1
|
Abdelaziz HM, Abdelmageed ME, Suddek GM. Trimetazidine improves dexamethasone-induced insulin resistance and associated hepatic abnormalities in rats. Life Sci 2025; 375:123747. [PMID: 40404121 DOI: 10.1016/j.lfs.2025.123747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/25/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
INTRODUCTION Glucocorticoids (GC) are a widely prescribed anti-inflammatory and immunosuppressive medicine in clinics. The side effects GC of mostly insulin resistance (IR), dysregulated lipid metabolism and fatty liver, remain the major concern in patients. Understanding the mechanism of GC-induced hepatic steatosis is expected to provide an intervention target to avoid this side effect. AIM The present study aims to explore the beneficial effects of trimetazidine (TMZ) to combat DEXA-induced steatohepatitis and metabolic abnormalities. METHODS An in vivo IR model was established using male Wistar rats, which were administered TMZ at doses of 10 and 20 mg/kg for a duration of 14 days. Subsequently, from day 7 to day 14 of the study, the rats received DEXA (1 mg/kg, intraperitoneal (i.p.) injection). There were 5 groups, with each group consisting of 6 animals, as outlined: control group, TMZ control group, DEXA group, TMZ 10 + DEXA group, TMZ 20 + DEXA group. On the 14th day of the experiment, serum and hepatic samples were collected. RESULTS The findings indicate a marked reduction in OGTT results, fasting serum glucose and insulin levels, ALT and AST levels following treatment with TMZ. TMZ treatment also attenuated oxidative stress markers and improved the lipid profile. Additionally, the hepatic concentrations of high-mobility group box1 (HMGB1), phosphorylated Janus kinase 1 (p-JAK1), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), and levels of NF-κB-p65 and interleukin-6 (IL-6) were significantly diminished by TMZ when compared with the DEXA-treated group. Furthermore, TMZ lowered B cell/lymphoma 2 (BCL-2) and caspase-3 levels and attenuated liver histopathological changes. CONCLUSION This study demonstrated that TMZ significantly improved DEXA-induced hepatic alterations by modulating the HMGB1/p-JAK1/p-STAT3/NF-κB pathway in liver. Our findings provide new evidence supporting the application of TMZ for treating DEXA-induced IR and hepatic steatosis.
Collapse
Affiliation(s)
- Howida M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - G M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
2
|
Pauss SN, Bates EA, Martinez GJ, Bates ZT, Kipp ZA, Gipson CD, Hinds TD. Steroid receptors and coregulators: Dissemination of sex differences and emerging technologies. J Biol Chem 2025; 301:108363. [PMID: 40023399 PMCID: PMC11986243 DOI: 10.1016/j.jbc.2025.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025] Open
Abstract
Steroid receptors are ligand-induced transcription factors that have broad functions among all living animal species, ranging from control of sex differences, body weight, stress responses, and many others. Their binding to coregulator proteins is regulated by corepressors and coactivators that interchange upon stimulation with a ligand. Coregulator proteins are an imperative and understudied aspect of steroid receptor signaling. Here, we discuss steroid receptor basics from protein domain structures that allow them to interact with coregulators and other proteins, their essential functions as transcription factors, and other elemental protein-protein interactions. We deliberate about the mechanisms that coregulators control in steroid receptor signaling, sex hormone signaling differences, sex hormone treatment in the opposite sex, and how these affect the coregulator and sex steroid receptor complexes. The steroid receptor-coregulator signaling mechanisms are essential built-in components of the mammalian DNA that mediate physiological and everyday functions. Targeting their crosstalk might be useful when imbalances lead to disease. We introduce novel technologies, such as the PamGene PamStation, which make investigating the heterogeneity of the steroid receptor-coregulator complexes and targeting their binding more feasible. This review provides an extensive understanding of steroid receptor-coregulator signaling and how these interactions are intrinsic to many physiological functions that may offer therapeutic advantages.
Collapse
Affiliation(s)
- Sally N Pauss
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Evelyn A Bates
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Genesee J Martinez
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Zane T Bates
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, Ohio, USA
| | - Zachary A Kipp
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Cassandra D Gipson
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Terry D Hinds
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| |
Collapse
|
3
|
Chen L, Wu W, Ye H. Risk Factors for MAFLD and Advanced Liver Fibrosis in Adult-Onset Craniopharyngioma Patients: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2025; 18:859-871. [PMID: 40161287 PMCID: PMC11954395 DOI: 10.2147/dmso.s504968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/22/2025] [Indexed: 04/02/2025] Open
Abstract
Purpose To investigate the prevalence of and risk factors for metabolic dysfunction-associated fatty liver disease (MAFLD) and advanced liver fibrosis (ALF) in postoperative adult-onset craniopharyngioma (AOCP) patients. Patients and Methods This cross-sectional study included 242 postoperative AOCP patients at Huashan Hospital (Shanghai, China). Clinical characteristics were compared between patients with and without MAFLD and ALF. Independent risk factors for MAFLD and ALF were identified using binary logistic regression analysis. Results The prevalence of MAFLD in postoperative AOCP patients was 67.4% (95% CI 61.2-73.0%), and 32.5% (95% CI 25.8-40.0%) of patients with MAFLD were diagnosed with ALF. Body mass index (BMI) was independently associated with MAFLD (OR = 1.51, 95% CI 1.33-1.72, P < 0.001). In patients with MAFLD, hypertension (OR = 2.33, 95% CI 1.04-5.20, P = 0.040), glycated hemoglobin (HbA1c) (OR = 1.34, 95% CI 1.01-1.78, P = 0.044), daily hydrocortisone dose (OR = 1.08, 95% CI 1.01-1.15, P = 0.026), and insulin-like growth factor-1 (IGF-1)(OR = 0.99, 95% CI 0.97-0.99, P = 0.011) were independently associated with the presence of ALF. Conclusion MAFLD is a common comorbidity in postoperative AOCP patients and is associated with a high risk of ALF. MAFLD is closely related to BMI, while ALF is significantly associated with hypertension, HbA1c levels, IGF-1 levels, and daily hydrocortisone dose. Strategies such as controlling weight gain, maintaining optimal blood glucose and blood pressure levels, appropriate hormone replacement, and avoiding excessive glucocorticoid use should be implemented to prevent and delay the onset and progression of MAFLD and ALF.
Collapse
Affiliation(s)
- Lijiao Chen
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, People’s Republic of China
| | - Wei Wu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, People’s Republic of China
| | - Hongying Ye
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, People’s Republic of China
| |
Collapse
|
4
|
Kuklina EM. Mechanisms of Glucocorticoid Resistance in Nonclassical T Helper Populations Th17.1/Ex-Th17. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:188-199. [PMID: 40254398 DOI: 10.1134/s0006297924604222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 04/22/2025]
Abstract
The nonclassical population of Th1-polarized Th17 lymphocytes (Th17.1/ex-Th17) is currently in the focus of researchers' attention. These cells possess a unique proinflammatory potential and ability to penetrate blood-tissue barriers and play a key role in the pathogenesis of many inflammatory diseases, primarily autoimmune ones. Th1-polarized Th17 lymphocytes prevail in the autoimmune lesion foci and are considered to be a promising therapeutic target in these pathologies. At the same time, recent studies have shown another distinctive feature of Th1-polarized Th17 - their selective resistance to glucocorticoids. Since glucocorticoids are the first-line drugs for the treatment of the autoimmune disease exacerbation, understanding the causes of this phenomenon is crucial for predicting patients' response to therapy and improving the treatment effectiveness. This review analyzes the mechanisms of drug resistance of Th1-polarized Th17 cells, compares these mechanisms with those typical of nonpathogenic classical Th17 cells, and discusses the role of glucocorticoid resistance in the body's response to glucocorticoid therapy.
Collapse
Affiliation(s)
- Elena M Kuklina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia.
| |
Collapse
|
5
|
Lee WH, Kipp ZA, Pauss SN, Martinez GJ, Bates EA, Badmus OO, Stec DE, Hinds TD. Heme oxygenase, biliverdin reductase, and bilirubin pathways regulate oxidative stress and insulin resistance: a focus on diabetes and therapeutics. Clin Sci (Lond) 2025; 139:CS20242825. [PMID: 39873298 DOI: 10.1042/cs20242825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025]
Abstract
Metabolic and insulin-resistant diseases, such as type 2 diabetes mellitus (T2DM), have become major health issues worldwide. The prevalence of insulin resistance in the general population ranges from 15.5% to 44.6%. Shockingly, the global T2DM population is anticipated to double by 2050 compared with 2021. Prior studies indicate that oxidative stress and inflammation are instrumental in causing insulin resistance and instigating metabolic diseases. Numerous methods and drugs have been designed to combat insulin resistance, including metformin, thiazolidinediones (TZDs), sodium-glucose cotransporter 2 inhibitors (SGLT2i), glucagon-like peptide 1 receptor agonists (GLP1RA), and dipeptidyl peptidase 4 inhibitors (DPP4i). Bilirubin is an antioxidant with fat-burning actions by binding to the PPARα nuclear receptor transcription factor, improving insulin sensitivity, reducing inflammation, and reversing metabolic dysfunction. Potential treatment with antioxidants like bilirubin and increasing the enzyme that produces it, heme oxygenase (HMOX), has also gained attention. This review discusses the relationships between bilirubin, HMOX, and insulin sensitivity, how T2DM medications affect HMOX levels and activity, and potentially using bilirubin nanoparticles to treat insulin resistance. We explore the sex differences between these treatments in the HMOX system and how bilirubin levels are affected. We discuss the emerging concept that bilirubin bioconversion to urobilin may have a role in metabolic diseases. This comprehensive review summarizes our understanding of bilirubin functioning as a hormone, discusses the HMOX isoforms and their beneficial mechanisms, analyzes the sex differences that might cause a dichotomy in responses, and examines the potential use of HMOX and bilirubin nanoparticle therapies in treating metabolic diseases.
Collapse
Affiliation(s)
- Wang-Hsin Lee
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Zachary A Kipp
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Sally N Pauss
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Genesee J Martinez
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Evelyn A Bates
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Olufunto O Badmus
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, USA
| | - David E Stec
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, USA
| | - Terry D Hinds
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
6
|
Callewaert E, Louisse J, Kramer N, Sanz-Serrano J, Vinken M. Adverse Outcome Pathways Mechanistically Describing Hepatotoxicity. Methods Mol Biol 2025; 2834:249-273. [PMID: 39312169 DOI: 10.1007/978-1-0716-4003-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Adverse outcome pathways (AOPs) describe toxicological processes from a dynamic perspective by linking a molecular initiating event to a specific adverse outcome via a series of key events and key event relationships. In the field of computational toxicology, AOPs can potentially facilitate the design and development of in silico prediction models for hazard identification. Various AOPs have been introduced for several types of hepatotoxicity, such as steatosis, cholestasis, fibrosis, and liver cancer. This chapter provides an overview of AOPs on hepatotoxicity, including their development, assessment, and applications in toxicology.
Collapse
Affiliation(s)
- Ellen Callewaert
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Nynke Kramer
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
- Toxicology Division, Wageningen University, Wageningen, Netherlands
| | - Julen Sanz-Serrano
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
7
|
Meakin AS, Nathanielsz PW, Li C, Huber HF, Clifton VL, Wiese MD, Morrison JL. Maternal obesogenic diet during pregnancy and its impact on fetal hepatic function in baboons. Obesity (Silver Spring) 2024; 32:1910-1922. [PMID: 39210592 PMCID: PMC11421985 DOI: 10.1002/oby.24124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/08/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Maternal obesity (MO) increases the risk of later-life liver disease in offspring, especially in males. This may be due to impaired cytochrome P450 (CYP) enzyme activity driven by an altered maternal-fetal hormonal milieu. MO increases fetal cortisol concentrations that may increase CYP activity; however, glucocorticoid receptor (GR)-mediated signaling can be modulated by alternative GR isoform expression. We hypothesized that MO induces sex-specific changes in GR isoform expression and localization that contribute to reduced hepatic CYP activity. METHODS Nonpregnant, nulliparous female baboons were assigned to either an ad libitum control diet or a high-fat, high-energy diet (HF-HED) at 9 months pre pregnancy. At 165 days' gestation (term = 180 days), fetal liver samples were collected (n = 6/sex/group). CYP activity was quantified using functional assays, and GR was measured using quantitative RT-PCR and Western blot. RESULTS CYP3A activity was reduced in the HF-HED group, whereas CYP2B6 activity was reduced in HF-HED males only. Total GR expression was increased in the HF-HED group. Relative nuclear expression of the antagonistic GR isoform GRβ was increased in HF-HED males only. CONCLUSIONS Reduced CYP activity in HF-HED males may be driven in part by dampened hepatic-specific glucocorticoid signaling via altered GR isoform expression. These findings highlight targetable mechanisms that may reduce later-life sex-specific disease risk.
Collapse
Affiliation(s)
- Ashley S. Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, SA, AUS
| | | | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Hillary F. Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Vicki L. Clifton
- Mater Medical Research Institute – The University of Queensland, Brisbane, QLD, AUS
| | - Michael D. Wiese
- Centre for Pharmaceutical Innovation, Clinical & Health Sciences University of South Australia, Adelaide, SA, AUS
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, SA, AUS
| |
Collapse
|
8
|
Martinez GJ, Kipp ZA, Lee WH, Bates EA, Morris AJ, Marino JS, Hinds TD. Glucocorticoid resistance remodels liver lipids and prompts lipogenesis, eicosanoid, and inflammatory pathways. Prostaglandins Other Lipid Mediat 2024; 173:106840. [PMID: 38830399 PMCID: PMC11199073 DOI: 10.1016/j.prostaglandins.2024.106840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
We have previously demonstrated that the glucocorticoid receptor β (GRβ) isoform induces hepatic steatosis in mice fed a normal chow diet. The GRβ isoform inhibits the glucocorticoid-binding isoform GRα, reducing responsiveness and inducing glucocorticoid resistance. We hypothesized that GRβ regulates lipids that cause metabolic dysfunction. To determine the effect of GRβ on hepatic lipid classes and molecular species, we overexpressed GRβ (GRβ-Ad) and vector (Vec-Ad) using adenovirus delivery, as we previously described. We fed the mice a normal chow diet for 5 days and harvested the livers. We utilized liquid chromatography-mass spectrometry (LC-MS) analyses of the livers to determine the lipid species driven by GRβ. The most significant changes in the lipidome were monoacylglycerides and cholesterol esters. There was also increased gene expression in the GRβ-Ad mice for lipogenesis, eicosanoid synthesis, and inflammatory pathways. These indicate that GRβ-induced glucocorticoid resistance may drive hepatic fat accumulation, providing new therapeutic advantages.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Wang-Hsin Lee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Evelyn A Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Andrew J Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, and Central Arkansas Veterans Affairs Healthcare System, Little Rock, AR 72205, USA
| | - Joseph S Marino
- Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
9
|
Polyzos SA, Targher G. Role of Glucocorticoids in Metabolic Dysfunction-Associated Steatotic Liver Disease. Curr Obes Rep 2024; 13:242-255. [PMID: 38459229 PMCID: PMC11150302 DOI: 10.1007/s13679-024-00556-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
PURPOSE OF THE REVIEW To summarize published data on the association between glucocorticoids and metabolic dysfunction-associated steatotic liver disease (MASLD), focusing on the possible pathophysiological links and related treatment considerations. RECENT FINDINGS Glucocorticoids, commonly used for managing many inflammatory and autoimmune diseases, may contribute to the development and progression of MASLD. Glucocorticoids may induce hyperglycemia and hyperinsulinemia, thus increasing systemic and hepatic insulin resistance, a hallmark of MASLD pathogenesis. Furthermore, glucocorticoids increase adipose tissue lipolysis, and hepatic de novo lipogenesis and decrease hepatic fatty acid β-oxidation, thus promoting MASLD development. Preclinical evidence also suggests that glucocorticoids may adversely affect hepatic inflammation and fibrosis. 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and 5α-reductase are implicated in the link between glucocorticoids and MASLD, the former enzyme increasing and the latter reducing the glucocorticoid action on the liver. Treatment considerations exist due to the pathogenic link between glucocorticoids and MASLD. Since iatrogenic hypercortisolism is common, glucocorticoids should be used at the minimum daily dose to control the subjective disease. Furthermore, the pharmacologic inhibition of 11β-HSD1 has provided favorable results in MASLD, both in preclinical studies and early MASH clinical trials. Glucocorticoids are closely linked to MASLD pathophysiology, with specific clinical and therapeutic implications.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella (VR), Italy
| |
Collapse
|
10
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
11
|
Fan G, Huang L, Wang M, Kuang H, Li Y, Yang X. GPAT3 deficiency attenuates corticosterone-caused hepatic steatosis and oxidative stress through GSK3β/Nrf2 signals. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167007. [PMID: 38185063 DOI: 10.1016/j.bbadis.2023.167007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024]
Abstract
The development of nonalcoholic fatty liver disease (NAFLD) may worsen due to chronic stress or prolonged use of glucocorticoids. Glycerol-3-phosphate acyltransferase 3 (GPAT3), has a function in obesity and serves as a key rate-limiting enzyme that regulates triglyceride synthesis. However, the precise impact of GPAT3 on corticosterone (CORT)-induced NAFLD and its underlying molecular mechanism remain unclear. For our in vivo experiments, we utilized male and female mice that were GPAT3-/- and wild type (WT) and treated them with CORT for a duration of 4 weeks. In our in vitro experiments, we transfected AML12 cells with GPAT3 siRNA and subsequently treated them with CORT. Under CORT-treated conditions, the absence of GPAT3 greatly improved obesity and hepatic steatosis while enhancing the expression of genes involved in fatty acid oxidation, as evidenced by our findings. In addition, the deletion of GPAT3 significantly inhibited the production of reactive oxygen species (ROS), increased the expression of antioxidant genes, and recovered the mitochondrial membrane potential in AML12 cells treated with CORT. In terms of mechanism, the absence of GPAT3 encouraged the activation of the glycogen synthase kinase 3β (GSK3β)/nuclear factor-erythroid 2 related factor 2 (Nrf2) pathway, which served as a defense mechanism against liver fat accumulation and oxidative stress. Furthermore, GPAT3 expression was directly controlled at the transcriptional level by the glucocorticoid receptor (GR). Collectively, our findings suggest that GPAT3 deletion significantly alleviated hepatic steatosis and oxidative stress through promoting GSK3β/Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Guoqiang Fan
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lingling Huang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mengxuan Wang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haoran Kuang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanfei Li
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
12
|
Yang L, Xu M, Zhang L, Zhang M, Wu W, Luo Z, Tian D, Fu Z, Zou W. Panax notoginseng saponin R1 improves glucocorticoid-inhibited airway epithelium repair via glucocorticoid receptor β. Int Immunopharmacol 2024; 127:111347. [PMID: 38104367 DOI: 10.1016/j.intimp.2023.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Panax notoginseng saponin R1(PNS-R1), derived from Panax notoginseng roots, promotes wound repair, whereas glucocorticoids can inhibit the repair of airway epithelial damage in asthma. OBJECTIVE This study investigated whether PNS-R1 counteracts the inhibitory effects of glucocorticoids on the repair of airway epithelial damage in asthma. METHODS In vivo, female C57BL/6 mice were sensitized, challenged with house dust mites (HDM), and treated with dexamethasone, PNS-R1, and/or adenovirus GRβ-shRNA. Airway epithelium damage was examined using pathological sections of the trachea and bronchi, markers of airway inflammation, epithelial cells in bronchoalveolar lavage fluid, and expression of the E-cadherin protein. In vitro, we treated 16HBE cells with dexamethasone, PNS-R1, and/or GRβ-siRNA and detected cell proliferation and migration. The expression of GRβ and key components of MKP-1 and Erk1/2 were detected by western blotting. RESULTS In vivo, PNS-R1 reduced airway inflammation, hyperresponsiveness, and mucus hypersecretion; the combination of PNS-R1 and dexamethasone promoted airway epithelial integrity and reduced cell detachment. In vitro, PNS-R1 alleviated the inhibition of bronchial epithelial cell growth, migration, and proliferation by dexamethasone; PNS-R1 promoted GRβ expression, inhibited MKP-1 protein expression, and activated MAPK signaling, thereby promoting airway epithelial cell proliferation and repair. CONCLUSIONS Panax notoginseng saponin R1 alleviated the inhibitory effect of dexamethasone on the repair of airway epithelial damage in asthmatic mice, likely by promoting the proliferation of airway epithelial cells by stimulating GRβ expression and activating the MAPK pathway.
Collapse
Affiliation(s)
- Lili Yang
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China
| | - Maozhu Xu
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China
| | - Linghuan Zhang
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Pediatrics, China
| | - Mingxiang Zhang
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Pediatrics, China
| | - Wenjie Wu
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China; Department of Pediatrics, Chongqing Youyoubaobei Women and Children's Hospital, Chongqing, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Pediatrics, China
| | - Daiyin Tian
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Pediatrics, China
| | - Zhou Fu
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Pediatrics, China.
| | - Wenjing Zou
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Pediatrics, China.
| |
Collapse
|
13
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
14
|
Chen Z, Xia LP, Shen L, Xu D, Guo Y, Wang H. Glucocorticoids and intrauterine programming of nonalcoholic fatty liver disease. Metabolism 2024; 150:155713. [PMID: 37914025 DOI: 10.1016/j.metabol.2023.155713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Accumulating epidemiological and experimental evidence indicates that nonalcoholic fatty liver disease (NAFLD) has an intrauterine origin. Fetuses exposed to adverse prenatal environments (e.g., maternal malnutrition and xenobiotic exposure) are more susceptible to developing NAFLD after birth. Glucocorticoids are crucial triggers of the developmental programming of fetal-origin diseases. Adverse intrauterine environments often lead to fetal overexposure to maternally derived glucocorticoids, which can program fetal hepatic lipid metabolism through epigenetic modifications. Adverse intrauterine environments program the offspring's glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis, which contributes to postnatal catch-up growth and disturbs glucose and lipid metabolism. These glucocorticoid-driven programming alterations increase susceptibility to NAFLD in the offspring. Notably, after delivery, offspring often face an environment distinct from their in utero life. The mismatch between the intrauterine and postnatal environments can serve as a postnatal hit that further disturbs the programmed endocrine axes, accelerating the onset of NAFLD. In this review, we summarize the current epidemiological and experimental evidence demonstrating that NAFLD has an intrauterine origin and discuss the underlying intrauterine programming mechanisms, focusing on the role of overexposure to maternally derived glucocorticoids. We also briefly discuss potential early life interventions that may be beneficial against fetal-originated NAFLD.
Collapse
Affiliation(s)
- Ze Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Li-Ping Xia
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Lang Shen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
15
|
Lee WH, Najjar SM, Kahn CR, Hinds TD. Hepatic insulin receptor: new views on the mechanisms of liver disease. Metabolism 2023; 145:155607. [PMID: 37271372 PMCID: PMC10330768 DOI: 10.1016/j.metabol.2023.155607] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
Over 65 % of people with obesity display the metabolic-associated fatty liver disease (MAFLD), which can manifest as steatohepatitis, fibrosis, cirrhosis, or liver cancer. The development and progression of MAFLD involve hepatic insulin resistance and reduced insulin clearance. This review discusses the relationships between altered insulin signaling, hepatic insulin resistance, and reduced insulin clearance in the development of MAFLD and how this provides the impetus for exploring the use of insulin sensitizers to curb this disease. The review also explores the role of the insulin receptor in hepatocytes and hepatic stellate cells and how it signals in metabolic and end-stage liver diseases. Finally, we discuss new research findings that indicate that advanced hepatic diseases may be an insulin-sensitive state in the liver and deliberate whether insulin sensitizers should be used to manage late-stage liver diseases.
Collapse
Affiliation(s)
- Wang-Hsin Lee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences and the Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
16
|
Badmus OO, Kipp ZA, Bates EA, da Silva AA, Taylor LC, Martinez GJ, Lee WH, Creeden JF, Hinds TD, Stec DE. Loss of hepatic PPARα in mice causes hypertension and cardiovascular disease. Am J Physiol Regul Integr Comp Physiol 2023; 325:R81-R95. [PMID: 37212551 PMCID: PMC10292975 DOI: 10.1152/ajpregu.00057.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
The leading cause of death in patients with nonalcoholic fatty liver disease (NAFLD) is cardiovascular disease (CVD). However, the mechanisms are unknown. Mice deficient in hepatocyte proliferator-activated receptor-α (PPARα) (PparaHepKO) exhibit hepatic steatosis on a regular chow diet, making them prone to manifesting NAFLD. We hypothesized that the PparaHepKO mice might be predisposed to poorer cardiovascular phenotypes due to increased liver fat content. Therefore, we used PparaHepKO and littermate control mice fed a regular chow diet to avoid complications with a high-fat diet, such as insulin resistance and increased adiposity. After 30 wk on a standard diet, male PparaHepKO mice exhibited elevated hepatic fat content compared with littermates as measured by Echo MRI (11.95 ± 1.4 vs. 3.74 ± 1.4%, P < 0.05), hepatic triglycerides (1.4 ± 0.10 vs. 0.3 ± 0.01 mM, P < 0.05), and Oil Red O staining, despite body weight, fasting blood glucose, and insulin levels being the same as controls. The PparaHepKO mice also displayed elevated mean arterial blood pressure (121 ± 4 vs. 108 ± 2 mmHg, P < 0.05), impaired diastolic function, cardiac remodeling, and enhanced vascular stiffness. To determine mechanisms controlling the increase in stiffness in the aorta, we used state-of-the-art PamGene technology to measure kinase activity in this tissue. Our data suggest that the loss of hepatic PPARα induces alterations in the aortas that reduce the kinase activity of tropomyosin receptor kinases and p70S6K kinase, which might contribute to the pathogenesis of NAFLD-induced CVD. These data indicate that hepatic PPARα protects the cardiovascular system through some as-of-yet undefined mechanism.
Collapse
Affiliation(s)
- Olufunto O Badmus
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Evelyn A Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lucy C Taylor
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Wang-Hsin Lee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Justin F Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
17
|
Бровкина СС, Джериева ИС, Волкова НИ, Шкурат ТП, Гончарова ЗА, Машкина ЕВ, Решетников ИБ. [Association of the structure of the glucocorticoid receptor and single nucleotide NR3C1 gene polymorphisms with metabolic disorders]. PROBLEMY ENDOKRINOLOGII 2023; 69:50-58. [PMID: 36842077 PMCID: PMC9978877 DOI: 10.14341/probl13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/21/2022] [Accepted: 11/09/2022] [Indexed: 02/27/2023]
Abstract
Glucocorticoid therapy is widely used in the treatment of various pathologies. Sensitivity to glucocorticoids (GC) has a serious impact not only on the effectiveness of their action, but also on the severity of side effects, the formation of risk factors and the development of cardiovascular diseases (CVD). Variability of sensitivity to GC causes different phenotypes and severity of metabolic disorders underlying CVD. Among them, one can distinguish a decrease in muscle mass and strength, obesity, glucose and lipid metabolism impairment, and others. Glucocorticoids carry out their effects by binding to the glucocorticoid receptor (GR), and therefore this is considered a critical point in their action. This review presents data on the significance of the glucocorticoid receptor structure, examines the main single nucleotide polymorphisms (SNP) of the NR3C1 gene associated with hypersensitivity or relative resistance to glucocorticoids in the context of metabolic disorders and the development of CVD. The association of the four most studied SNP of the GR gene with metabolic risks is described in detail: BclI (rs41423247), N363S (rs56149945), ER22/23EK (rs6189/rs6190), GR-9ß (rs6198). Their determination can contribute to clarifying the prognosis of both the effectiveness of GC and the development of metabolic disorders, and subsequent early correction of CVD risk factors.
Collapse
|
18
|
Kipp ZA, Martinez GJ, Bates EA, Maharramov AB, Flight RM, Moseley HNB, Morris AJ, Stec DE, Hinds TD. Bilirubin Nanoparticle Treatment in Obese Mice Inhibits Hepatic Ceramide Production and Remodels Liver Fat Content. Metabolites 2023; 13:215. [PMID: 36837834 PMCID: PMC9965094 DOI: 10.3390/metabo13020215] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Studies have indicated that increasing plasma bilirubin levels might be useful for preventing and treating hepatic lipid accumulation that occurs with metabolic diseases such as obesity and diabetes. We have previously demonstrated that mice with hyperbilirubinemia had significantly less lipid accumulation in a diet-induced non-alcoholic fatty liver disease (NAFLD) model. However, bilirubin's effects on individual lipid species are currently unknown. Therefore, we used liquid chromatography-mass spectroscopy (LC-MS) to determine the hepatic lipid composition of obese mice with NAFLD treated with bilirubin nanoparticles or vehicle control. We placed the mice on a high-fat diet (HFD) for 24 weeks and then treated them with bilirubin nanoparticles or vehicle control for 4 weeks while maintaining the HFD. Bilirubin nanoparticles suppressed hepatic fat content overall. After analyzing the lipidomics data, we determined that bilirubin inhibited the accumulation of ceramides in the liver. The bilirubin nanoparticles significantly lowered the hepatic expression of two essential enzymes that regulate ceramide production, Sgpl1 and Degs1. Our results demonstrate that the bilirubin nanoparticles improve hepatic fat content by reducing ceramide production, remodeling the liver fat content, and improving overall metabolic health.
Collapse
Affiliation(s)
- Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Evelyn A Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Agil B Maharramov
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Robert M Flight
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - Hunter N B Moseley
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
- Institute for Biomedical Informatics, University of Kentucky, Lexington, KY 40508, USA
- Center for Clinical and Translational Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Andrew J Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - David E Stec
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
| |
Collapse
|
19
|
Flack KD, Vítek L, Fry CS, Stec DE, Hinds TD. Cutting edge concepts: Does bilirubin enhance exercise performance? Front Sports Act Living 2023; 4:1040687. [PMID: 36713945 PMCID: PMC9874874 DOI: 10.3389/fspor.2022.1040687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Exercise performance is dependent on many factors, such as muscular strength and endurance, cardiovascular capacity, liver health, and metabolic flexibility. Recent studies show that plasma levels of bilirubin, which has classically been viewed as a liver dysfunction biomarker, are elevated by exercise training and that elite athletes may have significantly higher levels. Other studies have shown higher plasma bilirubin levels in athletes and active individuals compared to general, sedentary populations. The reason for these adaptions is unclear, but it could be related to bilirubin's antioxidant properties in response to a large number of reactive oxygen species (ROS) that originates from mitochondria during exercise. However, the mechanisms of these are unknown. Current research has re-defined bilirubin as a metabolic hormone that interacts with nuclear receptors to drive gene transcription, which reduces body weight. Bilirubin has been shown to reduce adiposity and improve the cardiovascular system, which might be related to the adaption of bilirubin increasing during exercise. No studies have directly tested if elevating bilirubin levels can influence athletic performance. However, based on the mechanisms proposed in the present review, this seems plausible and an area to consider for future studies. Here, we discuss the importance of bilirubin and exercise and how the combination might improve metabolic health outcomes and possibly athletic performance.
Collapse
Affiliation(s)
- Kyle D. Flack
- Department of Dietetics and Human Nutrition, University of Kentucky, Lexington, KY, United States
| | - Libor Vítek
- 4th Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Christopher S. Fry
- Department of Athletic Training and Clinical Nutrition, University of Kentucky College of Medicine, Lexington, KY, United States
- Center for Muscle Biology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - David E. Stec
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
20
|
Nicolaides NC. The Human Glucocorticoid Receptor Beta: From Molecular Mechanisms to Clinical Implications. Endocrinology 2022; 163:6691806. [PMID: 36059139 DOI: 10.1210/endocr/bqac150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/19/2022]
Abstract
Glucocorticoids play a fundamental role in a plethora of cellular processes and physiologic functions through binding on a ubiquitously expressed receptor, the glucocorticoid receptor (GR), which functions as a ligand-activated transcription factor influencing the transcription rate of numerous genes in a positive or negative fashion. For many years, we believed that the pleiotropic actions of glucocorticoids were mediated by a single GR protein expressed by the NR3C1 gene. Nowadays, we know that the NR3C1 gene encodes 2 main receptor isoforms, the GRα and the GRβ, through alternative splicing of the last exons. Furthermore, the alternative initiation of GR mRNA translation generates 8 distinct GRα and possibly 8 different GRβ receptor isoforms. The tremendous progress of cellular, molecular, and structural biology in association with the data explosion provided by bioinformatics have enabled a deeper understanding of the role of GRβ in cellular homeostasis. In this review article, I will provide an update on the cellular properties and functions of hGRβ and summarize the current knowledge about the evolving role of the beta isoform of glucocorticoid receptor in endocrine physiology, pathophysiology, and beyond.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens 11527, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens 11527, Greece
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| |
Collapse
|
21
|
Gao H, Li Y, Chen X. Interactions between nuclear receptors glucocorticoid receptor α and peroxisome proliferator-activated receptor α form a negative feedback loop. Rev Endocr Metab Disord 2022; 23:893-903. [PMID: 35476174 DOI: 10.1007/s11154-022-09725-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2022] [Indexed: 02/05/2023]
Abstract
Both nuclear receptors glucocorticoid receptor α (GRα) and peroxisome proliferator-activated receptor α (PPARα) are involved in energy and lipid metabolism, and possess anti-inflammation effects. Previous studies indicate that a regulatory loop may exist between them. In vivo and in vitro studies showed that glucocorticoids stimulate hepatic PPARα expression via GRα at the transcriptional level. This stimulation of PPARα by GRα has physiological relevance and PPARα is involved in many glucocorticoid-induced pathophysiological processes, including gluconeogenesis and ketogenesis during fasting, insulin resistance, hypertension and anti-inflammatory effects. PPARα also synergizes with GRα to promote erythroid progenitor self-renewal. As the feedback, PPARα inhibits glucocorticoid actions at pre-receptor and receptor levels. PPARα decreases glucocorticoid production through inhibiting the expression and activity of type-1 11β-hydroxysteroid dehydrogenase, which converts inactive glucocorticoids to active glucocorticoids at local tissues, and also down-regulates hepatic GRα expression, thus forming a complete and negative feedback loop. This negative feedback loop sheds light on prospective multi-drug therapeutic treatments in inflammatory diseases through a combination of glucocorticoids and PPARα agonists. This combination may potentially enhance the anti-inflammatory effects while alleviating side effects on glucose and lipid metabolism due to GRα activation. More investigations are needed to clarify the underlying mechanism and the relevant physiological or pathological significance of this regulatory loop.
Collapse
Affiliation(s)
- Hongjiao Gao
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, 610041, Chengdu, China
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Zunyi Medical University (the First People's Hospital of Zunyi), 563002, Zunyi, China
| | - Yujue Li
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
22
|
Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways. Clin Sci (Lond) 2022; 136:1347-1366. [PMID: 36148775 PMCID: PMC9508552 DOI: 10.1042/cs20220572] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 01/30/2023]
Abstract
The metabolic-associated fatty liver disease (MAFLD) is a condition of fat accumulation in the liver in combination with metabolic dysfunction in the form of overweight or obesity and insulin resistance. It is also associated with an increased cardiovascular disease risk, including hypertension and atherosclerosis. Hepatic lipid metabolism is regulated by a combination of the uptake and export of fatty acids, de novo lipogenesis, and fat utilization by β-oxidation. When the balance between these pathways is altered, hepatic lipid accumulation commences, and long-term activation of inflammatory and fibrotic pathways can progress to worsen the liver disease. This review discusses the details of the molecular mechanisms regulating hepatic lipids and the emerging therapies targeting these pathways as potential future treatments for MAFLD.
Collapse
|
23
|
Sepúlveda-Quiñenao C, Rodriguez JM, Díaz-Castro F, del Campo A, Bravo-Sagua R, Troncoso R. Glucocorticoid Receptor β Overexpression Has Agonist-Independent Insulin-Mimetic Effects on HepG2 Glucose Metabolism. Int J Mol Sci 2022; 23:ijms23105582. [PMID: 35628392 PMCID: PMC9141770 DOI: 10.3390/ijms23105582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/15/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
Glucocorticoids (GC) are steroids hormones that drive circulating glucose availability through gluconeogenesis in the liver. However, alternative splicing of the GR mRNA produces two isoforms, termed GRα and GRβ. GRα is the classic receptor that binds to GCs and mediates the most described actions of GCs. GRβ does not bind GCs and acts as a dominant-negative inhibitor of GRα. Moreover, GRβ has intrinsic and GRα-independent transcriptional activity. To date, it remains unknown if GRβ modulates glucose handling in hepatocytes. Therefore, the study aims to characterize the impact of GRβ overexpression on glucose uptake and storage using an in vitro hepatocyte model. Here we show that GRβ overexpression inhibits the induction of gluconeogenic genes by dexamethasone. Moreover, GRβ activates the Akt pathway, increases glucose transports mRNA, increasing glucose uptake and glycogen storage as an insulin-mimetic. Our results suggest that GRβ has agonist-independent insulin-mimetic actions in HepG2 cells.
Collapse
Affiliation(s)
- Claudia Sepúlveda-Quiñenao
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (C.S.-Q.); (J.M.R.); (F.D.-C.)
| | - Juan M. Rodriguez
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (C.S.-Q.); (J.M.R.); (F.D.-C.)
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (C.S.-Q.); (J.M.R.); (F.D.-C.)
| | - Andrea del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile;
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), INTA, Universidad de Chile, Santiago 7830490, Chile
- Red de Investigación en Envejecimiento, Consejo de la Universidades del Estado de Chile (CUECH), Santiago 7830490, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (C.S.-Q.); (J.M.R.); (F.D.-C.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile;
- Correspondence: ; Tel.: +56-229781587
| |
Collapse
|
24
|
Glucocorticosteroids and the Risk of NAFLD in Inflammatory Bowel Disease. Can J Gastroenterol Hepatol 2022; 2022:4344905. [PMID: 35600209 PMCID: PMC9117063 DOI: 10.1155/2022/4344905] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/13/2022] [Indexed: 02/08/2023] Open
Abstract
Each year, the incidence of nonalcoholic fatty liver (NAFLD) disease increases. NAFLD is a chronic disease. One of the most common causes of NAFLD is an inadequate lifestyle, which is characterized by a lack or low physical activity and eating highly processed foods rich in saturated fat and salt and containing low amount of fiber. Moreover, disturbances in intestinal microbiome and the use of certain drugs may predispose to NAFLD. NAFLD is an increasingly described disease in patients with inflammatory bowel disease (IBD). Recent data also indicate a frequent coexistence of metabolic syndrome in this group of patients. Certain groups of drugs also increase the risk of developing inflammation, liver fibrosis, and cirrhosis. Particularly important in the development of NAFLD are steroids, which are used in the treatment of many diseases, for example, IBD. NAFLD is one of the most frequent parenteral manifestations of the disease in IBD patients. However, there is still insufficient information on what dose and exposure time of selected types of steroids may lead to the development of NAFLD. It is necessary to conduct further research in this direction. Therefore, patients with IBD should be constantly monitored for risk factors for the development of NAFLD.
Collapse
|
25
|
Zeng T, Chen G, Qiao X, Chen H, Sun L, Ma Q, Li N, Wang J, Dai C, Xu F. NUSAP1 Could be a Potential Target for Preventing NAFLD Progression to Liver Cancer. Front Pharmacol 2022; 13:823140. [PMID: 35431924 PMCID: PMC9010788 DOI: 10.3389/fphar.2022.823140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) has gradually emerged as the most prevalent cause of chronic liver diseases. However, specific changes during the progression of NAFLD from non-fibrosis to advanced fibrosis and then hepatocellular carcinoma (HCC) are unresolved. Here, we firstly identify the key gene linking NAFLD fibrosis and HCC through analysis and experimental verification.Methods: Two GEO datasets (GSE89632, GSE49541) were performed for identifying differentially expressed genes (DEGs) associated with NAFLD progression from non-fibrosis to early fibrosis and eventually to advanced fibrosis. Subsequently, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis, protein-protein interaction (PPI) network were integrated to explore the potential function of the DEGs and hub genes. The expression of NUSAP1 was confirmed in vivo and in vitro NAFLD models at mRNA and protein level. Then, cell proliferation and migration under high fat conditions were verified by cell counting kit-8 (CCK-8) and wound-healing assays. The lipid content was measured with Oil Red O staining. Finally, the analysis of clinical survival curves was performed to reveal the prognostic value of the crucial genes among HCC patients via the online web-tool GEPIA2 and KM plotter.Results: 5510 DEGs associated with non-fibrosis NAFLD, 3913 DEGs about NAFLD fibrosis, and 739 DEGs related to NAFLD progression from mild fibrosis to advanced fibrosis were identified. Then, a total of 112 common DEGs were found. The result of enrichment analyses suggested that common DEGs were strongly associated with the glucocorticoid receptor pathway, regulation of transmembrane transporter activity, peroxisome, and proteoglycan biosynthetic process. Six genes, including KIAA0101, NUSAP1, UHRF1, RAD51AP1, KIF22, and ZWINT, were identified as crucial candidate genes via the PPI network. The expression of NUSAP1 was validated highly expressed in vitro and vivo NAFLD models at mRNA and protein level. NUSAP1 silence could inhibit the ability of cell proliferation, migration and lipid accumulation in vitro. Finally, we also found that NUSAP1 was significantly up-regulated at transcriptional and protein levels, and associated with poor survival and advanced tumor stage among HCC patients.Conclusion: NUSAP1 may be a potential therapeutic target for preventing NAFLD progression to liver cancer.
Collapse
Affiliation(s)
- Taofei Zeng
- Department of General Surgery, Hepatobiliary and Splenic Surgery Ward, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guanglei Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui Chen
- Department of General Surgery, Pancreatic and Thyroid Surgery Ward, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lisha Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qingtian Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Na Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, The Second Affiliated Hospital of DaLian Medical University, Dalian, China
| | - Junqi Wang
- Department of General Surgery, Hepatobiliary and Splenic Surgery Ward, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chaoliu Dai
- Department of General Surgery, Hepatobiliary and Splenic Surgery Ward, Shengjing Hospital of China Medical University, Shenyang, China
| | - Feng Xu
- Department of General Surgery, Hepatobiliary and Splenic Surgery Ward, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Feng Xu, ,
| |
Collapse
|
26
|
Gong L, Wang GE, Ma QY, Hao WZ, Xian MH, Wu YP, Kurihara H, He RR, Chen JX. Novel insights into the effect of Xiaoyao san on corticosterone-induced hepatic steatosis: inhibition of glucocorticoid receptor/perilipin-2 signaling pathway. ACUPUNCTURE AND HERBAL MEDICINE 2022; 2:49-57. [DOI: 10.1097/hm9.0000000000000011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2025]
Abstract
Abstract
Objective:
Xiaoyao san (XYS) is a classic traditional Chinese medicinal formula. It has been clinically administered to regulate liver function. However, its mechanisms in glucocorticoid-induced hepatic steatosis are unknown. This study aimed to investigate whether XYS protects against corticosterone (CORT)-induced hepatic steatosis, and to explore its mechanism.
Methods:
High-fat diet mice induced with hepatic steatosis by 2 mg/kg CORT were administered 2.56 g/kg or 5.12 g/kg XYS daily for 7 weeks. The effects of XYS on hepatic steatosis in mice were evaluated by H&E and Oil Red O staining and by measuring their plasma lipids (triglyceride, total cholesterol, and free fatty acids). The mechanism of XYS against hepatic steatosis was investigated by network pharmacology, immunohistochemistry, western blotting, and gain-of-function/loss-of-function experiments.
Results:
XYS alleviated CORT-induced steatosis, decreased plasma lipids, and inhibited glucocorticoid receptor (GR) activation in the liver. Network pharmacology data indicated that XYS may have mitigated hepatic steatosis via GR which mediated adipose differentiation-related protein (ADFP). Gain-of-function/loss-of-function experiments in vitro confirmed that GR positively regulated ADFP expression.
Conclusions:
XYS ameliorated CORT-induced hepatic steatosis by downregulating the GR/ADFP axis and inhibiting lipid metabolism. Our studies implicate that XYS is promising as a therapy for CORT-induced hepatic steatosis, and lay the foundation for designing novel prophylactic and therapeutic strategies on CORT-induced hepatic steatosis.
Collapse
Affiliation(s)
- Lian Gong
- Formula-Pattern Research Center, School of Chinese Medicine, Jinan University, Guangzhou, China
| | - Guo-En Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing-Yu Ma
- Formula-Pattern Research Center, School of Chinese Medicine, Jinan University, Guangzhou, China
| | - Wen-Zhi Hao
- Formula-Pattern Research Center, School of Chinese Medicine, Jinan University, Guangzhou, China
| | - Min-Hua Xian
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan-Ping Wu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China
| | - Jia-Xu Chen
- Formula-Pattern Research Center, School of Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
27
|
Reactive Oxygen Species (ROS) and Antioxidants as Immunomodulators in Exercise: Implications for Heme Oxygenase and Bilirubin. Antioxidants (Basel) 2022; 11:antiox11020179. [PMID: 35204062 PMCID: PMC8868548 DOI: 10.3390/antiox11020179] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Exercise is commonly prescribed as a lifestyle treatment for chronic metabolic diseases as it functions as an insulin sensitizer, cardio-protectant, and essential lifestyle tool for effective weight maintenance. Exercise boosts the production of reactive oxygen species (ROS) and subsequent transient oxidative damage, which also upregulates counterbalancing endogenous antioxidants to protect from ROS-induced damage and inflammation. Exercise elevates heme oxygenase-1 (HO-1) and biliverdin reductase A (BVRA) expression as built-in protective mechanisms, which produce the most potent antioxidant, bilirubin. Together, these mitigate inflammation and adiposity. Moderately raising plasma bilirubin protects in two ways: (1) via its antioxidant capacity to reduce ROS and inflammation, and (2) its newly defined function as a hormone that activates the nuclear receptor transcription factor PPARα. It is now understood that increasing plasma bilirubin can also drive metabolic adaptions, which improve deleterious outcomes of weight gain and obesity, such as inflammation, type II diabetes, and cardiovascular diseases. The main objective of this review is to describe the function of bilirubin as an antioxidant and metabolic hormone and how the HO-1-BVRA-bilirubin-PPARα axis influences inflammation, metabolic function and interacts with exercise to improve outcomes of weight management.
Collapse
|
28
|
Di Pasqua LG, Cagna M, Berardo C, Vairetti M, Ferrigno A. Detailed Molecular Mechanisms Involved in Drug-Induced Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis: An Update. Biomedicines 2022; 10:194. [PMID: 35052872 PMCID: PMC8774221 DOI: 10.3390/biomedicines10010194] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are some of the biggest public health challenges due to their spread and increasing incidence around the world. NAFLD is characterized by intrahepatic lipid deposition, accompanied by dyslipidemia, hypertension, and insulin resistance, leading to more serious complications. Among the various causes, drug administration for the treatment of numerous kinds of diseases, such as antiarrhythmic and antihypertensive drugs, promotes the onset and progression of steatosis, causing drug-induced hepatic steatosis (DIHS). Here, we reviewed in detail the major classes of drugs that cause DIHS and the specific molecular mechanisms involved in these processes. Eight classes of drugs, among the most used for the treatment of common pathologies, were considered. The most diffused mechanism whereby drugs can induce NAFLD/NASH is interfering with mitochondrial activity, inhibiting fatty acid oxidation, but other pathways involved in lipid homeostasis are also affected. PubMed research was performed to obtain significant papers published up to November 2021. The key words included the class of drugs, or the specific compound, combined with steatosis, nonalcoholic steatohepatitis, fibrosis, fatty liver and hepatic lipid deposition. Additional information was found in the citations listed in other papers, when they were not displayed in the original search.
Collapse
Affiliation(s)
- Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Marta Cagna
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Clarissa Berardo
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Mariapia Vairetti
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
29
|
Nuclear Receptors in Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:61-82. [DOI: 10.1007/978-3-031-11836-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Mukherjee S, Yun JW. Prednisone stimulates white adipocyte browning via β3-AR/p38 MAPK/ERK signaling pathway. Life Sci 2022; 288:120204. [PMID: 34864064 DOI: 10.1016/j.lfs.2021.120204] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023]
Abstract
AIMS Prednisone is a corticosteroid-derived drug which is widely used for its role in immunosuppression and treatment of lung disorders. The current study reports, for the first time, the critical role of prednisone in the induction of white fat browning, thereby promoting thermogenic effect in cultured white adipocytes. MAIN METHODS The fat-browning activity of prednisone was evaluated in 3T3-L1 cells by quantitative real-time PCR, immunoblot analysis, immunofluorescence, and molecular docking techniques. KEY FINDINGS Exposure to prednisone stimulated browning in 3T3-L1 white adipocytes by increasing the expressions of core fat browning marker proteins (UCP1, PGC-1α and PRDM16) as well as beige-specific genes (Cd137, Cidea, Cited1, and Tbx1) via ATF2 and CREB activation mediated by p38 MAPK and ERK signaling, respectively. Prednisone exposure also resulted in the robust activation of lipolytic and fatty acid oxidation marker proteins, thereby increasing mitochondrial biogenesis. In addition, prednisone treatment resulted in reduced expression levels of adipogenic transcription factors while elevating SIRT1, as well as attenuation of lipogenesis and lipid droplets formation. Furthermore, molecular docking and mechanistic studies demonstrated the recruitment of beige fat by prednisone via the β3-AR/p38 MAPK/ERK signaling pathway. SIGNIFICANCE Taken together, these results indicate the unique role of prednisone as a fat-browning stimulant, and demonstrate its therapeutic potential in the treatment of obesity by enhancing thermogenesis.
Collapse
Affiliation(s)
- Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
31
|
Xiang L, Jiao Y, Qian Y, Li Y, Mao F, Lu Y. Comparison of hepatic gene expression profiles between three mouse models of Nonalcoholic Fatty Liver Disease. Genes Dis 2022; 9:201-215. [PMID: 35005119 PMCID: PMC8720708 DOI: 10.1016/j.gendis.2021.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/30/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disorder worldwide. Murine models of NAFLD have been widely used to explore its pathogenesis. In this study, we performed a systematic evaluation of hepatic genome-wide mRNA expression by RNA-Sequencing using three mouse models of NAFLD: leptin receptor deficient db/db mice, high-fat high-sugar diet (HSHF)-induced obese mice, and dexamethasone (DEX)-induced NAFLD mice. As a result, we found both distinct and common pathways in the regulation of lipid metabolism from transcriptomes of three mouse models. Moreover, only a total of 12 differentially expressed genes (DEGs) were commonly detected among all three mouse groups, indicating very little overlap among all three models. Therefore, our results suggest that NAFLD is a heterogeneous disease with highly variable molecular mechanisms.
Collapse
Affiliation(s)
- Liping Xiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Yang Jiao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Yiling Qian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
- Department of Endocrinology and Metabolism, Minhang Branch, Zhongshan Hospital, Central Hospital of Minhang District, Shanghai Minhang Hospital, Fudan University, Shanghai 200032, PR China
| | - Yao Li
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Fei Mao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Yan Lu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| |
Collapse
|
32
|
Tsai SF, Hung HC, Shih MMC, Chang FC, Chung BC, Wang CY, Lin YL, Kuo YM. High-fat diet-induced increases in glucocorticoids contribute to the development of non-alcoholic fatty liver disease in mice. FASEB J 2021; 36:e22130. [PMID: 34959259 DOI: 10.1096/fj.202101570r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022]
Abstract
This study aimed to investigate the causal relationship between chronic ingestion of a high-fat diet (HFD)-induced secretion of glucocorticoids (GCs) and the development of non-alcoholic fatty liver disease (NAFLD). We have produced a strain of transgenic mice (termed L/L mice) that have normal levels of circulating corticosterone (CORT), the major type of GCs in rodents, but unlike wild-type (WT) mice, their circulating CORT was not affected by HFD. Compared to WT mice, 12-week HFD-induced fatty liver was less pronounced with higher plasma levels of triglycerides in L/L mice. These changes were reversed by CORT supplement to L/L mice. By analyzing a sort of lipid metabolism-related proteins, we found that expressions of the hepatic cluster of differentiation 36 (CD36) were upregulated by HFD-induced CORT and involved in CORT-mediated fatty liver. Dexamethasone, an agonist of the glucocorticoid receptor (GR), upregulated expressions of CD36 in HepG2 hepatocytes and facilitated lipid accumulation in the cells. In conclusion, the fat ingestion-induced release of CORT contributes to NAFLD. This study highlights the pathogenic role of CORT-mediated upregulation of hepatic CD 36 in diet-induced NAFLD.
Collapse
Affiliation(s)
- Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Chang Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | - Fu-Chuan Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ling Lin
- Division of Gastroenterology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
33
|
Hinds TD, Kipp ZA, Xu M, Yiannikouris FB, Morris AJ, Stec DF, Wahli W, Stec DE. Adipose-Specific PPARα Knockout Mice Have Increased Lipogenesis by PASK-SREBP1 Signaling and a Polarity Shift to Inflammatory Macrophages in White Adipose Tissue. Cells 2021; 11:4. [PMID: 35011564 PMCID: PMC8750478 DOI: 10.3390/cells11010004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
The nuclear receptor PPARα is associated with reducing adiposity, especially in the liver, where it transactivates genes for β-oxidation. Contrarily, the function of PPARα in extrahepatic tissues is less known. Therefore, we established the first adipose-specific PPARα knockout (PparaFatKO) mice to determine the signaling position of PPARα in adipose tissue expansion that occurs during the development of obesity. To assess the function of PPARα in adiposity, female and male mice were placed on a high-fat diet (HFD) or normal chow for 30 weeks. Only the male PparaFatKO animals had significantly more adiposity in the inguinal white adipose tissue (iWAT) and brown adipose tissue (BAT) with HFD, compared to control littermates. No changes in adiposity were observed in female mice compared to control littermates. In the males, the loss of PPARα signaling in adipocytes caused significantly higher cholesterol esters, activation of the transcription factor sterol regulatory element-binding protein-1 (SREBP-1), and a shift in macrophage polarity from M2 to M1 macrophages. We found that the loss of adipocyte PPARα caused significantly higher expression of the Per-Arnt-Sim kinase (PASK), a kinase that activates SREBP-1. The hyperactivity of the PASK-SREBP-1 axis significantly increased the lipogenesis proteins fatty acid synthase (FAS) and stearoyl-Coenzyme A desaturase 1 (SCD1) and raised the expression of genes for cholesterol metabolism (Scarb1, Abcg1, and Abca1). The loss of adipocyte PPARα increased Nos2 in the males, an M1 macrophage marker indicating that the population of macrophages had changed to proinflammatory. Our results demonstrate the first adipose-specific actions for PPARα in protecting against lipogenesis, inflammation, and cholesterol ester accumulation that leads to adipocyte tissue expansion in obesity.
Collapse
Affiliation(s)
- Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - Zachary A. Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
| | - Frederique B. Yiannikouris
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40508, USA;
- Lexington Veterans Affairs Medical Center, Lexington, KY 40508, USA
| | - Donald F. Stec
- Small Molecule NMR Facility Core, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA;
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore 308232, Singapore;
- Toxalim Research Center in Food Toxicology (UMR 1331), INRAE, ENVT, INP—PURPAN, UPS, Université de Toulouse, F-31300 Toulouse, France
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| | - David E. Stec
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
34
|
Shittu STT, Lasisi TJ, Shittu SAS, Adeyemi A, Adeoye TJ, Alada AA. Ocimum gratissimum enhances insulin sensitivity in male Wistar rats with dexamethasone-induced insulin resistance. J Diabetes Metab Disord 2021; 20:1257-1267. [PMID: 34900777 DOI: 10.1007/s40200-021-00850-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022]
Abstract
Purpose The antidiabetic activities of Ocimum gratissimum (OG) leaf extract are well documented in experimental diabetes induced by beta cell destruction resulting in hypoinsulinemia. There is however paucity of data on its effect in conditions characterized by hyperinsulinemia. This study therefore investigated the effect of OG on insulin resistance induced by dexamethasone in male Wistar rats. Method Twenty male Wistar rats grouped as control, normal + OG, Dex and Dex + OG were used. Control and normal + OG received normal saline while Dex and Dex + OG received dexamethasone (1 mg/kg, i.p) followed by distilled water or OG (400 mg/kg) for 10 days. Levels of fasting blood glucose (FBG), insulin, HOMA-IR, liver and muscle glycogen, hexokinase activities, hepatic HMG CoA reductase activity were obtained. Histopathology of pancreas and liver tissues was carried out using standard procedures. Results Body weight reduced significantly in the Dex and Dex + OG groups compared with the control. FBG (147.8 ± 9.93 mg/dL), insulin (2.98 ± 0.49 µIU/ml) and HOMA-IR (1.11 ± 0.22) of Dex animals were higher than the control (FBG = 89.22 ± 6.53 mg/dL; insulin = 1.70 ± 0.49 µIU/ml; HOMA-IR = 0.37 ± 0.04). These were significantly reduced in the Dex + OG (FBG = 115.31 ± 5.93 mg/dL; insulin = 1.85 ± 0.11µIU/ml; HOMA-IR = 0.53 ± 0.08) compared with Dex. Glycogen content and hexokinase activities were increased in the Dex + OG. Increased pancreatic islet size, hepatic steatosis and HMG Co A reductase activity were observed in the Dex but reduced in Dex + OG. Conclusion OG promotes cellular glucose utilization and reduces hepatic fat accumulation in Wistar rats with insulin resistance induced by dexamethasone. Further study to identify the involved signal transduction will throw more light on the observed effects.
Collapse
Affiliation(s)
| | - Taye Jemilat Lasisi
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Adeyinka Adeyemi
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tolulope James Adeoye
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
35
|
Xi Y, Zheng J, Xie W, Xu X, Cho N, Zhou X, Yu X. (+)-Dehydrovomifoliol Alleviates Oleic Acid-Induced Lipid Accumulation in HepG2 Cells via the PPARα-FGF21 Pathway. Front Pharmacol 2021; 12:750147. [PMID: 34867358 PMCID: PMC8640464 DOI: 10.3389/fphar.2021.750147] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
An overload of hepatic fatty acids, such as oleic acid is a key trigger of non-alcoholic fatty liver disease (NAFLD). Here, we investigated whether Artemisia frigida, a valuable traditional medicine used to treat various diseases, could mitigate OA-induced lipid accumulation in HepG2 cells. Then, to identify the active substances in A. frigida, a phytochemistry investigation was conducted using a bioassay-guided isolation method. Consequently, one terpene (1) and one flavone (2) were identified. Compound 1 ((+)-dehydrovomifoliol) exhibited potent effects against lipid accumulation in OA-induced HepG2 cells, without causing cyto-toxicity. Notably, treatment with (+)-dehydrovomifoliol decreased the expression levels of three genes related to lipogenesis (SREBP1, ACC, and FASN) and increased those of three genes related to fatty acid oxidation (PPARα, ACOX1, and FGF21). In addition, similar results were observed for SREBP1, PPARα, and FGF21 protein levels. The effects of (+)-dehydrovomifoliol were partially reversed by treatment with the PPARα antagonist GW6471, indicating the important role of the PPARα-FGF21 axis in the effects of (+)-dehydrovomifoliol. Based on its effects on hepatic lipogenesis and fatty acid oxidation signaling via the PPARα-FGF21 axis, (+)-dehydrovomifoliol isolated from A. frigida could be a useful early lead compound for developing new drugs for NAFLD prevention.
Collapse
Affiliation(s)
- Yiyuan Xi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
| | - Jujia Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Xie
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangwei Xu
- Pharmacy Department, Yongkang First People's Hospital, Jinhua, China
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
| | - Xudong Zhou
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaomin Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
36
|
The Role and Mechanism of Oxidative Stress and Nuclear Receptors in the Development of NAFLD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6889533. [PMID: 34745420 PMCID: PMC8566046 DOI: 10.1155/2021/6889533] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
The overproduction of reactive oxygen species (ROS) and consequent oxidative stress contribute to the pathogenesis of acute and chronic liver diseases. It is now acknowledged that nonalcoholic fatty liver disease (NAFLD) is characterized as a redox-centered disease due to the role of ROS in hepatic metabolism. However, the underlying mechanisms accounting for these alternations are not completely understood. Several nuclear receptors (NRs) are dysregulated in NAFLD, and have a direct influence on the expression of a set of genes relating to the progress of hepatic lipid homeostasis and ROS generation. Meanwhile, the NRs act as redox sensors in response to metabolic stress. Therefore, targeting NRs may represent a promising strategy for improving oxidation damage and treating NAFLD. This review summarizes the link between impaired lipid metabolism and oxidative stress and highlights some NRs involved in regulating oxidant/antioxidant turnover in the context of NAFLD, shedding light on potential therapies based on NR-mediated modulation of ROS generation and lipid accumulation.
Collapse
|
37
|
Smedlund KB, Sanchez ER, Hinds TD. FKBP51 and the molecular chaperoning of metabolism. Trends Endocrinol Metab 2021; 32:862-874. [PMID: 34481731 PMCID: PMC8516732 DOI: 10.1016/j.tem.2021.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 01/30/2023]
Abstract
The molecular chaperone FK506-binding protein 51 (FKBP51) is gaining attention as a meaningful biomarker of metabolic dysfunction. This review examines the emerging contributions of FKBP51 in adipogenesis and lipid metabolism, myogenesis and protein catabolism, and glucocorticoid-induced skin hypoplasia and dermal adipocytes. The FKBP51 signaling mechanisms that may explain these metabolic consequences are discussed. These mechanisms are diverse, with FKBP51 independently and directly regulating phosphorylation cascades and nuclear receptors. We provide a discussion of the newly developed compounds that antagonize FKBP51, which may offer therapeutic advantages for adiposity. These observations suggest we are only beginning to uncover the complex nature of FKBP51 and its molecular chaperoning of metabolism.
Collapse
Affiliation(s)
- Kathryn B Smedlund
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Edwin R Sanchez
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Terry D Hinds
- Barnstable Brown Diabetes Center, Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40508, USA.
| |
Collapse
|
38
|
Kolaric TO, Nincevic V, Kuna L, Duspara K, Bojanic K, Vukadin S, Raguz-Lucic N, Wu GY, Smolic M. Drug-induced Fatty Liver Disease: Pathogenesis and Treatment. J Clin Transl Hepatol 2021; 9:731-737. [PMID: 34722188 PMCID: PMC8516847 DOI: 10.14218/jcth.2020.00091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/08/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (commonly known as MAFLD) impacts global health in epidemic proportions, and the resulting morbidity, mortality and economic burden is enormous. While much attention has been given to metabolic syndrome and obesity as offending factors, a growing incidence of polypharmacy, especially in the elderly, has greatly increased the risk of drug-induced liver injury (DILI) in general, and drug-induced fatty liver disease (DIFLD) in particular. This review focuses on the contribution of DIFLD to DILI in terms of epidemiology, pathophysiology, the most common drugs associated with DIFLD, and treatment strategies.
Collapse
Affiliation(s)
- Tea Omanovic Kolaric
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- University of Osijek, Faculty of Dental Medicine and Health, Osijek, Croatia
| | - Vjera Nincevic
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- University of Osijek, Faculty of Dental Medicine and Health, Osijek, Croatia
| | - Lucija Kuna
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- University of Osijek, Faculty of Dental Medicine and Health, Osijek, Croatia
| | | | - Kristina Bojanic
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- University of Osijek, Faculty of Dental Medicine and Health, Osijek, Croatia
- Health Center Osijek, Osijek, Croatia
| | - Sonja Vukadin
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- University of Osijek, Faculty of Dental Medicine and Health, Osijek, Croatia
| | - Nikola Raguz-Lucic
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- University of Osijek, Faculty of Dental Medicine and Health, Osijek, Croatia
| | - George Y Wu
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| | - Martina Smolic
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- University of Osijek, Faculty of Dental Medicine and Health, Osijek, Croatia
| |
Collapse
|
39
|
Misiak B, Pruessner M, Samochowiec J, Wiśniewski M, Reginia A, Stańczykiewicz B. A meta-analysis of blood and salivary cortisol levels in first-episode psychosis and high-risk individuals. Front Neuroendocrinol 2021; 62:100930. [PMID: 34171354 DOI: 10.1016/j.yfrne.2021.100930] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/10/2021] [Accepted: 06/19/2021] [Indexed: 11/18/2022]
Abstract
Dysregulated cortisol responses and glucose metabolism have been reported in psychosis. We performed a random-effects meta-analysis of cortisol responses in first-episode psychosis (FEP) and psychosis risk states, taking into consideration glucose metabolism. A total of 47 studies were included. Unstimulated blood cortisol levels were significantly higher (g = 0.48, 95 %CI: 0.25-0.70, p < 0.001) in FEP, but not in psychosis risk states (g = 0.39, 95 %CI: -0.42-1.21, p = 0.342), compared to controls. Cortisol awakening response (CAR) was attenuated in FEP (g = -0.40, 95 %CI: -0.68 - -0.12, p = 0.006), but not in psychosis risk states (p = 0.433). Glucose and insulin levels were positively correlated with unstimulated blood cortisol levels in FEP. Our meta-analysis supports previous findings of elevated blood cortisol levels and attenuated CAR in FEP. Future research should focus on identifying the common denominators for alterations in stress hormones and glucose metabolism.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland.
| | - Marita Pruessner
- Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Canada; Department of Clinical Psychology, University of Konstanz, Konstanz, Germany
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-457 Szczecin, Poland
| | | | - Artur Reginia
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-457 Szczecin, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Nervous System Diseases, Wroclaw Medical University, Bartla 5 Street, 51-618 Wroclaw, Poland
| |
Collapse
|
40
|
Ramos-Ramírez P, Tliba O. Glucocorticoid Receptor β (GRβ): Beyond Its Dominant-Negative Function. Int J Mol Sci 2021; 22:3649. [PMID: 33807481 PMCID: PMC8036319 DOI: 10.3390/ijms22073649] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoids (GCs) act via the GC receptor (GR), a receptor ubiquitously expressed in the body where it drives a broad spectrum of responses within distinct cell types and tissues, which vary in strength and specificity. The variability of GR-mediated cell responses is further extended by the existence of GR isoforms, such as GRα and GRβ, generated through alternative splicing mechanisms. While GRα is the classic receptor responsible for GC actions, GRβ has been implicated in the impairment of GRα-mediated activities. Interestingly, in contrast to the popular belief that GRβ actions are restricted to its dominant-negative effects on GRα-mediated responses, GRβ has been shown to have intrinsic activities and "directly" regulates a plethora of genes related to inflammatory process, cell communication, migration, and malignancy, each in a GRα-independent manner. Furthermore, GRβ has been associated with increased cell migration, growth, and reduced sensitivity to GC-induced apoptosis. We will summarize the current knowledge of GRβ-mediated responses, with a focus on the GRα-independent/intrinsic effects of GRβ and the associated non-canonical signaling pathways. Where appropriate, potential links to airway inflammatory diseases will be highlighted.
Collapse
Affiliation(s)
- Patricia Ramos-Ramírez
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA;
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA;
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ 08901, USA
| |
Collapse
|
41
|
Athinarayanan S, Fan YY, Wang X, Callaway E, Cai D, Chalasani N, Chapkin RS, Liu W. Fatty Acid Desaturase 1 Influences Hepatic Lipid Homeostasis by Modulating the PPARα-FGF21 Axis. Hepatol Commun 2021; 5:461-477. [PMID: 33681679 PMCID: PMC7917273 DOI: 10.1002/hep4.1629] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
The fatty acid desaturase 1 (FADS1), also known as delta-5 desaturase (D5D), is one of the rate-limiting enzymes involved in the desaturation and elongation cascade of polyunsaturated fatty acids (PUFAs) to generate long-chain PUFAs (LC-PUFAs). Reduced function of D5D and decreased hepatic FADS1 expression, as well as low levels of LC-PUFAs, were associated with nonalcoholic fatty liver disease. However, the causal role of D5D in hepatic lipid homeostasis remains unclear. In this study, we hypothesized that down-regulation of FADS1 increases susceptibility to hepatic lipid accumulation. We used in vitro and in vivo models to test this hypothesis and to delineate the molecular mechanisms mediating the effect of reduced FADS1 function. Our study demonstrated that FADS1 knockdown significantly reduced cellular levels of LC-PUFAs and increased lipid accumulation and lipid droplet formation in HepG2 cells. The lipid accumulation was associated with significant alterations in multiple pathways involved in lipid homeostasis, especially fatty acid oxidation. These effects were demonstrated to be mediated by the reduced function of the peroxisome proliferator-activated receptor alpha (PPARα)-fibroblast growth factor 21 (FGF21) axis, which can be reversed by treatment with docosahexaenoic acid, PPARα agonist, or FGF21. In vivo, FADS1-knockout mice fed with high-fat diet developed increased hepatic steatosis as compared with their wild-type littermates. Molecular analyses of the mouse liver tissue largely corroborated the observations in vitro, especially along with reduced protein expression of PPARα and FGF21. Conclusion: Collectively, these results suggest that dysregulation in FADS1 alters liver lipid homeostasis in the liver by down-regulating the PPARα-FGF21 signaling axis.
Collapse
Affiliation(s)
- Shaminie Athinarayanan
- Department of Medicinal Chemistry and Molecular PharmacologyCollege of PharmacyPurdue UniversityWest LafayetteINUSA
| | - Yang-Yi Fan
- Program in Integrative Nutrition and Complex DiseasesTexas A&M UniversityCollege StationTXUSA
| | - Xiaokun Wang
- Department of Pharmaceutical SciencesWayne State UniversityDetroitMIUSA
| | - Evelyn Callaway
- Program in Integrative Nutrition and Complex DiseasesTexas A&M UniversityCollege StationTXUSA
| | - Defeng Cai
- Department of Pharmaceutical SciencesWayne State UniversityDetroitMIUSA
| | - Naga Chalasani
- Division of Gastroenterology and HepatologyIndiana University School of MedicineIndianapolisINUSA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex DiseasesTexas A&M UniversityCollege StationTXUSA.,Texas A&M Center for Environmental Health ResearchTexas A&M UniversityCollege StationTXUSA
| | - Wanqing Liu
- Department of Medicinal Chemistry and Molecular PharmacologyCollege of PharmacyPurdue UniversityWest LafayetteINUSA.,Department of Pharmaceutical SciencesWayne State UniversityDetroitMIUSA.,Department of PharmacologyWayne State UniversityDetroitMIUSA
| |
Collapse
|
42
|
Płatek T, Polus A, Góralska J, Raźny U, Dziewońska A, Micek A, Dembińska-Kieć A, Solnica B, Malczewska-Malec M. Epigenetic Regulation of Processes Related to High Level of Fibroblast Growth Factor 21 in Obese Subjects. Genes (Basel) 2021; 12:307. [PMID: 33670024 PMCID: PMC7926457 DOI: 10.3390/genes12020307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
We hypothesised that epigenetics may play an important role in mediating fibroblast growth factor 21 (FGF21) resistance in obesity. We aimed to evaluate DNA methylation changes and miRNA pattern in obese subjects associated with high serum FGF21 levels. The study included 136 participants with BMI 27-45 kg/m2. Fasting FGF21, glucose, insulin, GIP, lipids, adipokines, miokines and cytokines were measured and compared in high serum FGF21 (n = 68) group to low FGF21 (n = 68) group. Human DNA Methylation Microarrays were analysed in leukocytes from each group (n = 16). Expression of miRNAs was evaluated using quantitative PCR-TLDA. The study identified differentially methylated genes in pathways related to glucose transport, insulin secretion and signalling, lipid transport and cellular metabolism, response to nutrient levels, thermogenesis, browning of adipose tissue and bone mineralisation. Additionally, it detected transcription factor genes regulating FGF21 and fibroblast growth factor receptor and vascular endothelial growth factor receptor pathways regulation. Increased expression of hsa-miR-875-5p and decreased expression of hsa-miR-133a-3p, hsa-miR-185-5p and hsa-miR-200c-3p were found in the group with high serum FGF21. These changes were associated with high FGF21, VEGF and low adiponectin serum levels. Our results point to a significant role of the epigenetic regulation of genes involved in metabolic pathways related to FGF21 action.
Collapse
Affiliation(s)
- Teresa Płatek
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Anna Polus
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Joanna Góralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Urszula Raźny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Agnieszka Dziewońska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Agnieszka Micek
- Department of Nursing Management and Epidemiology Nursing, Faculty of Health Sciences, Jagiellonian University Medical College, 25 Kopernika Street, 31-501 Krakow, Poland;
| | - Aldona Dembińska-Kieć
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Bogdan Solnica
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Małgorzata Malczewska-Malec
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| |
Collapse
|
43
|
Creeden JF, Gordon DM, Stec DE, Hinds TD. Bilirubin as a metabolic hormone: the physiological relevance of low levels. Am J Physiol Endocrinol Metab 2021; 320:E191-E207. [PMID: 33284088 PMCID: PMC8260361 DOI: 10.1152/ajpendo.00405.2020] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent research on bilirubin, a historically well-known waste product of heme catabolism, suggests an entirely new function as a metabolic hormone that drives gene transcription by nuclear receptors. Studies are now revealing that low plasma bilirubin levels, defined as "hypobilirubinemia," are a possible new pathology analogous to the other end of the spectrum of extreme hyperbilirubinemia seen in patients with jaundice and liver dysfunction. Hypobilirubinemia is most commonly seen in patients with metabolic dysfunction, which may lead to cardiovascular complications and possibly stroke. We address the clinical significance of low bilirubin levels. A better understanding of bilirubin's hormonal function may explain why hypobilirubinemia might be deleterious. We present mechanisms by which bilirubin may be protective at mildly elevated levels and research directions that could generate treatment possibilities for patients with hypobilirubinemia, such as targeting of pathways that regulate its production or turnover or the newly designed bilirubin nanoparticles. Our review here calls for a shift in the perspective of an old molecule that could benefit millions of patients with hypobilirubinemia.
Collapse
Affiliation(s)
- Justin F Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Darren M Gordon
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - David E Stec
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
44
|
Graffmann N, Ncube A, Martins S, Fiszl AR, Reuther P, Bohndorf M, Wruck W, Beller M, Czekelius C, Adjaye J. A stem cell based in vitro model of NAFLD enables the analysis of patient specific individual metabolic adaptations in response to a high fat diet and AdipoRon interference. Biol Open 2021; 10:bio.054189. [PMID: 33372064 PMCID: PMC7860118 DOI: 10.1242/bio.054189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease. Its development and progression depend on genetically predisposed susceptibility of the patient towards several ‘hits’ that induce fat storage first and later inflammation and fibrosis. Here, we differentiated induced pluripotent stem cells (iPSCs) derived from four distinct donors with varying disease stages into hepatocyte like cells (HLCs) and determined fat storage as well as metabolic adaptations after stimulations with oleic acid. We could recapitulate the complex networks that control lipid and glucose metabolism and we identified distinct gene expression profiles related to the steatosis phenotype of the donor. In an attempt to reverse the steatotic phenotype, cells were treated with the small molecule AdipoRon, a synthetic analogue of adiponectin. Although the responses varied between cells lines, they suggest a general influence of AdipoRon on metabolism, transport, immune system, cell stress and signalling. Summary: A stem cell based in vitro model of NAFLD recapitulates regulatory networks and suggests a steatosis associated phenotype. AdipoRon treatment influences metabolism, immune system, cell stress and signalling.
Collapse
Affiliation(s)
- Nina Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Audrey Ncube
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Soraia Martins
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Aurelian Robert Fiszl
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Philipp Reuther
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine University Düsseldorf 40225, Düsseldorf, Germany
| | - Martina Bohndorf
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.,Systems Biology of Lipid Metabolism, Heinrich-Heine University Düsseldorf 40225, Düsseldorf, Germany
| | - Constantin Czekelius
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine University Düsseldorf 40225, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| |
Collapse
|
45
|
Spiers JG, Steiger N, Khadka A, Juliani J, Hill AF, Lavidis NA, Anderson ST, Cortina Chen HJ. Repeated acute stress modulates hepatic inflammation and markers of macrophage polarisation in the rat. Biochimie 2021; 180:30-42. [PMID: 33122103 DOI: 10.1016/j.biochi.2020.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/29/2020] [Accepted: 10/24/2020] [Indexed: 12/24/2022]
Abstract
Bidirectional communication between the neuroendocrine stress and immune systems permits classically anti-inflammatory glucocorticoids to exert pro-inflammatory effects in specific cells and tissues. Liver macrophages/Kupffer cells play a crucial role in initiating inflammatory cascades mediated by the release of pro-inflammatory cytokines following tissue injury. However, the effects of repeated acute psychological stress on hepatic inflammatory phenotype and macrophage activation state remains poorly understood. We have utilised a model of repeated acute stress in rodents to observe the changes in hepatic inflammatory phenotype, including anti-inflammatory vitamin D status, in addition to examining markers of classically and alternatively-activated macrophages. Male Wistar rats were subjected to control conditions or 6 h of restraint stress applied for 1 or 3 days (n = 8 per group) after which plasma concentrations of stress hormone, enzymes associated with liver damage, and vitamin D status were examined, in addition to hepatic expression of pro- and anti-inflammatory markers. Stress increased glucocorticoids and active vitamin D levels in addition to expression of glucocorticoid alpha/beta receptor, whilst changes in circulating hepatic enzymes indicated sustained liver damage. A pro-inflammatory response was observed in liver tissues following stress, and inducible nitric oxide synthase being observed within hepatic macrophage/Kupffer cells. Together, this suggests that stress preferentially induces a pro-inflammatory response in the liver.
Collapse
Affiliation(s)
- Jereme G Spiers
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia.
| | - Natasha Steiger
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Arun Khadka
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Juliani Juliani
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Stephen T Anderson
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia; WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
46
|
Quattrocelli M, Zelikovich AS, Salamone IM, Fischer JA, McNally EM. Mechanisms and Clinical Applications of Glucocorticoid Steroids in Muscular Dystrophy. J Neuromuscul Dis 2021; 8:39-52. [PMID: 33104035 PMCID: PMC7902991 DOI: 10.3233/jnd-200556] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glucocorticoid steroids are widely used as immunomodulatory agents in acute and chronic conditions. Glucocorticoid steroids such as prednisone and deflazacort are recommended for treating Duchenne Muscular Dystrophy where their use prolongs ambulation and life expectancy. Despite this benefit, glucocorticoid use in Duchenne Muscular Dystrophy is also associated with significant adverse consequences including adrenal suppression, growth impairment, poor bone health and metabolic syndrome. For other forms of muscular dystrophy like the limb girdle dystrophies, glucocorticoids are not typically used. Here we review the experimental evidence supporting multiple mechanisms of glucocorticoid action in dystrophic muscle including their role in dampening inflammation and myofiber injury. We also discuss alternative dosing strategies as well as novel steroid agents that are in development and testing, with the goal to reduce adverse consequences of prolonged glucocorticoid exposure while maximizing beneficial outcomes.
Collapse
Affiliation(s)
- Mattia Quattrocelli
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Molecular Cardiovascular Biology Division, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aaron S Zelikovich
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Isabella M Salamone
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Julie A Fischer
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
47
|
Hinds TD, Creeden JF, Gordon DM, Stec DF, Donald MC, Stec DE. Bilirubin Nanoparticles Reduce Diet-Induced Hepatic Steatosis, Improve Fat Utilization, and Increase Plasma β-Hydroxybutyrate. Front Pharmacol 2020; 11:594574. [PMID: 33390979 PMCID: PMC7775678 DOI: 10.3389/fphar.2020.594574] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022] Open
Abstract
The inverse relationship of plasma bilirubin levels with liver fat accumulation has prompted the possibility of bilirubin as a therapeutic for non-alcoholic fatty liver disease. Here, we used diet-induced obese mice with non-alcoholic fatty liver disease treated with pegylated bilirubin (bilirubin nanoparticles) or vehicle control to determine the impact on hepatic lipid accumulation. The bilirubin nanoparticles significantly reduced hepatic fat, triglyceride accumulation, de novo lipogenesis, and serum levels of liver dysfunction marker aspartate transaminase and ApoB100 containing very-low-density lipoprotein. The bilirubin nanoparticles improved liver function and activated the hepatic β-oxidation pathway by increasing PPARα and acyl-coenzyme A oxidase 1. The bilirubin nanoparticles also significantly elevated plasma levels of the ketone β-hydroxybutyrate and lowered liver fat accumulation. This study demonstrates that bilirubin nanoparticles induce hepatic fat utilization, raise plasma ketones, and reduce hepatic steatosis, opening new therapeutic avenues for NAFLD.
Collapse
Affiliation(s)
- Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Justin F Creeden
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, United States
| | - Darren M Gordon
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, United States
| | - Donald F Stec
- Small Molecule NMR Facility Core, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
| | - Matthew C Donald
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
48
|
Præstholm SM, Correia CM, Grøntved L. Multifaceted Control of GR Signaling and Its Impact on Hepatic Transcriptional Networks and Metabolism. Front Endocrinol (Lausanne) 2020; 11:572981. [PMID: 33133019 PMCID: PMC7578419 DOI: 10.3389/fendo.2020.572981] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids (GCs) and the glucocorticoid receptor (GR) are important regulators of development, inflammation, stress response and metabolism, demonstrated in various diseases including Addison's disease, Cushing's syndrome and by the many side effects of prolonged clinical administration of GCs. These conditions include severe metabolic challenges in key metabolic organs like the liver. In the liver, GR is known to regulate the transcription of key enzymes in glucose and lipid metabolism and contribute to the regulation of circadian-expressed genes. Insights to the modes of GR regulation and the underlying functional mechanisms are key for understanding diseases and for the development of improved clinical uses of GCs. The activity and function of GR is regulated at numerous levels including ligand availability, interaction with heat shock protein (HSP) complexes, expression of GR isoforms and posttranslational modifications. Moreover, recent genomics studies show functional interaction with multiple transcription factors (TF) and coregulators in complex transcriptional networks controlling cell type-specific gene expression by GCs. In this review we describe the different regulatory steps important for GR activity and discuss how different TF interaction partners of GR selectively control hepatic gene transcription and metabolism.
Collapse
Affiliation(s)
| | | | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
49
|
Hinds TD, Creeden JF, Gordon DM, Spegele AC, Britton SL, Koch LG, Stec DE. Rats Genetically Selected for High Aerobic Exercise Capacity Have Elevated Plasma Bilirubin by Upregulation of Hepatic Biliverdin Reductase-A (BVRA) and Suppression of UGT1A1. Antioxidants (Basel) 2020; 9:antiox9090889. [PMID: 32961782 PMCID: PMC7554716 DOI: 10.3390/antiox9090889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Exercise in humans and animals increases plasma bilirubin levels, but the mechanism by which this occurs is unknown. In the present study, we utilized rats genetically selected for high capacity running (HCR) and low capacity running (LCR) to determine pathways in the liver that aerobic exercise modifies to control plasma bilirubin. The HCR rats, compared to the LCR, exhibited significantly higher levels of plasma bilirubin and the hepatic enzyme that produces it, biliverdin reductase-A (BVRA). The HCR also had reduced expression of the glucuronyl hepatic enzyme UGT1A1, which lowers plasma bilirubin. Recently, bilirubin has been shown to activate the peroxisome proliferator-activated receptor-α (PPARα), a ligand-induced transcription factor, and the higher bilirubin HCR rats had significantly increased PPARα-target genes Fgf21, Abcd3, and Gys2. These are known to promote liver function and glycogen storage, which we found by Periodic acid–Schiff (PAS) staining that hepatic glycogen content was higher in the HCR versus the LCR. Our results demonstrate that exercise stimulates pathways that raise plasma bilirubin through alterations in hepatic enzymes involved in bilirubin synthesis and metabolism, improving liver function, and glycogen content. These mechanisms may explain the beneficial effects of exercise on plasma bilirubin levels and health in humans.
Collapse
Affiliation(s)
- Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40508, USA
- Correspondence: (T.D.H.J.); (D.E.S.)
| | - Justin F. Creeden
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH 43614, USA; (J.F.C.); (D.M.G.)
| | - Darren M. Gordon
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH 43614, USA; (J.F.C.); (D.M.G.)
| | - Adam C. Spegele
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA; (A.C.S.); (L.G.K.)
| | - Steven L. Britton
- Department of Anesthesiology, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA; (A.C.S.); (L.G.K.)
| | - David E. Stec
- Center for Excellence in Cardiovascular-Renal Research, Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 392161, USA
- Correspondence: (T.D.H.J.); (D.E.S.)
| |
Collapse
|
50
|
Pillai SS, Lakhani HV, Zehra M, Wang J, Dilip A, Puri N, O’Hanlon K, Sodhi K. Predicting Nonalcoholic Fatty Liver Disease through a Panel of Plasma Biomarkers and MicroRNAs in Female West Virginia Population. Int J Mol Sci 2020; 21:ijms21186698. [PMID: 32933141 PMCID: PMC7554851 DOI: 10.3390/ijms21186698] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Nonalcoholic fatty liver disease (NAFLD) is primarily characterized by the presence of fatty liver, hepatic inflammation and fibrogenesis eventually leading to nonalcoholic steatohepatitis (NASH) or cirrhosis. Obesity and diabetes are common risk factors associated with the development and progression of NAFLD, with one of the highest prevalence of these diseased conditions in the West Virginia population. Currently, the diagnosis of NAFLD is limited to radiologic studies and biopsies, which are not cost-effective and highly invasive. Hence, this study aimed to develop a panel and assess the progressive levels of circulatory biomarkers and miRNA expression in patients at risk for progression to NASH to allow early intervention strategies. (2) Methods: In total, 62 female patients were enrolled and blood samples were collected after 8–10 h of fasting. Computed tomography was performed on abdomen/pelvis following IV contrast administration. The patients were divided into the following groups: Healthy subjects with normal BMI and normal fasting blood glucose (Control, n = 20), Obese with high BMI and normal fasting blood glucose (Obese, n = 20) and Obese with high fasting blood glucose (Obese + DM, n = 22). Based on findings from CT, another subset was created from Obese + DM group with patients who showed signs of fatty liver infiltration (Obese + DM(FI), n = 10). ELISA was performed for measurement of plasma biomarkers and RT-PCR was performed for circulating miRNA expression. (3) Results: Our results show significantly increased levels of plasma IL-6, Leptin and FABP-1, while significantly decreased level of adiponectin in Obese, Obese + DM and Obese + DM(FI) group, as compared to healthy controls. The level of CK-18 was significantly increased in Obese + DM(FI) group as compared to control. Subsequently, the expression of miR-122, miR-34a, miR-375, miR-16 and miR-21 was significantly increased in Obese + DM and Obese + DM(FI) group as compared to healthy control. Our results also show distinct correlation of IL-6, FABP-1 and adiponectin levels with the expression of miRNAs in relation to the extent of NAFLD progression. (4) Conclusion: Our results support the clinical application of these biomarkers and miRNAs in monitoring the progression of NAFLD, suggesting a more advanced diagnostic potential of this panel than conventional methods. This panel may provide an appropriate method for early prognosis and management of NAFLD and subsequent adverse hepatic pathophysiology, potentially reducing the disease burden on the West Virginia population.
Collapse
Affiliation(s)
- Sneha S. Pillai
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Hari Vishal Lakhani
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Mishghan Zehra
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Jiayan Wang
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Anum Dilip
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Nitin Puri
- Departments of Biomedical Sciences and Medical Education, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA;
| | - Kathleen O’Hanlon
- Departments of Family Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA;
| | - Komal Sodhi
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
- Correspondence: ; Tel.: +1-(304)-691-1704; Fax: +1-(914)-347-4956
| |
Collapse
|