdOH, 18:1/18:1-PtdOH, 18:0/20:4-PtdOH, and 18:0/22:6-PtdOH, indicated that the interaction of PLCβ1 with 16:0/16:0-PtdOH was the strongest. The PLCβ1-binding activity of 18:0/18:0-PtdOH was almost the same as the binding activity of 16:0/16:0-PtdOH. Furthermore, the binding of PLCβ1 to 16:0/16:0-PtdOH was substantially stronger than 16:0/16:0-phosphatidylserine, 16:0/16:0/16:0/16:0-cardiolipin, 16:0/16:0-PtdIns, and 18:0/20:4-PtdIns. We revealed that a PLCβ1 mutant whose Lys946 and Lys951 residues were replaced with Glu (PLCβ1-KE) did not interact with 16:0/16:0-PtdOH and failed to localize to the plasma membrane in Neuro-2a cells. Retinoic acid-dependent increase in neurite length and numbers was significantly inhibited in PLCβ1-expressing cells; however, this considerable attenuation was not detected in the cells expressing PLCβ1-KE. Overall, these results strongly suggest that PtdOHs containing only saturated fatty acids, including 16:0/16:0-PtdOH, which are not derived from the PtdIns cycle, selectively bind to PLCβ1 and regulate its function.
Collapse
Affiliation(s)
- Fumi Hoshino
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Maika Nakayama
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Masataka Furuta
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan.,Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Ayumu Kato
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Activation of Gαq sequesters specific transcripts into Ago2 particles. Sci Rep 2022; 12:8758. [PMID: 35610292 PMCID: PMC9130320 DOI: 10.1038/s41598-022-12737-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The Gαq/phospholipase Cβ1 (PLCβ1) signaling system mediates calcium responses from hormones and neurotransmitters. While PLCβ1 functions on the plasma membrane, there is an atypical cytosolic population that binds Argonaute 2 (Ago2) and other proteins associated with stress granules preventing their aggregation. Activation of Gαq relocalizes cytosolic PLCβ1 to the membrane, releasing bound proteins, promoting the formation of stress granules. Here, we have characterized Ago2 stress granules associated with Gαq activation in differentiated PC12 cells, which have a robust Gαq/PLCβ1 signaling system. Characterization of Ago2-associated stress granules shows shifts in protein composition when cells are stimulated with a Gαq agonist, or subjected to heat shock or osmotic stress, consistent with the idea that different stresses result in unique stress granules. Purified Ago2 stress granules from control cells do not contain RNA, while those from heat shock contain many different mRNAs and miRs. Surprisingly, Ago2 particles from cells where Gαq was stimulated show only two transcripts, chromogranin B, which is involved in secretory function, and ATP synthase 5f1b, which is required for ATP synthesis. RT-PCR, western blotting and other studies support the idea that Gαq-activation protects these transcripts. Taken together, these studies show a novel pathway where Gαq/PLCβ regulates the translation of specific proteins.
Collapse
|
6
|
Qifti A, Jackson L, Singla A, Garwain O, Scarlata S. Stimulation of phospholipase Cβ1 by Gα q promotes the assembly of stress granule proteins. Sci Signal 2021; 14:eaav1012. [PMID: 34665639 DOI: 10.1126/scisignal.aav1012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Androniqi Qifti
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Lela Jackson
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Ashima Singla
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Osama Garwain
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
7
|
Garwain O, Pearce KM, Jackson L, Carley S, Rosati B, Scarlata S. Stimulation of the Gαq/phospholipase Cβ1 signaling pathway returns differentiated cells to a stem-like state. FASEB J 2020; 34:12663-12676. [PMID: 32761888 DOI: 10.1096/fj.201902668r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 01/12/2023]
Abstract
Phospholipase Cβ1 is activated by Gαq to generate calcium signals in response to hormones and neurotransmitters. Besides carrying out this plasma membrane function, PLCβ1 has a cytosolic population that helps to drive the differentiation of PC12 cells by inhibiting a nuclease that promotes RNA-induced silencing (C3PO). Here, we show that down-regulating PLCβ1 or reducing its cytosolic population by activating Gαq to localize it to the plasma membrane returns differentiated PC12 and SK-N-SH cells to an undifferentiated state. In this state, PC12 cells have a spherical morphology, resume proliferation, and express the stem cell transcription factors nanog and Oct4. Similar changes are seen when C3PO is down-regulated. This return to a stem-like state is accompanied by shifts in multiple miR populations. Surprisingly, de-differentiation can be induced by extended stimulation of Gαq where cells return to a spherical morphology and levels of specific miRs return to their undifferentiated values. In complementary studies, we followed the real-time hydrolysis of a fluorescent-tagged miR in cells where PLCβ1 or C3PO were down-regulated in PC12 cells and find substantial differences in miR processing in the undifferentiated and differentiated states. Taken together, our studies suggest that PLCβ1, through its ability to regulate C3PO and endogenous miR populations, mediates the differentiation of two types of cultured neuronal cells.
Collapse
Affiliation(s)
- Osama Garwain
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Katherine M Pearce
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Lela Jackson
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Samuel Carley
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Barbara Rosati
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, USA
| |
Collapse
|
8
|
Garwain O, Yerramilli VS, Romero K, Scarlata S. The Gαq/phospholipase Cβ signaling system represses tau aggregation. Cell Signal 2020; 71:109620. [PMID: 32247043 PMCID: PMC7255494 DOI: 10.1016/j.cellsig.2020.109620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/12/2020] [Accepted: 03/28/2020] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease is typified by calcium dysfunction and neurofibrillary tangles of tau aggregates along with mitotic proteins. Using PC12 cells as a model system, we determined whether the Gαq/PLCβ/ calcium signaling pathway impacts the manifestation of Alzheimer's disease. Down-regulating PLCβ significantly increases tau protein expression and causes a large increase in tau aggregation. Stimulating Gαq to activate PLCβ results in a modest reduction in tau aggregation while inhibiting PLCβ activity results in a modest enhancement of tau aggregation. These results suggest that PLCβ may effect tau aggregation by an additional mechanism that is independent of its ability to transduce calcium signals. To this end, we found that a cytosolic population of PLCβ binds to a mitotic protein found in neurofibrillary tangles, CDK18, which promotes tau phosphorylation and aggregation. Taken together, our studies show that the loss of PLCβ1 can promote Alzheimer's disease by a combination of its catalytic activity and its interaction with mitotic proteins thus offering an orthogonal method to control tau aggregation.
Collapse
Affiliation(s)
- Osama Garwain
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, USA
| | - V Siddartha Yerramilli
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, USA
| | - Kate Romero
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, USA
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, USA.
| |
Collapse
|
9
|
Mousavi SI, Pearce KM, Scarlata S, Tüzel E. Re-track: Software to analyze the retraction and protrusion velocities of neurites, filopodia and other structures. Anal Biochem 2020; 596:113626. [PMID: 32081618 PMCID: PMC9195366 DOI: 10.1016/j.ab.2020.113626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 11/23/2022]
Abstract
We have developed new software, Re-track, that will quantify the rates of retraction and protrusion of structures emanating from the central core of a cell, such as neurites or filopodia. Re-Track, uses time-lapse images of cells in TIFF format and calculates the velocity of retraction or protrusion of a selected structure. The software uses a flexible moving boundary and has the ability to correct this boundary throughout analysis. Re-Track is fast, platform independent, and user friendly, and it can be used to follow biological events such as changes in neuronal connections, tip-growing cells such as moss, adaptive migration of cells, and similar behavior in non-biological systems.
Collapse
Affiliation(s)
- Sayed Iman Mousavi
- Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Katherine M Pearce
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA.
| | - Erkan Tüzel
- Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA.
| |
Collapse
|
10
|
Rawangwong A, Watanabe M, Kondo H, Hipkaeo W. Expression and localization of endogenous phospholipase Cβ3 confined to basal cells in situ of immature ducts and adult excretory ducts of submandibular gland of mice. Acta Histochem 2020; 122:151497. [PMID: 31898936 DOI: 10.1016/j.acthis.2019.151497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022]
Abstract
Our previous study demonstrated that, different from the parotid and sublingual glands, the submandibular glands of adult mice did not show an immunoblot band for PLCβ3 which is critical in the secretion mechanism by muscarinic cholinergic signaling. Therefore, the submandibular glands of mice at various stages of postnatal development were examined for this enzyme molecule in immunoblot and immunohistochemistry. In immunoblot, a weak band for PLCβ3-expression was detected only at early postnatal stages. In immunohistochemistry, PLCβ3-immunoreactivity was distinctly found in most basally located cells of immature ducts, while the immunoreactivity was weakly seen in terminal tubule cells without significant immunoreactivity in adjacent acinar cells. In contrast, the immunoreactivity was distinctly found in some basal cells of adult excretory ducts, and it was ultrastructurally localized densely in close association with bundles of tonofilaments in the cells. The present finding suggests the possibility that Ca2+ signaling governed by phospholipase Cβ3 is involved in the differentiation of ductal basal cells into apical cells through control of keratin molecule(s) in the cells.
Collapse
Affiliation(s)
- Atsara Rawangwong
- Department of Anatomy, Faculty of Veterinary Science, Prince of Songkla, University, Songkhla, Thailand
| | - Masahiko Watanabe
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hisatake Kondo
- Department of Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan; Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wiphawi Hipkaeo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
11
|
Jackson L, Qifti A, Pearce KM, Scarlata S. Regulation of bifunctional proteins in cells: Lessons from the phospholipase Cβ/G protein pathway. Protein Sci 2019; 29:1258-1268. [PMID: 31867822 DOI: 10.1002/pro.3809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
Some proteins can serve multiple functions depending on different cellular conditions. An example of a bifunctional protein is inositide-specific mammalian phospholipase Cβ (PLCβ). PLCβ is activated by G proteins in response to hormones and neurotransmitters to increase intracellular calcium. Recently, alternate cellular function(s) of PLCβ have become uncovered. However, the conditions that allow these different functions to be operative are unclear. Like many mammalian proteins, PLCβ has a conserved catalytic core along with several regulatory domains. These domains modulate the intensity and duration of calcium signals in response to external sensory information, and allow this enzyme to inhibit protein translation in a noncatalytic manner. In this review, we first describe PLCβ's cellular functions and regulation of the switching between these functions, and then discuss the thermodynamic considerations that offer insight into how cells manage multiple and competitive associations allowing them to rapidly shift between functional states.
Collapse
Affiliation(s)
- Lela Jackson
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Androniqi Qifti
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Katherine M Pearce
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| |
Collapse
|
12
|
Scarlata S. The role of phospholipase Cβ on the plasma membrane and in the cytosol: How modular domains enable novel functions. Adv Biol Regul 2019; 73:100636. [PMID: 31409535 DOI: 10.1016/j.jbior.2019.100636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/14/2019] [Accepted: 07/25/2019] [Indexed: 01/14/2023]
Abstract
Phospholipase Cβ (PLCβ) is a signaling enzyme activated by G proteins to generate calcium signals. The catalytic core of PLCβ is surrounded by modular domains that mediate the interaction of the enzyme with known protein partners on the plasma membrane. The C-terminal region PLCβ contains a novel coiled-coil domain that is required for Gαq binding and activation. Recent work has shown that this domain also binds a number of cytosolic proteins that regulate protein translation, and that these proteins compete with Gαq for PLCβ binding. The ability of PLCβ to shuttle between the cytosol to impact protein translation and the plasma membrane to mediate calcium signals puts PLCβ in a central role in cell function.
Collapse
Affiliation(s)
- Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA, 01609, United States.
| |
Collapse
|
13
|
Weng YT, Chien T, Kuan II, Chern Y. The TRAX, DISC1, and GSK3 complex in mental disorders and therapeutic interventions. J Biomed Sci 2018; 25:71. [PMID: 30285728 PMCID: PMC6171312 DOI: 10.1186/s12929-018-0473-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
Psychiatric disorders (such as bipolar disorder, depression, and schizophrenia) affect the lives of millions of individuals worldwide. Despite the tremendous efforts devoted to various types of psychiatric studies and rapidly accumulating genetic information, the molecular mechanisms underlying psychiatric disorder development remain elusive. Among the genes that have been implicated in schizophrenia and other mental disorders, disrupted in schizophrenia 1 (DISC1) and glycogen synthase kinase 3 (GSK3) have been intensively investigated. DISC1 binds directly to GSK3 and modulates many cellular functions by negatively inhibiting GSK3 activity. The human DISC1 gene is located on chromosome 1 and is highly associated with schizophrenia and other mental disorders. A recent study demonstrated that a neighboring gene of DISC1, translin-associated factor X (TRAX), binds to the DISC1/GSK3β complex and at least partly mediates the actions of the DISC1/GSK3β complex. Previous studies also demonstrate that TRAX and most of its interacting proteins that have been identified so far are risk genes and/or markers of mental disorders. In the present review, we will focus on the emerging roles of TRAX and its interacting proteins (including DISC1 and GSK3β) in psychiatric disorders and the potential implications for developing therapeutic interventions.
Collapse
Affiliation(s)
- Yu-Ting Weng
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, Republic of China
| | - Ting Chien
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China
| | - I-I Kuan
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China. .,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, Republic of China.
| |
Collapse
|
14
|
Trax: A versatile signaling protein plays key roles in synaptic plasticity and DNA repair. Neurobiol Learn Mem 2018; 159:46-51. [PMID: 30017897 DOI: 10.1016/j.nlm.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 01/23/2023]
Abstract
Translin-associated protein X (TSNAX), also called trax, was first identified as a protein that interacts with translin. Subsequent studies demonstrated that these proteins form a heteromeric RNase complex that mediates degradation of microRNAs, a pivotal finding that has stimulated interest in understanding the role of translin and trax in cell signaling. Recent studies addressing this question have revealed that trax plays key roles in both synaptic plasticity and DNA repair signaling pathways. In the context of synaptic plasticity, trax works together with its partner protein, translin, to degrade a subset of microRNAs. Activation of the translin/trax RNase complex reverses microRNA-mediated translational silencing to trigger dendritic protein synthesis critical for synaptic plasticity. In the context of DNA repair, trax binds to and activates ATM, a central component of the double-stranded DNA repair process. Thus, these studies focus attention on trax as a critical signaling protein that interacts with multiple partners to impact diverse signaling pathways. To stimulate interest in deciphering the multifaceted role of trax in cell signaling, we summarize the current understanding of trax biology and highlight gaps in our knowledge about this protean protein.
Collapse
|
15
|
Garwain O, Valla K, Scarlata S. Phospholipase Cβ1 regulates proliferation of neuronal cells. FASEB J 2018; 32:2891-2898. [PMID: 29401590 DOI: 10.1096/fj.201701284r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cells have developed lineage-specific mechanisms to control proliferation and drive morphologic changes upon differentiation. A hallmark of differentiation is the assembly of signaling molecules that transduce extracellular signals, such as the production of the G protein-regulated enzyme phospholipase Cβ (PLCβ), which generates calcium signals from sensory stimuli. We found that in most cancerous cell lines there is positive correlation between PLCβ1 levels and cell proliferation. In cells of neuronal lineage, however, reducing PLCβ1 levels increases the rate of proliferation. Using a combination of biochemical and biophysical methods, we find that, in the G1 phase, a cytosolic population of PLCβ1 associates with cyclin-dependent kinase 16 (CDK16), a neuron-specific enzyme that is activated by cyclin Y to inactivate the antioncogenic protein p27Kip1. Binding of PLCβ1 directly inhibits CDK16 activity and in turn reduces the ability of cells to enter the S phase. Activation of Gαq by carbachol causes movement of PLCβ from the cytosol to the plasma membrane, reducing its association with CDK16. Similarly, the overexpression of activated Gαq moves PLCβ1 to the membrane, reverses G1 arrest, and promotes proliferation, thereby connecting external stimuli with cell proliferation. Our results present a model in which the transient high expression of PLCβ1 that occurs at the onset of differentiation arrests cells in the G1 phase through its association with CDK16 and allows CDK16 to transition to its postmitotic function of neurite outgrowth and trafficking of synaptic vesicles. The novel role of PLCβ1 in neuronal cell proliferation offers a unique interaction that can be manipulated to guide cells into a neuronal phenotype or to develop therapies for neuroblastomas.-Garwain, O., Valla, K., Scarlata, S. Phospholipase Cβ1 regulates proliferation of neuronal cells.
Collapse
Affiliation(s)
- Osama Garwain
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Kaitlyn Valla
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.,Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
16
|
Baraban JM, Shah A, Fu X. Multiple Pathways Mediate MicroRNA Degradation: Focus on the Translin/Trax RNase Complex. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 82:1-20. [PMID: 29413516 DOI: 10.1016/bs.apha.2017.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The discovery of the microRNA system has revolutionized our understanding of translational control. Furthermore, growing appreciation of the pivotal role that de novo translation plays in activity-dependent synaptic plasticity has fueled interest among neuroscientists in deciphering how the microRNA system impacts neuronal signaling and the pathophysiology of neuropsychiatric disorders. Although we have a general understanding of how the microRNA system operates, many key questions remain. In particular, the biosynthesis of microRNAs and their role in translational silencing are fairly well understood. However, much less is known about how microRNAs are degraded and silencing is reversed, crucial aspects of microRNA signaling. In contrast to microRNA synthesis which is mediated almost exclusively by a single pathway that culminates in Dicer, recent studies indicate that there are multiple pathways of microRNA degradation that target different subpopulations of microRNAs. While the Lin-28 pathway of microRNA degradation has been investigated extensively, the translin/trax RNase complex has emerged recently as another pathway mediating microRNA degradation. Accordingly, we summarize herein key features of the translin/trax RNase complex as well as important gaps in our understanding of its regulation and function that are the focus of ongoing studies.
Collapse
Affiliation(s)
- Jay M Baraban
- Johns Hopkins School of Medicine, Baltimore, MD, United States.
| | - Aparna Shah
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Xiuping Fu
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Scarlata S, Singla A, Garwain O. Phospholipase Cβ interacts with cytosolic partners to regulate cell proliferation. Adv Biol Regul 2017; 67:7-12. [PMID: 28919329 DOI: 10.1016/j.jbior.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 01/02/2023]
Abstract
Phospholipase Cβ (PLCβ) is the main effector of the Gαq signaling pathway relaying different extracellular sensory information to generate intracellular calcium signals. Besides this classic function, we have found that PLCβ plays an important but unknown role in regulating PC12 cell differentiation by interacting with components in the RNA-induced silencing machinery. In trying to understand the role of PLCβ in PC12 cell differentiation, we find that over-expressing PLCβ reduces PC12 cell proliferation while down-regulating PLCβ increases the rate of cell proliferation. However, this behavior is not seen in other cancerous cell lines. To determine the underlying mechanism, we carried out mass spectrometry analysis of PLCβ complexes in PC12 cells. We find that in unsynchronized cells, PLCβ primarily binds cyclin-dependent kinase (CDK)16 whose activity plays a key role in cell proliferation. In vitro studies show a direct association between the two proteins that result in loss in CDK16 activity. When cells are arrested in the G2/M phase, a large population of PLCβ is bound to Ago2 in a complex that contains C3PO and proteins commonly found in stress granules. Additionally, another population of PLCβ complexes with CDK18 and cyclin B1. Fluorescence lifetime imaging microscopy (FLIM) confirms cell cycle dependent associations between PLCβ and these other protein binding partners. Taken together, our studies suggest that PLCβ may play an active role in mediating interactions required to move through the cell cycle.
Collapse
Affiliation(s)
- Suzanne Scarlata
- Dept. of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01602, USA.
| | - Ashima Singla
- Dept. of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01602, USA
| | - Osama Garwain
- Dept. of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01602, USA
| |
Collapse
|
18
|
Sahu S, Williams L, Perez A, Philip F, Caso G, Zurawsky W, Scarlata S. Regulation of the activity of the promoter of RNA-induced silencing, C3PO. Protein Sci 2017; 26:1807-1818. [PMID: 28714243 DOI: 10.1002/pro.3219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/29/2022]
Abstract
RNA-induced silencing is a process which allows cells to regulate the synthesis of specific proteins. RNA silencing is promoted by the protein C3PO (component 3 of RISC). We have previously found that phospholipase Cβ, which increases intracellular calcium levels in response to specific G protein signals, inhibits C3PO activity towards certain genes. Understanding the parameters that control C3PO activity and which genes are impacted by G protein activation would help predict which genes are more vulnerable to downregulation. Here, using a library of 1018 oligonucleotides, we show that C3PO binds oligonucleotides with structural specificity but little sequence specificity. Alternately, C3PO hydrolyzes oligonucleotides with a rate that is sensitive to substrate stability. Importantly, we find that oligonucleotides with higher Tm values are inhibited by bound PLCβ. This finding is supported by microarray analysis in cells over-expressing PLCβ1. Taken together, this study allows predictions of the genes whose post-transcriptional regulation is responsive to the G protein/phospholipase Cβ/calcium signaling pathway.
Collapse
Affiliation(s)
- Shriya Sahu
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, New York
| | - Leo Williams
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, New York
| | - Alberto Perez
- Laufer Center for Computational Biology, Stony Brook University, Stony Brook, New York
| | - Finly Philip
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, New York
| | - Giuseppe Caso
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, New York
| | - Walter Zurawsky
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, 01609
| | - Suzanne Scarlata
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, New York.,Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, 01609
| |
Collapse
|