1
|
Wei T, Lin R, Fu X, Lu Y, Zhang W, Li Z, Zhang J, Wang H. Epigenetic regulation of the DNMT1/MT1G/KLF4/CA9 axis synergizes the anticancer effects of sorafenib in hepatocellular carcinoma. Pharmacol Res 2022; 180:106244. [DOI: 10.1016/j.phrs.2022.106244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023]
|
2
|
Yuan JH, Tu JL, Liu GC, Chen XC, Huang ZS, Chen SB, Tan JH. Visualization of ligand-induced c-MYC duplex-quadruplex transition and direct exploration of the altered c-MYC DNA-protein interactions in cells. Nucleic Acids Res 2022; 50:4246-4257. [PMID: 35412611 PMCID: PMC9071431 DOI: 10.1093/nar/gkac245] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Ligand-Induced duplex-quadruplex transition within the c-MYC promoter region is one of the most studied and advanced ideas for c-MYC regulation. Despite its importance, there is a lack of methods for monitoring such process in cells, hindering a better understanding of the essence of c-MYC G-quadruplex as a drug target. Here we developed a new fluorescent probe ISCH-MYC for specific c-MYC G-quadruplex recognition based on GTFH (G-quadruplex-Triggered Fluorogenic Hybridization) strategy. We validated that ISCH-MYC displayed distinct fluorescence enhancement upon binding to c-MYC G-quadruplex, which allowed the duplex-quadruplex transition detection of c-MYC G-rich DNA in cells. Using ISCH-MYC, we successfully characterized the induction of duplex to G-quadruplex transition in the presence of G-quadruplex stabilizing ligand PDS and further monitored and evaluated the altered interactions of relevant transcription factors Sp1 and CNBP with c-MYC G-rich DNA. Thus, our study provides a visualization strategy to explore the mechanism of G-quadruplex stabilizing ligand action on c-MYC G-rich DNA and relevant proteins, thereby empowering future drug discovery efforts targeting G-quadruplexes.
Collapse
Affiliation(s)
- Jia-Hao Yuan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Li Tu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guo-Cai Liu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiu-Cai Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Heng Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
3
|
Liang Y, Ma B, Jiang P, Yang HM. Identification of Methylation-Regulated Differentially Expressed Genes and Related Pathways in Hepatocellular Carcinoma: A Study Based on TCGA Database and Bioinformatics Analysis. Front Oncol 2021; 11:636093. [PMID: 34150612 PMCID: PMC8209385 DOI: 10.3389/fonc.2021.636093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Background In recent years, DNA methylation modification has been shown to be a critical mechanism in the field of epigenetics. Methods Hepatocellular carcinoma (HCC) data were obtained from The Cancer Genome Atlas project, including RNA expression profiles, Illumina Human Methylation 450K BeadChip data, clinical information, and pathological features. Then, differentially expressed genes (DEGs) and differentially methylated genes were identified using R software. Methylation-regulated DEGs (MeDEGs) were further analyzed using Spearman’s correlation analysis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using the DAVID database and ClueGO in Cytoscape software. Kaplan–Meier survival analysis explored the relationship between methylation, expression of MeDEGs, and survival time. Gene set enrichment analysis (GSEA) was conducted to predict the function of prognosis-related MeDEGs. Results A total of nine up-regulated and 72 down-regulated MeDEGs were identified. GO and KEGG pathway analyses results indicated that multiple cancer-related terms were enriched. Kaplan–Meier survival analysis showed that the methylation status of four MeDEGs (CTF1, FZD8, PDK4, and ZNF334) was negatively associated with overall survival. Moreover, the methylation status of CDF1 and PDK4 was identified as an independent prognostic factor. According to GSEA, hypermethylation of prognosis-related MeDEGs was enriched in pathways that included “Spliceosome”, “Cell cycle”, “RNA degradation”, “RNA polymerase”, “DNA replication”, “Mismatch repair”, “Base excision repair”, “Nucleotide excision repair”, “Homologous recombination”, “Protein export”, and “Pyrimidine metabolism”. Conclusions Aberrant DNA methylation plays a critical role in malignant progression of HCC. Prognosis-related MeDEGs identified in this research may be potential biomarkers and targets in diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Liang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Bin Ma
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Peng Jiang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Hong-Mei Yang
- Department of Internal Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
4
|
Zhang C, Wang H, Deng M, He L, Ping F, He Y, Fan Z, Cheng B, Xia J. Upregulated miR‑411‑5p levels promote lymph node metastasis by targeting RYBP in head and neck squamous cell carcinoma. Int J Mol Med 2021; 47:36. [PMID: 33537835 PMCID: PMC7891818 DOI: 10.3892/ijmm.2021.4869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/15/2020] [Indexed: 01/01/2023] Open
Abstract
Metastasis is the primary cause of the high mortality rates in head and neck squamous cell carcinoma (HNSCC). MicroRNA (miR)‑411‑5p has been discovered to serve an important role in cancer metastases. However, to the best of our knowledge, the association between miR‑411‑5p expression levels and HNSCC metastasis has not been thoroughly investigated. The present study aimed to research the function of miR‑411‑5p in HNSCC metastasis. The results of the present study revealed that miR‑411‑5p expression levels were upregulated in patients with HNSCC with lymph node metastasis and the upregulated expression levels of miR‑411‑5p were positively associated with the metastatic potential of HNSCC. Moreover, miR‑411‑5p promoted HNSCC cell migration, invasion and epithelial‑mesenchymal transition (EMT). The results of the dual‑luciferase reporter assays identified RING1 and YY1 binding protein (RYBP) as a functional downstream target gene for miR‑411‑5p. Therefore, whether miR‑411‑5p downregulated the expression levels of RYBP in HNSCC cells was subsequently investigated. Notably, the silencing of RYBP expression restored the stimulatory effects of miR‑411‑5p on HNSCC cell migration, invasion and EMT. In addition, the mRNA expression levels of miR‑411‑5p and RYBP were found to be inversely correlated in HNSCC samples. In conclusion, the results of the present study indicated that the miR‑411‑5p‑mediated downregulation of RYBP expression levels may exert an important role in HNSCC metastasis and may provide a novel target for the treatment of HNSCC.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongfei Wang
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Miao Deng
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Lihong He
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Fan Ping
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yuan He
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Zhaona Fan
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Bin Cheng
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Juan Xia
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
5
|
Gao Y, Gan K, Liu K, Xu B, Chen M. SP1 Expression and the Clinicopathological Features of Tumors: A Meta-Analysis and Bioinformatics Analysis. Pathol Oncol Res 2021; 27:581998. [PMID: 34257529 PMCID: PMC8262197 DOI: 10.3389/pore.2021.581998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022]
Abstract
Objective: Specificity protein 1 (SP1) plays a vital role to promote carcinogenesis in a variety of tumors, and its up-regulated expression is reported to be a hinter of poor prognosis of patients. We conducted this meta-analysis to elucidate the clinical significance and prognostic value of SP1 in malignant tumors. Methods: PubMed and Cochrane Library were searched for studies published between January 1, 2000 and June 1, 2020. The combined odds ratios (ORs) and hazard ratios (HRs) with 95% confidence intervals (95% CIs) were used to investigate the correlation of SP1 with clinical behaviors and prognosis in patients with solid tumors. UALCAN was used to conduct bioinformatics analysis. Results: A total of 24 documents involving 2,739 patients were enrolled in our review. The random-effect model was used to perform this analysis due to the high level of heterogeneity. SP1 low expression was not conducive to lymph node metastasis (OR = 0.42; 95% CI: 0.28-0.64; p < 0.05), progression of TNM stage (OR = 0.34; 95% CI: 0.20-0.57; p < 0.05) and tumor infiltration (OR = 0.33; 95% CI: 0.18-0.60; p < 0.05). Elevated SP1 expression was connected with shorter survival time of patients with hepatocellular carcinoma, pancreatic cancer, gastric cancer and esophageal cancer (HR = 1.95; 95% CI: 1.16-3.28; p < 0.05). According to UALCAN database, breast cancer, ovarian cancer, colon cancer and lung adenocarcinoma display an elevated SP1 expression in comparison with normal tissues. Kaplan-Meier survival plots indicate SP1 mRNA level has negative effects on prognosis of liver hepatocellular carcinoma and brain lower grade glioma. Conclusion: SP1 was associated with lymph node metastasis, TNM stage and depth of invasion, and indicated poor clinical outcome, which brought new insights on the potential candidacy of SP1 in clinical usage.
Collapse
Affiliation(s)
- Yue Gao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University Nanjing, Jiangsu, China
| | - Kai Gan
- Surgical Research Center, Institute of Urology, Medical School of Southeast University Nanjing, Jiangsu, China
| | - Kuangzheng Liu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University Nanjing, Jiangsu, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Recent Discoveries on the Involvement of Krüppel-Like Factor 4 in the Most Common Cancer Types. Int J Mol Sci 2020; 21:ijms21228843. [PMID: 33266506 PMCID: PMC7700188 DOI: 10.3390/ijms21228843] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor highly conserved in evolution. It is particularly well known for its role in inducing pluripotent stem cells. In addition, KLF4 plays many roles in cancer. The results of most studies suggest that KLF4 is a tumor suppressor. However, the functioning of KLF4 is regulated at many levels. These include regulation of transcription, alternative splicing, miRNA, post-translational modifications, subcellular localization, protein stability and interactions with other molecules. Simple experiments aimed at assaying transcript levels or protein levels fail to address this complexity and thus may deliver misleading results. Tumor subtypes are also important; for example, in prostate cancer KLF4 is highly expressed in indolent tumors where it impedes tumor progression, while it is absent from aggressive prostate tumors. KLF4 is important in regulating response to many known drugs, and it also plays a role in tumor microenvironment. More and more information is available about upstream regulators, downstream targets and signaling pathways associated with the involvement of KLF4 in cancer. Furthermore, KLF4 performs critical function in the overall regulation of tissue homeostasis, cellular integrity, and progression towards malignancy. Here we summarize and analyze the latest findings concerning this fascinating transcription factor.
Collapse
|
7
|
Pioglitazone protects blood vessels through inhibition of the apelin signaling pathway by promoting KLF4 expression in rat models of T2DM. Biosci Rep 2020; 39:221480. [PMID: 31829402 PMCID: PMC6928522 DOI: 10.1042/bsr20190317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 11/16/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Apelin, identified as the endogenous ligand of APJ, exerts various cardiovascular effects. However, the molecular mechanism underlying the regulation of apelin expression in vascular cells is poorly described. Pioglitazone (PIO) and Krüppel-like factor 4 (KLF4) exhibit specific biological functions on vascular physiology and pathophysiology by regulating differentiation- and proliferation-related genes. The present study aimed to investigate the roles of PIO and KLF4 in the transcriptional regulation of apelin in a high-fat diet/streptozotocin rat model of diabetes and in PIO-stimulated vascular smooth muscle cells (VSMCs). Immunohistochemistry, qRT-PCR, and Western blotting assays revealed that the aorta of the Type 2 diabetes mellitus (T2DM) rat models had a high expression of apelin, PIO could decrease the expression of apelin in the PIO-treated rats. In vitro, Western blotting assays and immunofluorescent staining results showed that the basal expression of apelin was decreased but that of KLF4 was increased when VSMCs were stimulated by PIO treatment. Luciferase and chromatin immunoprecipitation assay results suggested that KLF4 bound to the GKLF-binding site of the apelin promoter and negatively regulated the transcription activity of apelin in VSMCs under PIO stimulation. Furthermore, qRT-PCR and Western blotting assay results showed that the overexpression of KLF4 markedly decreased the basal expression of apelin, but the knockdown of KLF4 restored the PIO-induced expression of apelin. In conclusion, PIO inhibited the expression of apelin in T2DM rat models to prevent diabetic macroangiopathy, and negatively regulated the gene transcription of apelin by promoting transcription of KLF4 in the apelin promoter.
Collapse
|
8
|
RYBP inhibits esophageal squamous cell carcinoma proliferation through downregulating CDC6 and CDC45 in G1-S phase transition process. Life Sci 2020; 250:117578. [PMID: 32209426 DOI: 10.1016/j.lfs.2020.117578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022]
Abstract
AIMS RING1 and YY1-binding protein (RYBP) is an epigenetic regulator and plays crucial roles in embryonic development. The anti-tumor effect of RYBP has been reported in several cancers recently, but the role of RYBP in esophageal squamous cell carcinoma (ESCC) has not been fully elucidated. The present study aimed to investigate the biological function and the underlying molecular mechanisms of RYBP in ESCC. MATERIALS AND METHODS We detected the expression of RYBP in ESCC tissue microarrays (TMA) by immunohistochemistry. Cell proliferation was assessed by CCK8 and colony formation assays. Cell cycle was analyzed by flow cytometry. Gene expression was determined by transcriptome arrays, quantitative real-time PCR (qRT-PCR) and Western blot. Four-week-old male nude mice were used to evaluate the effect of RYBP in ESCC growth. KEY FINDINGS We found that RYBP was downregulated in ESCC compared with adjacent normal tissues. A high level of RYBP expression predicted a better outcome of ESCC patients. Furthermore, overexpression of RYBP inhibited ESCC growth both in vitro and in vivo. Transcriptome arrays and functional studies showed that RYBP decreased the expression of genes related to cell cycles, especially CDC6 and CDC45, which were essential to initiate the DNA replication and G1-S transition. SIGNIFICANCE Taken together, our study suggests that RYBP suppresses ESCC proliferation by downregulating CDC6 and CDC45, thus inhibiting the G1-S transition.
Collapse
|
9
|
Wu J, Ma C, Tang X, Shi Y, Liu Z, Chai X, Tang Q, Li L, Hann SS. The regulation and interaction of PVT1 and miR181a-5p contributes to the repression of SP1 expression by the combination of XJD decoction and cisplatin in human lung cancer cells. Biomed Pharmacother 2020; 121:109632. [PMID: 31707347 DOI: 10.1016/j.biopha.2019.109632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
The Chinese herbal prescription Xiaoji decoction (XJD) has been used as an adjuvant treatment of cancer for decades. However, the molecular mechanisms underlying XJD enhancement of the efficiency of chemotherapy were undetermined. In this study, we observed that combination of XJD and cisplatin (DDP) showed a greater inhibition on growth and induced a high magnitude of apoptosis in non-small cell lung cancer (NSCLC) cells. We also found that XJD decreased lncRNA PVT1 and increased miR181a-5p expressions. There was a reciprocal interaction between PVT1 and miR181a-5p. XJD decreased SP1 protein, which were overcame by overexpressed PVT1 and inhibitors of miR181a-5p. Overexpressed SP1 reversed the inhibitory effect of XJD on cell growth. Importantly, XJD and DDP exhibited synergy on regulation of PVT1, miR181a-5p, and SP1 expressions. The similar results were observed in one in vivo model. In conclusions, XJD inhibits NSCLC cell growth via reciprocal interaction of PVT1 and miR181a-5p followed by reducing SP1 expression. XJD and DDP exhibit synergy. This study provides a novel mechanism by which XJD enhances the anti-cancer effect of DDP in NSCLC cells.
Collapse
Affiliation(s)
- Jingjing Wu
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - ChangJu Ma
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - XiaoJuan Tang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Yao Shi
- Department of Cerebrovascular Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Zheng Liu
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - XiaoShu Chai
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Qing Tang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Liuning Li
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
10
|
Wang Y, Xia Y, Hu K, Zeng M, Zhi C, Lai M, Wu L, Liu S, Zeng S, Huang Z, Ma S, Yuan Z. MKK7 transcription positively or negatively regulated by SP1 and KLF5 depends on HDAC4 activity in glioma. Int J Cancer 2019; 145:2496-2508. [PMID: 30963560 DOI: 10.1002/ijc.32321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
JNK activity has been implicated in the malignant proliferation, invasion and drug-resistance of glioma cells (GCs), but the molecular mechanisms underlying JNK activation are currently unknown. Here, we reported that MKK7, not MKK4, directly activates JNK in GCs and exerts oncogenic effects on tumor formation. Notably, MKK7 expression in glioma tissues was closely correlated with the grade of the glioma and JNK/c-Jun activation. Mechanistically, MKK7 transcription critically depends on the complexes formed by HDAC4 and the transcriptional factors SP1 and Krüppel-like factor-5 (KLF5), wherein HDAC4 directly deacetylates both SP1 and KLF5 and synergistically upregulates MKK7 transcription through two SP1 sites located on its promoter. In contrast, the increases in acetylated-SP1 and acetylated-KLF5 after HDAC4 inhibition switched to transcriptionally suppress MKK7. Selective inhibition of HDAC4 by LMK235, siRNAs or blockage of SP1 and KLF5 by the ectopic dominant-negative SP1 greatly reduced the malignant capacity of GCs. Furthermore, suppression of both MKK7 expression and JNK/c-Jun activities was involved in the tumor-growth inhibitory effects induced by LMK235 in U87-xenograft mice. Interestingly, HDAC4 is highly expressed in glioma tissues, and the rate of HDAC4 nuclear import is closely correlated with glioma grade, as well as with MKK7 expression. Collectively, these findings demonstrated that highly expressed MKK7 contributes to JNK/c-Jun signaling-mediated glioma formation. MKK7 transcription, regulated by SP1 and KLF5, critically depends on HDAC4 activity, and inhibition of HDAC4 presents a potential strategy for suppressing the oncogenic roles of MKK7/JNK/c-Jun signaling in GCs.
Collapse
Affiliation(s)
- Yezhong Wang
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Yong Xia
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Kunhua Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Minling Zeng
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Cheng Zhi
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Miaoling Lai
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liqiang Wu
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Sisi Liu
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Shulian Zeng
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Ziyan Huang
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Shanshan Ma
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Zhongmin Yuan
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
11
|
Mechanism of KLF4 Protection against Acute Liver Injury via Inhibition of Apelin Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6140360. [PMID: 31687083 PMCID: PMC6811788 DOI: 10.1155/2019/6140360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/22/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
Krüppel-like factor 4 (KLF4) is a key transcription factor that regulates genes involved in the proliferation or differentiation in different tissues. Apelin plays roles in cardiovascular functions, metabolic disease, and homeostatic disorder. However, the biological function of apelin in liver disease is still ongoing. In this study, we investigated the mechanism of KLF4-mediated protection against acute liver injury via the inhibition of the apelin signaling pathway. Mice were intraperitoneally injected with carbon tetrachloride (CCl4; 0.2 mL dissolved in 100 mL olive oil, 10 mL/kg) to establish an acute liver injury model. A KLF4 expression plasmid was injected through the tail vein 48 h before CCl4 treatment. In cultured LX-2 cells, pAd-KLF4 or siRNA KLF4 was overexpressed or knockdown, and the mRNA and protein levels of apelin were determined. The results showed that the apelin serum level in the CCl4-injected group was higher than that of control group, and the expression of apelin in the liver tissues was elevated while KLF4 expression was decreased in the CCl4-injected group compared to the KLF4-plasmid-injected group. HE staining revealed serious hepatocellular steatosis in the CCl4-injected mice, and KLF4 alleviated this steatosis in the mice injected with KLF4 plasmid. In vitro experiments showed that tumor necrosis factor-alpha (TNF-α) could downregulate the transcription and translation levels of apelin in LX-2 cells and also upregulate KLF4 mRNA and protein expression. RT-PCR and Western blotting showed that the overexpression of KLF4 markedly decreased basal apelin expression, but knockdown of KLF4 restored apelin expression in TNF-α-treated LX-2 cells. These in vivo and in vitro experiments suggest that KLF4 plays a key role in inhibiting hepatocellular steatosis in acute liver injury, and that its mechanism might be the inhibition of the apelin signaling pathway.
Collapse
|
12
|
Chen J, Zhang L, Ma S, Lu G, Wang D. The aberrant expressions of MACC1, ZEB1, and KLF4 in hepatocellular carcinoma and their clinical significance. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3653-3661. [PMID: 31934216 PMCID: PMC6949830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Metastasis-associated in colon cancer-1 (MACC1) is involved in the progression and metastasis of various cancers. Zinc finger E-box-binding homeobox 1 (ZEB1) is a key transcriptional factor of the epithelial-mesenchymal transition (EMT) that is involved in the migration and invasion of cancer cells. Kruppel-like factor 4 (KLF4) is a tumor suppressor that can inhibit tumor cell proliferation, migration, and metastasis. The purpose of this study was to investigate the expressions and clinical significance of MACC1, ZEB1, and KLF4 in hepatocellular carcinoma (HCC). METHODS We analyzed the expressions of MACC1, ZEB1, and KLF4 in 153 HCC specimens and their corresponding control specimens. The patients' clinicopathological and follow-up data were also collected. RESULTS The rates of positive expression of MACC1 and ZEB1 were significantly higher in the HCC specimens than in the control specimens, and their expressions were positively associated with the number of tumors, grades of differentiation, lymph node metastasis (LNM), and tumor-node-metastasis (TNM) stages. Inversely, the rate of positive expression of KLF4 was significantly lower in the HCC specimens than it was in the control specimens, and its expression was negatively correlated with the number of tumors, grades of differentiation, LNM, and TNM stages. The patients who expressed MACC1 or ZEB1 had a reduced overall survival (OS) when compared with patients not expressing these proteins. However, the patients who expressed KLF4 had an increased OS when compared with patients who did not show any KLF4 expression. A multivariate analysis indicated that the expressions of MACC1, ZEB1, and KLF4 and tumor size, LNM, as well as the TNM stages were independent, prognostic factors for HCC patients. CONCLUSIONS Therefore, positive expressions of MACC1, ZEB1, and KLF4 should be correlated with the duration of OS in patients with HCC and considered promising prognostic biomarkers, as well as potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Jiasheng Chen
- Department of Infectious Disease, The First Affiliated Hospital of Bengbu Medical UniversityNo. 800, Zhihuai Road, Bengbu 233003, Anhui Province, China
| | - Liangjie Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Bengbu Medical UniversityNo. 800, Zhihuai Road, Bengbu 233003, Anhui Province, China
| | - Shasha Ma
- Department of Infectious Disease, The First Affiliated Hospital of Bengbu Medical UniversityNo. 800, Zhihuai Road, Bengbu 233003, Anhui Province, China
| | - Guoyu Lu
- Department of Emergency, The First Affiliated Hospital of Bengbu Medical UniversityNo. 800, Zhihuai Road, Bengbu 233003, Anhui Province, China
| | - Danna Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical UniversityNo. 800, Zhihuai Road, Bengbu 233003, Anhui Province, China
| |
Collapse
|
13
|
Xian Y, Wang L, Yao B, Yang W, Mo H, Zhang L, Tu K. MicroRNA-769-5p contributes to the proliferation, migration and invasion of hepatocellular carcinoma cells by attenuating RYBP. Biomed Pharmacother 2019; 118:109343. [PMID: 31545279 DOI: 10.1016/j.biopha.2019.109343] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the commonest primary liver cancer with highly aggressive features. MicroRNAs (miRNAs) are demonstrated to play important roles in the tumorigenesis and progression of HCC. miR-769-5p is a recently identified cancer-associated miRNA. But, the expression level of miR-769-5p and its function in HCC are unexplored. In this study, we found that miR-769-5p expression was obviously increased in HCC samples compared to adjacent noncancerous liver tissues. Additionally, we revealed that miR-769-5p was over-expressed in HCC cells as compared with LO2 cells. Notably, HCC tissues from patients with tumor size ≥5 cm, venous infiltration and advanced tumor stages showed higher levels of miR-769-5p compared to those from corresponding controls. Interestingly, our data indicated that HCC patients highly expressing miR-769-5p had significant shorter survivals. Next, functional experiments verified that miR-769-5p knockdown markedly suppressed HCC cell proliferation, migration and invasion. Conversely, ectopic expression of miR-769-5p promoted these biological behaviors of Hep3B cells. Furthermore, depletion of miR-769-5p repressed the growth and metastasis of HCCLM3 cells in vivo. Importantly, miR-769-5p inversely modulated RING1 and YY1 binding protein (RYBP) by directly binding to 3' untranslated region (UTR) in HCC cells. The expression of RYBP mRNA was down-regulated in HCC tissues and negatively correlated with miR-769-5p level. RYBP overexpression remarkably inhibited the proliferation, migration and invasion of HCCLM3 cells. Accordingly, knockdown of RYBP partially abolished miR-769-5p silencing-induced tumor suppressive effects on HCCLM3 cells. In summary, our study revealed the up-regulated expression of miR-769-5p, which contributed to HCC progression possibly by targeting RYBP.
Collapse
Affiliation(s)
- Yao Xian
- Department of Nutrition, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Huanye Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Lei Zhang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi Province 710061, China.
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| |
Collapse
|
14
|
Gu L, Sang M, Li J, Liu F, Wu Y, Liu S, Wang P, Shan B. Expression and prognostic significance of MAGE-A11 and transcription factors (SP1,TFCP2 and ZEB1) in ESCC tissues. Pathol Res Pract 2019; 215:152446. [PMID: 31126819 DOI: 10.1016/j.prp.2019.152446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/24/2019] [Accepted: 05/07/2019] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To evaluate the clinical characteristics and prognostic significance of MAGE-A11 and transcription factors (SP1, TFCP2 and ZEB1) in patients with esophageal squamous cell carcinoma (ESCC). METHODS To assess the expression of MAGE-A11 and transcription factors (SP1, TFCP2 and ZEB1) in 121 ESCC samples were respectively detected by immunohistochemical method. RESULTS The results showed MAGE-A11 and transcription factors (SP1,TFCP2 and ZEB1) expression were associated with some clinical features in patients, such as pathological differentiation, tumor size, clinical stage, lymph node metastasis and distant metastasis. Kaplan-Meier analysis showed that patients with ESCC having high MAGE-A11 and transcription factors (SP1,TFCP2 and ZEB1) expression had a worse prognosis compared to the patients with low expression. Multivariate Cox proportional hazards regression model revealed that MAGE-A11 expression, TFCP2 expression, lymph node metastasis and distant metastasis were independently associated with ESCC patients' survival. CONCLUSIONS High expression of MAGE-A11 and transcription factors (SP1,TFCP2 and ZEB1) in ESCC tissues suggests promoting ESCC progression and poor prognosis, co-expression of MAGE-A11 and transcription factors even worse.
Collapse
Affiliation(s)
- Lina Gu
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Meixiang Sang
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| | - Juan Li
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Fei Liu
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Yunyan Wu
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Shina Liu
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Pengyu Wang
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Baoen Shan
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
15
|
Wu J, Tang Q, Ren X, Zheng F, He C, Chai X, Li L, Hann SS. Reciprocal interaction of HOTAIR and SP1 together enhance the ability of Xiaoji decoction and gefitinib to inhibit EP4 expression. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:128-140. [PMID: 30910577 DOI: 10.1016/j.jep.2019.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Chinese herbal prescription Xiaoji decoction (XJD) has long been used for cancer treatment. However, the molecular mechanisms underlying the effects of this medicine, particularly to enhance the efficiency of EGFR-TKI in the treatment of lung cancer have not been well elucidated. MATERIALS AND METHODS Cell viability and cell cycle distribution were detected by MTT assay and flow cytometry, respectively. The phosphorylation of ERK1/2 and protein levels of SP1 and EP4 were determined by Western blot. The expression of the HOX transcript antisense RNA (HOTAIR) was measured by qRT-PCR. Transient transfection experiments were used to overexpress the HOTAIR, SP1 and EP4 genes. The interaction between HOTAIR and SP1 were further examined via RNA immunoprecipitation (RIP) assay. A tumor xenograft model was used to confirm the in vitro findings. RESULTS We showed that XJD inhibited growth and induced cell arrest of human non-small cell lung cancer (NSCLC) cells. We also found that XJD increased the phosphorylation of ERK1/2 and inhibited levels of HOTAIR and SP1, EP4 proteins, which were blocked by inhibitor of MEK/ERK. There was reciprocal interaction between HOTAIR and SP1. Silencing of HOTAIR reduced EP4 protein levels and repressed the growth of NSCLC cells, while overexpression of HOTAIR and SP1 overcame XJD-reduced EP4 protein expression. Additionally, excessive expressed EP4 reversed the effect of XJD on cell growth. Importantly, there was synergy of XJD with another cancer treatment drug, EGFR-TKI gefitinib, in this process. We also found that XJD inhibited tumor growth in a xenograft nude mice model. CONCLUSIONS Our results show that XJD inhibits NSCLC cell growth via ERK1/2-mediated reciprocal repression of HOTAIR and SP1 protein expression, followed by reduced EP4 gene expression. XJD and gefitinib exhibit synergy in this process. The in vitro and in vivo study provides a novel mechanism by which XJD enhances the growth inhibitory effect of gefitinib in gefitinib-resistant NSCLC cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Line, Tumor
- Drug Synergism
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Female
- Gefitinib/pharmacology
- Gefitinib/therapeutic use
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- MAP Kinase Signaling System/drug effects
- Mice, Nude
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- RNA, Long Noncoding/physiology
- Receptors, Prostaglandin E, EP4 Subtype/physiology
- Sp1 Transcription Factor/physiology
Collapse
Affiliation(s)
- Jingjing Wu
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Qing Tang
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Xiaolin Ren
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Fang Zheng
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - ChunXia He
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - XiaoSu Chai
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Liuning Li
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
16
|
Zhao W, Zhang S, Wang X, Ma X, Huang B, Chen H, Chen D. ETS1 targets RYBP transcription to inhibit tumor cell proliferation. Biochem Biophys Res Commun 2019; 509:810-816. [DOI: 10.1016/j.bbrc.2019.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/27/2022]
|
17
|
Epigenetic and non-epigenetic functions of the RYBP protein in development and disease. Mech Ageing Dev 2018; 174:111-120. [DOI: 10.1016/j.mad.2018.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 12/30/2022]
|
18
|
Zhan S, Wang T, Ge W, Li J. Multiple roles of Ring 1 and YY1 binding protein in physiology and disease. J Cell Mol Med 2018; 22:2046-2054. [PMID: 29383875 PMCID: PMC5867070 DOI: 10.1111/jcmm.13503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Ring 1 and YY1 binding protein (RYBP) was first identified in 1999, and its structure includes a conserved Npl4 Zinc finger motif at the N‐terminus, a central region that is characteristically enriched with arginine and lysine residues and a C‐terminal region enriched with serine and threonine amino acids. Over nearly 20 years, multiple studies have found that RYBP functions as an organ developmental adaptor. There is also evidence that RYBP regulates the expression of different genes involved in various aspects of biological processes, via a mechanism that is dependent on interactions with components of PcG complexes and/or through binding to different transcriptional factors. In addition, RYBP interacts directly or indirectly with apoptosis‐associated proteins to mediate anti‐apoptotic or pro‐apoptotic activity in both the cytoplasm and nucleus of various cell types. Furthermore, RYBP has also been shown to act as tumour suppressor gene in different solid tumours, but as an oncogene in lymphoma and melanoma. In this review, we summarize our current understanding of the functions of this multifaceted RYBP in physiological and pathological conditions, including embryonic development, apoptosis and cancer, as well as its role as a component of polycomb repressive complex 1.
Collapse
Affiliation(s)
- Shaohua Zhan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China.,National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianxiao Wang
- Key Laboratory of Carcinogenesis and Translational Research, Department of Head and Neck Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wei Ge
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
19
|
Cao Q, Shen Y, Zheng W, Liu H, Liu C. Tcf7l1 promotes transcription of Kruppel-likefactor 4 during Xenopus embryogenesis. J Biomed Res 2017; 32:215. [PMID: 29336356 PMCID: PMC6265397 DOI: 10.7555/jbr.32.20170056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/27/2017] [Indexed: 11/30/2022] Open
Abstract
Kruppel-like factor 4 (Klf4) is a zinc finger transcriptionfactor and plays crucial roles in Xenopus embryogenesis. However, its regulation during embryogenesis is stillunclear. Here, we report that Tcf7l1, a key downstream transducerof the Wnt signaling pathway, could promote Klf4 transcription and stimulate Klf4 promoter activity in early Xenopus embryos. Furthermore, cycloheximide treatmentshowed a direct effect on Klf4 transcriptionfacilitated by Tcf7l1. Moreover, the dominant negative form of Tcf7l1(dnTcf7l1), which lacks N-terminusof the β-catenin binding motif, could still activate Klf4 transcription, suggesting that thisregulation is Wnt/β-catenin independent. Taken together, ourresults demonstrate that Tcf7l1 lies upstream of Klf4 to maintainits expression level during Xenopus embryogenesis.
Collapse
Affiliation(s)
- Qing Cao
- . College of Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yan Shen
- . College of Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Wei Zheng
- . College of Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Hao Liu
- . College of Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Chen Liu
- . Department of Developmental Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
20
|
Beck M, Schirmacher P, Singer S. Alterations of the nuclear transport system in hepatocellular carcinoma - New basis for therapeutic strategies. J Hepatol 2017; 67:1051-1061. [PMID: 28673770 DOI: 10.1016/j.jhep.2017.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is among the most prevalent human malignancies worldwide with rising incidence in industrialised countries, few therapeutic options and poor prognosis. To expand and improve therapeutic strategies, identification of drug targets involved in several liver cancer-related pathways is crucial. Virtually all signal transduction cascades cross the nuclear envelope and therefore require components of the nuclear transport system (NTS), including nuclear transport receptors (e.g. importins and exportins) and the nuclear pore complex. Accordingly, members of the NTS represent promising targets for therapeutic intervention. Selective inhibitors of nuclear export have already entered clinical trials for various malignancies. Herein, we review the current knowledge regarding alterations of the NTS and their potential for targeted therapy in HCC.
Collapse
Affiliation(s)
- Martin Beck
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Stephan Singer
- European Molecular Biology Laboratory, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Germany.
| |
Collapse
|