1
|
Zhu Y, Li Q. Multifaceted roles of PDCD6 both within and outside the cell. J Cell Physiol 2024; 239:e31235. [PMID: 38436472 DOI: 10.1002/jcp.31235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Programmed cell death protein 6 (PDCD6) is an evolutionarily conserved Ca2+-binding protein. PDCD6 is involved in regulating multifaceted and pleiotropic cellular processes in different cellular compartments. For instance, nuclear PDCD6 regulates apoptosis and alternative splicing. PDCD6 is required for coat protein complex II-dependent endoplasmic reticulum-to-Golgi apparatus vesicular transport in the cytoplasm. Recent advances suggest that cytoplasmic PDCD6 is involved in the regulation of cytoskeletal dynamics and innate immune responses. Additionally, membranous PDCD6 participates in membrane repair through endosomal sorting complex required for transport complex-dependent membrane budding. Interestingly, extracellular vesicles are rich in PDCD6. Moreover, abnormal expression of PDCD6 is closely associated with many diseases, especially cancer. PDCD6 is therefore a multifaceted but pivotal protein in vivo. To gain a more comprehensive understanding of PDCD6 functions and to focus and stimulate PDCD6 research, this review summarizes key developments in its role in different subcellular compartments, processes, and pathologies.
Collapse
Affiliation(s)
- Yigao Zhu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
2
|
Singin Ö, Astapenka A, Costina V, Kühl S, Bonekamp N, Drews O, Islinger M. Analysis of the Mouse Hepatic Peroxisome Proteome-Identification of Novel Protein Constituents Using a Semi-Quantitative SWATH-MS Approach. Cells 2024; 13:176. [PMID: 38247867 PMCID: PMC10814758 DOI: 10.3390/cells13020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Ongoing technical and bioinformatics improvements in mass spectrometry (MS) allow for the identifying and quantifying of the enrichment of increasingly less-abundant proteins in individual fractions. Accordingly, this study reassessed the proteome of mouse liver peroxisomes by the parallel isolation of peroxisomes from a mitochondria- and a microsome-enriched prefraction, combining density-gradient centrifugation with a semi-quantitative SWATH-MS proteomics approach to unveil novel peroxisomal or peroxisome-associated proteins. In total, 1071 proteins were identified using MS and assessed in terms of their distribution in either high-density peroxisomal or low-density gradient fractions, containing the bulk of organelle material. Combining the data from both fractionation approaches allowed for the identification of specific protein profiles characteristic of mitochondria, the ER and peroxisomes. Among the proteins significantly enriched in the peroxisomal cluster were several novel peroxisomal candidates. Five of those were validated by colocalization in peroxisomes, using confocal microscopy. The peroxisomal import of HTATIP2 and PAFAH2, which contain a peroxisome-targeting sequence 1 (PTS1), could be confirmed by overexpression in HepG2 cells. The candidates SAR1B and PDCD6, which are known ER-exit-site proteins, did not directly colocalize with peroxisomes, but resided at ER sites, which frequently surrounded peroxisomes. Hence, both proteins might concentrate at presumably co-purified peroxisome-ER membrane contacts. Intriguingly, the fifth candidate, OCIA domain-containing protein 1, was previously described as decreasing mitochondrial network formation. In this work, we confirmed its peroxisomal localization and further observed a reduction in peroxisome numbers in response to OCIAD1 overexpression. Hence, OCIAD1 appears to be a novel protein, which has an impact on both mitochondrial and peroxisomal maintenance.
Collapse
Affiliation(s)
- Öznur Singin
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| | - Artur Astapenka
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| | - Victor Costina
- Institute of Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (V.C.); (O.D.)
| | - Sandra Kühl
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| | - Nina Bonekamp
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| | - Oliver Drews
- Institute of Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (V.C.); (O.D.)
- Biomedical Mass Spectrometry, Center for Medical Research, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Markus Islinger
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| |
Collapse
|
3
|
Xu R, Zhai Y, Yang J, Tong Y, He P, Jia R. Combined dynamic transcriptomics and metabolomics analyses revealed the effects of trans-vp28 gene Synechocystis sp. PCC6803 on the hepatopancreas of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 128:28-37. [PMID: 35842114 DOI: 10.1016/j.fsi.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Litopenaeus vannamei is the most important shrimp species throughout the world. However, diseases are increasing with the development of the industry, so enhancing the immunity of shrimp is of great significance. In this study, 1800 shrimp were divided into two groups randomly: the control group (N, feed with brine shrimp flake) and the experimental group (M, feed with mutant of Synechocystis sp. cells) (300 shrimp/group/replication) and each trial was conducted in triplicates. After immunization, sixty shrimp (with three replicates of twenty) were collected at 0 h in group N and 24, 72, and 144 h in group M, respectively, and the hepatopancreas were isolated for transcriptomic and metabolomic analysis. Transcriptome data revealed that compared with group N, genes related to antimicrobial peptides, cytoskeleton remodeling, detoxification, apoptosis, blood coagulation, immune defense, and antioxidant systems were differentially expressed in group M. In addition, combined transcriptomic and metabolomic analysis revealed that some immune-related differential genes or differential metabolites were consistently expressed in both omics. All the above results indicated that trans-vp28 gene Synechocystis sp. PCC6803 could improve the immunity of L. vannamei. This is the first report of the integration of dynamic transcriptomics combined with metabolomics to study the effect of trans-vp28 gene Synechocystis sp. PCC6803 in the hepatopancreas of L. vannamei and provided important information about the defense and immune mechanisms used by invertebrates against pathogens.
Collapse
Affiliation(s)
- Ruihang Xu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yufeng Zhai
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jia Yang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yupei Tong
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| | - Rui Jia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
4
|
Goodfellow BJ, Freire F, Carvalho AL, Aveiro SS, Charbonnier P, Moulis JM, Delgado L, Ferreira GC, Rodrigues JE, Poussin-Courmontagne P, Birck C, McEwen A, Macedo AL. The SOUL family of heme-binding proteins: Structure and function 15 years later. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Ji W, Zhang L, Xu X, Liu X. ALG2 regulates type I interferon responses by inhibiting STING trafficking. J Cell Sci 2021; 134:273719. [PMID: 34787301 DOI: 10.1242/jcs.259060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Stimulator of IFN genes (STING), an endoplasmic reticulum (ER) signaling adaptor, is essential for the type I interferon response to cytosolic dsDNA. The translocation from the ER to perinuclear vesicles following binding cGAMP is a critical step for STING to activate downstream signaling molecules, which lead to the production of interferon and pro-inflammatory cytokines. Here we found that apoptosis-linked gene 2 (ALG2) suppressed STING signaling induced by either HSV-1 infection or cGAMP presence. Knockout of ALG2 markedly facilitated the expression of type I interferons upon cGAMP treatment or HSV-1 infection in THP-1 monocytes. Mechanistically, ALG2 associated with the C-terminal tail (CTT) of STING and inhibited its trafficking from ER to perinuclear region. Furthermore, the ability of ALG2 to coordinate calcium was crucial for its regulation of STING trafficking and DNA-induced innate immune responses. This work suggests that ALG2 is involved in DNA-induced innate immune responses by regulating STING trafficking.
Collapse
Affiliation(s)
- Wangsheng Ji
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Lianfei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoyu Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Rojas M, Luz-Crawford P, Soto-Rifo R, Reyes-Cerpa S, Toro-Ascuy D. The Landscape of IFN/ISG Signaling in HIV-1-Infected Macrophages and Its Possible Role in the HIV-1 Latency. Cells 2021; 10:2378. [PMID: 34572027 PMCID: PMC8467246 DOI: 10.3390/cells10092378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
A key characteristic of Human immunodeficiency virus type 1 (HIV-1) infection is the generation of latent viral reservoirs, which have been associated with chronic immune activation and sustained inflammation. Macrophages play a protagonist role in this context since they are persistently infected while being a major effector of the innate immune response through the generation of type-I interferons (type I IFN) and IFN-stimulated genes (ISGs). The balance in the IFN signaling and the ISG induction is critical to promote a successful HIV-1 infection. Classically, the IFNs response is fine-tuned by opposing promotive and suppressive signals. In this context, it was described that HIV-1-infected macrophages can also synthesize some antiviral effector ISGs and, positive and negative regulators of the IFN/ISG signaling. Recently, epitranscriptomic regulatory mechanisms were described, being the N6-methylation (m6A) modification on mRNAs one of the most relevant. The epitranscriptomic regulation can affect not only IFN/ISG signaling, but also type I IFN expression, and viral fitness through modifications to HIV-1 RNA. Thus, the establishment of replication-competent latent HIV-1 infected macrophages may be due to non-classical mechanisms of type I IFN that modulate the activation of the IFN/ISG signaling network.
Collapse
Affiliation(s)
- Masyelly Rojas
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile;
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile;
| | - Patricia Luz-Crawford
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile;
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad of Chile, Santiago 8389100, Chile;
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Daniela Toro-Ascuy
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| |
Collapse
|
7
|
ALG2 Influences T cell apoptosis by regulating FASLG intracellular transportation. Biochem J 2021; 477:3105-3121. [PMID: 32766719 DOI: 10.1042/bcj20200028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
In the immune system, T lymphocytes undergo rapid clonal expansion upon pathogen infection. Following pathogen clearance, most of proliferated T cells will be eliminated by the apoptosis pathway to keep the balance of immune cells. FASLG, by interacting with its cognate receptor FAS, plays a major role in controlling the T cell death. FASLG is a type II transmembrane protein, with its C-terminal extracellular domain responsible for interacting with FAS. The N-terminal cytosolic region, despite short and intrinsically disordered, plays critical roles on the protein stability and transportation. The correct localization, either on the plasma membrane or secreted with exosome, or shed into the extracellular region after protease cleavage, has a great impact on the proper function of FASLG. Following synthesis, FASLG is transported by intracellular vesicle transportation system to the final destination. In this report, ALG2, a molecule identified in the T cell apoptosis and shown to be involved in vesicle trafficking previously, was found to interact with FASLG and regulate FASLG transportation. Therefore, we identified a new regulating factor for FASLG function within T cells and also revealed a new pathway for ALG2 involvement in T cell apoptosis.
Collapse
|
8
|
Inukai R, Mori K, Kuwata K, Suzuki C, Maki M, Takahara T, Shibata H. The Novel ALG-2 Target Protein CDIP1 Promotes Cell Death by Interacting with ESCRT-I and VAPA/B. Int J Mol Sci 2021; 22:ijms22031175. [PMID: 33503978 PMCID: PMC7865452 DOI: 10.3390/ijms22031175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Apoptosis-linked gene 2 (ALG-2, also known as PDCD6) is a member of the penta-EF-hand (PEF) family of Ca2+-binding proteins. The murine gene encoding ALG-2 was originally reported to be an essential gene for apoptosis. However, the role of ALG-2 in cell death pathways has remained elusive. In the present study, we found that cell death-inducing p53 target protein 1 (CDIP1), a pro-apoptotic protein, interacts with ALG-2 in a Ca2+-dependent manner. Co-immunoprecipitation analysis of GFP-fused CDIP1 (GFP-CDIP1) revealed that GFP-CDIP1 associates with tumor susceptibility gene 101 (TSG101), a known target of ALG-2 and a subunit of endosomal sorting complex required for transport-I (ESCRT-I). ESCRT-I is a heterotetrameric complex composed of TSG101, VPS28, VPS37 and MVB12/UBAP1. Of diverse ESCRT-I species originating from four VPS37 isoforms (A, B, C, and D), CDIP1 preferentially associates with ESCRT-I containing VPS37B or VPS37C in part through the adaptor function of ALG-2. Overexpression of GFP-CDIP1 in HEK293 cells caused caspase-3/7-mediated cell death. In addition, the cell death was enhanced by co-expression of ALG-2 and ESCRT-I, indicating that ALG-2 likely promotes CDIP1-induced cell death by promoting the association between CDIP1 and ESCRT-I. We also found that CDIP1 binds to vesicle-associated membrane protein-associated protein (VAP)A and VAPB through the two phenylalanines in an acidic tract (FFAT)-like motif in the C-terminal region of CDIP1, mutations of which resulted in reduction of CDIP1-induced cell death. Therefore, our findings suggest that different expression levels of ALG-2, ESCRT-I subunits, VAPA and VAPB may have an impact on sensitivity of anticancer drugs associated with CDIP1 expression.
Collapse
Affiliation(s)
- Ryuta Inukai
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Kanako Mori
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Chihiro Suzuki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Masatoshi Maki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Terunao Takahara
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Hideki Shibata
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
- Correspondence:
| |
Collapse
|
9
|
ALG-2 couples T cell activation and apoptosis by regulating proteasome activity and influencing MCL1 stability. Cell Death Dis 2020; 11:5. [PMID: 31919392 PMCID: PMC6952393 DOI: 10.1038/s41419-019-2199-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 01/18/2023]
Abstract
T cell homeostasis is critical for the proper function of the immune system. Following the sharp expansion upon pathogen infection, most T cells die in order to keep balance in the immune system, a process which is controlled by death receptors during the early phase and Bcl-2 proteins in the later phase. It is still highly debated whether the apoptosis of T cells is determined from the beginning, upon activation, or determined later during the contraction. MCL1, a Bcl-2 family member, plays a pivotal role in T cell survival. As a fast turnover protein, MCL1 levels are tightly regulated by the 26S proteasome-controlled protein degradation process. In searching for regulatory factors involved in the actions of MCL1 during T cell apoptosis, we found that ALG-2 was critical for MCL1 stability, a process mediated by a direct interaction between ALG-2 and Rpn3, a key component of the 26S proteasome. As a critical calcium sensor, ALG-2 regulated the activity of the 26S proteasome upon increases to cytosolic calcium levels following T cell activation, this consequently influenced the stability of MCL1 and accelerated the T cell “death” process, leading to T cell contraction and restoration of immune homeostasis. Our study provides support for the notion that T cells are destined for apoptosis after activation, and echoes the previous study about the function of ALG-2 in T cell death.
Collapse
|
10
|
Maki M. Structures and functions of penta-EF-hand calcium-binding proteins and their interacting partners: enigmatic relationships between ALG-2 and calpain-7. Biosci Biotechnol Biochem 2019; 84:651-660. [PMID: 31814542 DOI: 10.1080/09168451.2019.1700099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The penta-EF-hand (PEF) protein family includes ALG-2 (gene name, PDCD6) and its paralogs as well as classical calpain family members. ALG-2 is a prototypic PEF protein that is widely distributed in eukaryotes and interacts with a variety of proteins in a Ca2+-dependent manner. Mammalian ALG-2 and its interacting partners have various modulatory roles including roles in cell death, signal transduction, membrane repair, ER-to-Golgi vesicular transport, and RNA processing. Some ALG-2-interacting proteins are key factors that function in the endosomal sorting complex required for transport (ESCRT) system. On the other hand, mammalian calpain-7 (CAPN7) lacks the PEF domain but contains two microtubule-interacting and trafficking (MIT) domains in tandem. CAPN7 interacts with a subset of ESCRT-III proteins through the MIT domains and regulates EGF receptor downregulation. Structures and functions of ALG-2 and those of its interacting partners as well as relationships with the calpain family are reviewed in this article.
Collapse
Affiliation(s)
- Masatoshi Maki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Kawasaki H, Mizutome H, Kretsinger RH. Interaction sites of PEF proteins for recognition of their targets. Int J Biol Macromol 2019; 133:1035-1041. [PMID: 31028815 DOI: 10.1016/j.ijbiomac.2019.04.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 11/16/2022]
Abstract
The EF-hand is a helix-loop-helix motif observed mainly in intracellular calcium binding proteins. The EF-hand usually occurs as a pair, EF-lobe, which is a unit of evolution and structure. Penta EF-hand (PEF) proteins form a unique group including calpain, sorcin, grancalcin, ALG-2, and peflin. The fifth EF-hand of PEF proteins makes a pair with that of another PEF protein. The members of PEF family have diverse functions and their evolution is complex. The interaction of PEF proteins with target occurs at several sites. Here, we analyzed the ancestral sequences of each group of PEF proteins and determined the interfaces for the specific and selective interaction to the target among several PEF proteins. The shape of the groove for interaction at common site is different among PEF proteins. We found that the changes at limited sites induced the divergence of interaction sites that determines the selectivity of targets. The residues involved the changes at limited sites are important for the drug design selective to each PEF protein.
Collapse
Affiliation(s)
- Hiroshi Kawasaki
- Department of Medical Life Science, Yokohama City University, Japan.
| | | | | |
Collapse
|
12
|
A protein-interaction network of interferon-stimulated genes extends the innate immune system landscape. Nat Immunol 2019; 20:493-502. [DOI: 10.1038/s41590-019-0323-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022]
|
13
|
Zhang W, Matsuo R, Takahara T, Shibata H, Maki M. High Sensitive Quantitative Binding Assays Using a Nanoluciferase-Fused Probe for Analysis of ALG-2-Interacting Proteins. Methods Mol Biol 2019; 1929:501-516. [PMID: 30710293 DOI: 10.1007/978-1-4939-9030-6_31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many non-catalytic cellular proteins exert biological functions by formation of stable or transient complexes with other proteins. Analysis of the signal-induced physical interactions is important to understand their physiological roles in cells. Here we describe a biochemical method for assessing the binding of ALG-2 (gene name, PDCD6) to its target proteins that are immunoprecipitated from cell lysates. Application of nanoluciferase (Nluc)-fused ALG-2 enables a rapid quantitative evaluation of Ca2+-dependent interactions of target proteins with ALG-2 in vitro binding assays.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Rina Matsuo
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Terunao Takahara
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hideki Shibata
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Masatoshi Maki
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| |
Collapse
|
14
|
Shimizu T, Lengalova A, Martínek V, Martínková M. Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres. Chem Soc Rev 2019; 48:5624-5657. [DOI: 10.1039/c9cs00268e] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular mechanisms of unprecedented functions of exchangeable/labile heme and heme proteins including transcription, DNA binding, protein kinase activity, K+ channel functions, cis–trans isomerization, N–N bond formation, and other functions are described.
Collapse
Affiliation(s)
- Toru Shimizu
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Alzbeta Lengalova
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Václav Martínek
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Markéta Martínková
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| |
Collapse
|
15
|
Thermodynamic Characterization of the Ca 2+-Dependent Interaction Between SOUL and ALG-2. Int J Mol Sci 2018; 19:ijms19123802. [PMID: 30501057 PMCID: PMC6321638 DOI: 10.3390/ijms19123802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 11/17/2022] Open
Abstract
SOUL, a heme-binding protein-2 (HEBP-2), interacts with apoptosis-linked gene 2 protein (ALG-2) in a Ca2+-dependent manner. To investigate the properties of the interaction of SOUL with ALG-2, we generated several mutants of SOUL and ALG-2 and analyzed the recombinant proteins using pulldown assay and isothermal titration calorimetry. The interaction between SOUL and ALG-2 (delta3-23ALG-2) was an exothermic reaction, with 1:1 stoichiometry and high affinity (Kd = 32.4 nM) in the presence of Ca2+. The heat capacity change (ΔCp) of the reaction showed a large negative value (−390 cal/K·mol), which suggested the burial of a significant nonpolar surface area or disruption of a hydrogen bond network that was induced by the interaction (or both). One-point mutation of SOUL Phe100 or ALG-2 Trp57 resulted in complete loss of heat change, supporting the essential roles of these residues for the interaction. Nevertheless, a truncated mutant of SOUL1-143 that deleted the domain required for the interaction with ALG-2 Trp57 still showed 1:1 binding to ALG-2 with an endothermic reaction. These results provide a better understanding of the target recognition mechanism and conformational change of SOUL in the interaction with ALG-2.
Collapse
|
16
|
Nanoluciferase Reporter Gene System Directed by Tandemly Repeated Pseudo-Palindromic NFAT-Response Elements Facilitates Analysis of Biological Endpoint Effects of Cellular Ca 2+ Mobilization. Int J Mol Sci 2018; 19:ijms19020605. [PMID: 29463029 PMCID: PMC5855827 DOI: 10.3390/ijms19020605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 01/12/2023] Open
Abstract
NFAT is a cytoplasm-localized hyper-phosphorylated transcription factor that is activated through dephosphorylation by calcineurin, a Ca2+/calmodulin-dependent phosphatase. A non-palindromic NFAT-response element (RE) found in the IL2 promoter region has been commonly used for a Ca2+-response reporter gene system, but requirement of concomitant activation of AP-1 (Fos/Jun) often complicates the interpretation of obtained results. A new nanoluciferase (NanoLuc) reporter gene containing nine-tandem repeats of a pseudo-palindromic NFAT-RE located upstream of the IL8 promoter was designed to monitor Ca2+-induced transactivation activity of NFAT in human embryonic kidney (HEK) 293 cells by measuring luciferase activities of NanoLuc and co-expressed firefly luciferase for normalization. Ionomycin treatment enhanced the relative luciferase activity (RLA), which was suppressed by calcineurin inhibitors. HEK293 cells that stably express human STIM1 and Orai1, components of the store-operated calcium entry (SOCE) machinery, gave a much higher RLA by stimulation with thapsigargin, an inhibitor of sarcoplasmic/endoplamic reticulum Ca2+-ATPase (SERCA). HEK293 cells deficient in a penta-EF-hand Ca2+-binding protein ALG-2 showed a higher RLA value than the parental cells by stimulation with an acetylcholine receptor agonist carbachol. The novel reporter gene system is found to be useful for applications to cell signaling research to monitor biological endpoint effects of cellular Ca2+ mobilization.
Collapse
|
17
|
Han L, Xu J, Xu Q, Zhang B, Lam EWF, Sun Y. Extracellular vesicles in the tumor microenvironment: Therapeutic resistance, clinical biomarkers, and targeting strategies. Med Res Rev 2017; 37:1318-1349. [PMID: 28586517 DOI: 10.1002/med.21453] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/16/2022]
Abstract
Numerous studies have proved that cell-nonautonomous regulation of neoplastic cells is a distinctive and essential characteristic of tumorigenesis. Two way communications between the tumor and the stroma, or within the tumor significantly influence disease progression and modify treatment responses. In the tumor microenvironment (TME), malignant cells utilize paracrine signaling initiated by adjacent stromal cells to acquire resistance against multiple types of anticancer therapies, wherein extracellular vesicles (EVs) substantially promote such events. EVs are nanoscaled particles enclosed by phospholipid bilayers, and can mediate intercellular communications between cancerous cells and the adjacent microenvironment to accelerate pathological proceeding. Here we review the most recent studies of EV biology and focus on key cell lineages of the TME and their EV cargoes that are biologically active and responsible for cancer resistance, including proteins, RNAs, and other potentially essential components. Since EVs are emerging as novel but critical elements in establishing and maintaining hallmarks of human cancer, timely and insightful understanding of their molecular properties and functional mechanisms would pave the road for clinical diagnosis, prognosis, and effective targeting in the global landscape of precision medicine. Further, we address the potential of EVs as promising biomarkers in cancer clinics and summarize the technical improvements in EV preparation, analysis, and imaging. We highlight the practical issues that should be exercised with caution to guide the development of targeting agents and therapeutic methodologies to minimize cancer resistance driven by EVs, thereby allowing to effectively control the early steps of disease exacerbation.
Collapse
Affiliation(s)
- L Han
- Key Lab of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, China
| | - J Xu
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Q Xu
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - B Zhang
- Key Lab of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, China
| | - E W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Y Sun
- Key Lab of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, China.,Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Qin J, Yang Y, Gao S, Liu Y, Yu F, Zhou Y, Lyu R, Liu M, Liu X, Li D, Zhou J. Deregulated ALG-2/HEBP2 axis alters microtubule dynamics and mitotic spindle behavior to stimulate cancer development. J Cell Physiol 2017; 232:3067-3076. [PMID: 28004381 DOI: 10.1002/jcp.25754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 12/25/2022]
Abstract
Cancer cells are characterized by genomic instability, resulting in the accumulation of mutations that promote cancer progression. One way that genomic instability can arise is through improper regulation of the microtubule cytoskeleton that impacts the function of the mitotic spindle. In this study, we have identified a critical role for the interaction between apoptosis-linked gene 2 (ALG-2) and heme-binding protein 2 (HEBP2) in the above processes. Our data show that the gene copy numbers and mRNA levels for both ALG-2 and HEBP2 are significantly upregulated in breast and lung cancer. Coexpression of ALG-2 and HEBP2 markedly increases the cytoplasmic pool of ALG-2 and alters the subcellular distribution of HEBP2. Our data further reveal that abnormality in the ALG-2/HEBP2 interaction impairs spindle orientation and positioning during mitosis. In addition, this complex appears to modulate the dynamic properties of microtubules in cancer cells. These finding thus uncover an important function for deregulated ALG-2/HEBP2 axis in cancer development by influencing microtubule dynamics and spindle behavior, providing novel insight into the etiology and pathogenesis of cancer.
Collapse
Affiliation(s)
- Juan Qin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yang Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Siqi Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Fan Yu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yunqiang Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Rui Lyu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Min Liu
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|