1
|
Structural determinants of virion assembly and release in the C-terminus of the M-PMV capsid protein. J Virol 2021; 95:e0061521. [PMID: 34287037 DOI: 10.1128/jvi.00615-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transition from an immature to a fully infectious mature retrovirus particle is associated with molecular switches that trigger dramatic conformational changes in the structure of the Gag proteins. A dominant maturation switch that stabilizes the immature capsid lattice is located downstream of the capsid (CA) protein in many retroviral Gags. The HIV-1 Gag contains a stretch of five amino acid residues termed the 'clasp motif', important for the organization of the hexameric subunits that provide stability to the overall immature HIV-1 shell. Sequence alignment of the CA C-terminal domains (CTDs) of the HIV-1 and Mason-Pfizer Monkey Virus (M-PMV) highlighted a spacer-like domain in M-PMV that may provide comparable function. The importance of the sequences spanning the CA-NC cleavage has been demonstrated by mutagenesis, but the specific requirements for the clasp motif in several steps of M-PMV particle assembly and maturation have not been determined in detail. In the present study we report an examination of the role of the clasp motif in the M-PMV life cycle. We generated a series of M-PMV Gag mutants and assayed for assembly of the recombinant protein in vitro, and for the assembly, maturation, release, genomic RNA packaging, and infectivity of the mutant virus in vivo. The mutants revealed major defects in virion assembly and release in 293T and HeLa cells, and even larger defects in infectivity. Our data identifies the clasp motif as a fundamental contributor to CA-CTD interactions necessary for efficient viral infection. Importance The C-terminal domain of the capsid protein of many retroviruses has been shown to be critical for virion assembly and maturation, but the functions of this region of M-PMV are uncertain. We show that a short 'clasp' motif in the capsid domain of the M-PMV Gag protein plays a key role in M-PMV virion assembly, genome packaging, and infectivity.
Collapse
|
2
|
Effect of Small Polyanions on In Vitro Assembly of Selected Members of Alpha-, Beta- and Gammaretroviruses. Viruses 2021; 13:v13010129. [PMID: 33477490 PMCID: PMC7831069 DOI: 10.3390/v13010129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
The assembly of a hexameric lattice of retroviral immature particles requires the involvement of cell factors such as proteins and small molecules. A small, negatively charged polyanionic molecule, myo-inositol hexaphosphate (IP6), was identified to stimulate the assembly of immature particles of HIV-1 and other lentiviruses. Interestingly, cryo-electron tomography analysis of the immature particles of two lentiviruses, HIV-1 and equine infectious anemia virus (EIAV), revealed that the IP6 binding site is similar. Based on this amino acid conservation of the IP6 interacting site, it is presumed that the assembly of immature particles of all lentiviruses is stimulated by IP6. Although this specific region for IP6 binding may be unique for lentiviruses, it is plausible that other retroviral species also recruit some small polyanion to facilitate the assembly of their immature particles. To study whether the assembly of retroviruses other than lentiviruses can be stimulated by polyanionic molecules, we measured the effect of various polyanions on the assembly of immature virus-like particles of Rous sarcoma virus (RSV), a member of alpharetroviruses, Mason-Pfizer monkey virus (M-PMV) representative of betaretroviruses, and murine leukemia virus (MLV), a member of gammaretroviruses. RSV, M-PMV and MLV immature virus-like particles were assembled in vitro from truncated Gag molecules and the effect of selected polyanions, myo-inostol hexaphosphate, myo-inositol, glucose-1,6-bisphosphate, myo-inositol hexasulphate, and mellitic acid, on the particles assembly was quantified. Our results suggest that the assembly of immature particles of RSV and MLV was indeed stimulated by the presence of myo-inostol hexaphosphate and myo-inositol, respectively. In contrast, no effect on the assembly of M-PMV as a betaretrovirus member was observed.
Collapse
|
3
|
Gupte TM, Ritt M, Sivaramakrishnan S. ER/K-link-Leveraging a native protein linker to probe dynamic cellular interactions. Methods Enzymol 2020; 647:173-208. [PMID: 33482988 PMCID: PMC8009693 DOI: 10.1016/bs.mie.2020.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ER/K α-helices are a subset of single alpha helical domains, which exhibit unusual stability as isolated protein secondary structures. They adopt an elongated structural conformation, while regulating the frequency of interactions between proteins or polypeptides fused to their ends. Here we review recent advances on the structure, stability and function of ER/K α-helices as linkers (ER/K linkers) in native proteins. We describe methodological considerations in the molecular cloning, protein expression and measurement of interaction strengths, using sensors incorporating ER/K linkers. We highlight biological insights obtained over the last decade by leveraging distinct biophysical features of ER/K-linked sensors. We conclude with the outlook for the use of ER/K linkers in the selective modulation of dynamic cellular interactions.
Collapse
Affiliation(s)
- Tejas M Gupte
- Department of Genetics, Cell Biology, and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Michael Ritt
- Department of Genetics, Cell Biology, and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
4
|
Kaufman F, Dostálková A, Pekárek L, Thanh TD, Kapisheva M, Hadravová R, Bednárová L, Novotný R, Křížová I, Černý J, Grubhoffer L, Ruml T, Hrabal R, Rumlová M. Characterization and in vitro assembly of tick-borne encephalitis virus C protein. FEBS Lett 2020; 594:1989-2004. [PMID: 32510601 DOI: 10.1002/1873-3468.13857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 01/10/2023]
Abstract
Tick-borne encephalitis virus (TBEV), a member of flaviviruses, represents a serious health threat by causing human encephalitis mainly in central and eastern Europe, Russia, and northeastern Asia. As no specific therapy is available, there is an urgent need to understand all steps of the TBEV replication cycle at the molecular level. One of the critical events is the packaging of flaviviral genomic RNA by TBEV C protein to form a nucleocapsid. We purified recombinant TBEV C protein and used a combination of physical-chemical approaches, such as size-exclusion chromatography, circular dichroism, NMR spectroscopies, and transmission electron microscopy, to analyze its structural stability and its ability to dimerize/oligomerize. We compared the ability of TBEV C protein to assemble in vitro into a nucleocapsid-like structure with that of dengue C protein.
Collapse
Affiliation(s)
- Filip Kaufman
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Lukáš Pekárek
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Tung Dinh Thanh
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Marina Kapisheva
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Romana Hadravová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry (IOCB) Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry (IOCB) Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Radim Novotný
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic.,NMR Laboratory, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Jiří Černý
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Prague, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Richard Hrabal
- NMR Laboratory, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| |
Collapse
|
5
|
Abstract
Immature retroviruses are built by the Gag polyprotein; Gag is then cut into domains, and the resulting CA capsid proteins form the mature capsid, which can mediate infection of a new cell. Murine leukemia virus (MLV) is a model retrovirus and the basis for gene-delivery vectors. We determined the capsid structures and architectures for immature and mature MLV. The mature MLV core does not enclose the genome in a closed capsid by using only part of the available proteins, as is the case for HIV-1. Instead, it wraps the genome in curved sheets incorporating most CA proteins. Retroviruses therefore have fundamentally different modes of core assembly and genome protection, which may relate to differences in their early replication. Retroviruses assemble and bud from infected cells in an immature form and require proteolytic maturation for infectivity. The CA (capsid) domains of the Gag polyproteins assemble a protein lattice as a truncated sphere in the immature virion. Proteolytic cleavage of Gag induces dramatic structural rearrangements; a subset of cleaved CA subsequently assembles into the mature core, whose architecture varies among retroviruses. Murine leukemia virus (MLV) is the prototypical γ-retrovirus and serves as the basis of retroviral vectors, but the structure of the MLV CA layer is unknown. Here we have combined X-ray crystallography with cryoelectron tomography to determine the structures of immature and mature MLV CA layers within authentic viral particles. This reveals the structural changes associated with maturation, and, by comparison with HIV-1, uncovers conserved and variable features. In contrast to HIV-1, most MLV CA is used for assembly of the mature core, which adopts variable, multilayered morphologies and does not form a closed structure. Unlike in HIV-1, there is similarity between protein–protein interfaces in the immature MLV CA layer and those in the mature CA layer, and structural maturation of MLV could be achieved through domain rotations that largely maintain hexameric interactions. Nevertheless, the dramatic architectural change on maturation indicates that extensive disassembly and reassembly are required for mature core growth. The core morphology suggests that wrapping of the genome in CA sheets may be sufficient to protect the MLV ribonucleoprotein during cell entry.
Collapse
|
6
|
Rumlová M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018; 36:557-576. [PMID: 29292156 PMCID: PMC7127693 DOI: 10.1016/j.biotechadv.2017.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| |
Collapse
|