1
|
Chongjun Y, Nasr AMS, Latif MAM, Rahman MBA, Marlisah E, Tejo BA. Predicting repurposed drugs targeting the NS3 protease of dengue virus using machine learning-based QSAR, molecular docking, and molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:707-728. [PMID: 39210743 DOI: 10.1080/1062936x.2024.2392677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Dengue fever, prevalent in Southeast Asian countries, currently lacks effective pharmaceutical interventions for virus replication control. This study employs a strategy that combines machine learning (ML)-based quantitative-structure-activity relationship (QSAR), molecular docking, and molecular dynamics simulations to discover potential inhibitors of the NS3 protease of the dengue virus. We used nine molecular fingerprints from PaDEL to extract features from the NS3 protease dataset of dengue virus type 2 in the ChEMBL database. Feature selection was achieved through the low variance threshold, F-Score, and recursive feature elimination (RFE) methods. Our investigation employed three ML models - support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost) - for classifier development. Our SVM model, combined with SVM-RFE, had the best accuracy (0.866) and ROC_AUC (0.964) in the testing set. We identified potent inhibitors on the basis of the optimal classifier probabilities and docking binding affinities. SHAP and LIME analyses highlighted the significant molecular fingerprints (e.g. ExtFP69, ExtFP362, ExtFP576) involved in NS3 protease inhibitory activity. Molecular dynamics simulations indicated that amphotericin B exhibited the highest binding energy of -212 kJ/mol and formed a hydrogen bond with the critical residue Ser196. This approach enhances NS3 protease inhibitor identification and expedites the discovery of dengue therapeutics.
Collapse
Affiliation(s)
- Y Chongjun
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - A M S Nasr
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - M A M Latif
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
- Centre for Foundation Studies in Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - M B A Rahman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - E Marlisah
- Department of Computer Science, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - B A Tejo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
2
|
Teramoto T. Dengue virus serotypic replacement of NS3 protease or helicase domain causes chimeric viral attenuation but can be recovered by a compensated mutation at helicase domain or NS2B, respectively. J Virol 2023; 97:e0085423. [PMID: 37555662 PMCID: PMC10506484 DOI: 10.1128/jvi.00854-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 08/10/2023] Open
Abstract
Mosquito-borne dengue viruses (DENVs) have evolved to four serotypes with 69%-78% amino acid identities, resulting in incomplete immunity, where one serotype's infection does not cross-protect against secondary infections by other serotypes. Despite the amino acid differences, structural and nonstructural (NS) proteins among serotypes play similar functions. NS3 is an enzyme complex: NS3 has N-terminal protease (PRO) and C-terminal helicase (HEL) activities in addition to 5' RNA triphosphatase (5'RTP), which is involved in the RNA capping process. In this study, the effects of NS3 replacements among serotypes were tested. The replacement of NS3 full-length (FULL), PRO or HEL region suppressed viral replication in BHK-21 mammalian cells, while the single compensatory mutation improved the viral replications; P364S mutation in HEL revived PRO (DENV3)-replaced DENV1, while S68T alteration in NS2B recovered HEL (DENV1)-replaced DENV2. The results suggest that the interactions between PRO and HEL as well as HEL and NS2B are required for replication competence. Lower-frequency mutations also appeared at various locations in viral proteins, although after infecting C6/36 mosquito cells, the mutations' frequencies changed, and/or new mutations appeared. In contrast, the inter-domain region (INT, 12 amino acids)-replaced chimera quickly replicated without mutation in BHK-21 cells, although extended cell culture accumulated various mutations. These results suggest that NS3 variously interacts with DENV proteins, in which the chimeric NS3 domain replacements induced amino acid mutations, irrespective of replication efficiency. However, the viral sequences are further adjusted for replication efficiency, to fit in both mammalian cells and mosquito cells. IMPORTANCE Enzyme activities for replicating DENV 5' cap positive (+) sense RNA have been shown to reside in NS3 and NS5. However, it remains unknown how these enzymes coordinately synthesize negative (-) sense RNA, from which abundant 5' cap (+) sense RNA is produced. We previously revealed that NS5 dimerization and NS5 methyltransferase(MT)-NS3HEL interaction are important for DENV replication. Here, we found that replication incompetence due to NS3PRO or HEL replacement was compensated by a mutation at HEL or NS2B, respectively, suggesting that the interactions among NS2B, NS3PRO, and HEL are critical for DENV replication.
Collapse
Affiliation(s)
- Tadahisa Teramoto
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
3
|
Teramoto T, Choi KH, Padmanabhan R. Flavivirus proteases: The viral Achilles heel to prevent future pandemics. Antiviral Res 2023; 210:105516. [PMID: 36586467 PMCID: PMC10062209 DOI: 10.1016/j.antiviral.2022.105516] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Flaviviruses are important human pathogens and include dengue (DENV), West Nile (WNV), Yellow fever virus (YFV), Japanese encephalitis (JEV) and Zika virus (ZIKV). DENV, transmitted by mosquitoes, causes diseases ranging in severity from mild dengue fever with non-specific flu-like symptoms to fatal dengue hemorrhagic fever and dengue shock syndrome. DENV infections are caused by four serotypes, DENV1-4, which interact differently with antibodies in blood serum. The incidence of DENV infection has increased dramatically in recent decades and the CDC estimates 400 million dengue infections occur each year, resulting in ∼25,000 deaths mostly among children and elderly people. Similarly, ZIKV infections are caused by infected mosquito bites to humans, can be transmitted sexually and through blood transfusions. If a pregnant woman is infected, the virus can cross the placental barrier and can spread to her fetus, causing severe brain malformations in the child including microcephaly and other birth defects. It is noteworthy that the neurological manifestations of ZIKV were also observed in DENV endemic regions, suggesting that pre-existing antibody response to DENV could augment ZIKV infection. WNV, previously unknown in the US (and known to cause only mild disease in Middle East), first arrived in New York city in 1999 (NY99) and spread throughout the US and Canada by Culex mosquitoes and birds. WNV is now endemic in North America. Thus, emerging and re-emerging flaviviruses are significant threat to human health. However, vaccines are available for only a limited number of flaviviruses, and antiviral therapies are not available for any flavivirus. Hence, there is an urgent need to develop therapeutics that interfere with essential enzymatic steps, such as protease in the flavivirus lifecycle as these viruses possess significant threat to future pandemics. In this review, we focus on our E. coli expression of NS2B hydrophilic domain (NS2BH) covalently linked to NS3 protease domain (NS3Pro) in their natural context which is processed by the combined action of both subunits of the NS2B-NS3Pro precursor. Biochemical activities of the viral protease such as solubility and autoproteolysis of NS2BH-NS3Pro linkage depended on the C-terminal portion of NS2BH linked to the NS3Pro domain. Since 2008, we also focus on the use of the recombinant protease in high throughput screens and characterization of small molecular compounds identified in these screens.
Collapse
Affiliation(s)
- Tadahisa Teramoto
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Kyung H Choi
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47406, USA.
| | - Radhakrishnan Padmanabhan
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
4
|
In Silico Prediction of the Phosphorylation of NS3 as an Essential Mechanism for Dengue Virus Replication and the Antiviral Activity of Quercetin. BIOLOGY 2021; 10:biology10101067. [PMID: 34681164 PMCID: PMC8570334 DOI: 10.3390/biology10101067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary Dengue is a mosquito-borne virus that infects up to 400 million people worldwide annually. Dengue infection triggers high fever, severe body aches, rash, low platelet count, and could lead to Dengue hemorrhagic fever (DHF) in some cases. There is currently no cure, nor a broadly effective vaccine. The interaction of two viral proteins, nonstructural Proteins 3 and 5 (NS3 and NS5), is required for viral replication in the infected host’s cells. Our computational modeling of NS3 suggested that phosphorylation of a serine residue at position 137 of NS3 by a specific c-Jun N-terminal kinase (JNK) enhances viral replication by increasing the interaction of NS3 and NS5 through structural changes in amino acid residues 49–95. Experimental studies have shown that inhibition of JNK prevents viral replication and have suggested that the plants’ flavonoid Quercetin, Agathis flavone, and Myricetin inhibit Dengue infection. Our molecular simulations revealed that Quercetin binds NS3 and obstructs serine 137 phosphorylation, which may decrease viral replication. This work offers a molecular mechanism that can be used for anti-Dengue drug development. Abstract Dengue virus infection is a global health problem for which there have been challenges to obtaining a cure. Current vaccines and anti-viral drugs can only be narrowly applied in ongoing clinical trials. We employed computational methods based on structure-function relationships between human host kinases and viral nonstructural protein 3 (NS3) to understand viral replication inhibitors’ therapeutic effect. Phosphorylation at each of the two most evolutionarily conserved sites of NS3, serine 137 and threonine 189, compared to the unphosphorylated state were studied with molecular dynamics and docking simulations. The simulations suggested that phosphorylation at serine 137 caused a more remarkable structural change than phosphorylation at threonine 189, specifically located at amino acid residues 49–95. Docking studies supported the idea that phosphorylation at serine 137 increased the binding affinity between NS3 and nonstructural Protein 5 (NS5), whereas phosphorylation at threonine 189 decreased it. The interaction between NS3 and NS5 is essential for viral replication. Docking studies with the antiviral plant flavonoid Quercetin with NS3 indicated that Quercetin physically occluded the serine 137 phosphorylation site. Taken together, these findings suggested a specific site and mechanism by which Quercetin inhibits dengue and possible other flaviviruses.
Collapse
|
5
|
Ahmed SF, Quadeer AA, Barton JP, McKay MR. Cross-serotypically conserved epitope recommendations for a universal T cell-based dengue vaccine. PLoS Negl Trop Dis 2020; 14:e0008676. [PMID: 32956362 PMCID: PMC7529213 DOI: 10.1371/journal.pntd.0008676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 10/01/2020] [Accepted: 08/04/2020] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV)-associated disease is a growing threat to public health across the globe. Co-circulating as four different serotypes, DENV poses a unique challenge for vaccine design as immunity to one serotype predisposes a person to severe and potentially lethal disease upon infection from other serotypes. Recent experimental studies suggest that an effective vaccine against DENV should elicit a strong T cell response against all serotypes, which could be achieved by directing T cell responses toward cross-serotypically conserved epitopes while avoiding serotype-specific ones. Here, we used experimentally-determined DENV T cell epitopes and patient-derived DENV sequences to assess the cross-serotypic variability of the epitopes. We reveal a distinct near-binary pattern of epitope conservation across serotypes for a large number of DENV epitopes. Based on the conservation profile, we identify a set of 55 epitopes that are highly conserved in at least 3 serotypes. Most of the highly conserved epitopes lie in functionally important regions of DENV non-structural proteins. By considering the global distribution of human leukocyte antigen (HLA) alleles associated with these DENV epitopes, we identify a potentially robust subset of HLA class I and class II restricted epitopes that can serve as targets for a universal T cell-based vaccine against DENV while covering ~99% of the global population.
Collapse
Affiliation(s)
- Syed Faraz Ahmed
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ahmed A. Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - John P. Barton
- Department of Physics and Astronomy, University of California, Riverside, California, United States of America
| | - Matthew R. McKay
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
6
|
Syenina A, Vijaykrishna D, Gan ES, Tan HC, Choy MM, Siriphanitchakorn T, Cheng C, Vasudevan SG, Ooi EE. Positive epistasis between viral polymerase and the 3' untranslated region of its genome reveals the epidemiologic fitness of dengue virus. Proc Natl Acad Sci U S A 2020; 117:11038-11047. [PMID: 32366663 PMCID: PMC7245076 DOI: 10.1073/pnas.1919287117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV) is a global health threat, causing repeated epidemics throughout the tropical world. While low herd immunity levels to any one of the four antigenic types of DENV predispose populations to outbreaks, viral genetic determinants that confer greater fitness for epidemic spread is an important but poorly understood contributor of dengue outbreaks. Here we report that positive epistasis between the coding and noncoding regions of the viral genome combined to elicit an epidemiologic fitness phenotype associated with the 1994 DENV2 outbreak in Puerto Rico. We found that five amino acid substitutions in the NS5 protein reduced viral genomic RNA (gRNA) replication rate to achieve a more favorable and relatively more abundant subgenomic flavivirus RNA (sfRNA), a byproduct of host 5'-3' exoribonuclease activity. The resulting increase in sfRNA relative to gRNA levels not only inhibited type I interferon (IFN) expression in infected cells through a previously described mechanism, but also enabled sfRNA to compete with gRNA for packaging into infectious particles. We suggest that delivery of sfRNA to new susceptible cells to inhibit type I IFN induction before gRNA replication and without the need for further de novo sfRNA synthesis could form a "preemptive strike" strategy against DENV.
Collapse
Affiliation(s)
- Ayesa Syenina
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, 117549 Singapore
| | - Dhanasekaran Vijaykrishna
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Esther Shuyi Gan
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Hwee Cheng Tan
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Milly M Choy
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Tanamas Siriphanitchakorn
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
- Department of Biological Sciences, National University of Singapore, 117558 Singapore
| | - Colin Cheng
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore;
- Saw Swee Hock School of Public Health, National University of Singapore, 117549 Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore
- SingHealth Duke-National University of Singapore Global Health Institute, 169857 Singapore
| |
Collapse
|
7
|
Quintana VM, Selisko B, Brunetti JE, Eydoux C, Guillemot JC, Canard B, Damonte EB, Julander JG, Castilla V. Antiviral activity of the natural alkaloid anisomycin against dengue and Zika viruses. Antiviral Res 2020; 176:104749. [PMID: 32081740 DOI: 10.1016/j.antiviral.2020.104749] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/21/2020] [Accepted: 02/15/2020] [Indexed: 12/26/2022]
Abstract
Flaviviruses constitute a public health concern because of their global burden and the lack of specific antiviral treatment. Here we investigated the antiviral activity of the alkaloid anisomycin against dengue (DENV) and Zika (ZIKV) viruses. At non-cytotoxic concentrations, anisomycin strongly inhibited the replication of reference strains and clinical isolates of all DENV serotypes and Asian and African strains of ZIKV in Vero cells. Anisomycin also prevented DENV and ZIKV multiplication in human cell lines. While initial steps of DENV and ZIKV replicative cycle were unaffected, a high inhibition of viral protein expression was demonstrated after treatment with anisomycin. DENV RNA synthesis was strongly reduced in anisomycin treated cultures, but the compound did not exert a direct inhibitory effect on 2' O-methyltransferase or RNA polymerase activities of DENV NS5 protein. Furthermore, anisomycin-mediated activation of p38 signaling was not related to the antiviral action of the compound. The evaluation of anisomycin efficacy in a mouse model of ZIKV morbidity and mortality revealed that animals treated with a low dose of anisomycin exhibited a significant reduction in viremia levels and died significantly later than the control group. This protective effect was lost at higher doses, though. In conclusion, anisomycin is a potent and selective in vitro inhibitor of DENV and ZIKV that impairs a post-entry step of viral replication; and a low-dose anisomycin treatment may provide some minimal benefit in a mouse model.
Collapse
Affiliation(s)
- V M Quintana
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/ IQUIBICEN (CONICET), Ciudad Universitaria, Pabellón 2, Piso 4, Buenos Aires, 1428, Argentina.
| | - B Selisko
- Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), Laboratoire d'Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, 163 Avenue de Luminy, 13288, Marseille Cedex 9, France.
| | - J E Brunetti
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/ IQUIBICEN (CONICET), Ciudad Universitaria, Pabellón 2, Piso 4, Buenos Aires, 1428, Argentina.
| | - C Eydoux
- Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), Laboratoire d'Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, 163 Avenue de Luminy, 13288, Marseille Cedex 9, France.
| | - J C Guillemot
- Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), Laboratoire d'Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, 163 Avenue de Luminy, 13288, Marseille Cedex 9, France.
| | - B Canard
- Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), Laboratoire d'Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, 163 Avenue de Luminy, 13288, Marseille Cedex 9, France.
| | - E B Damonte
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/ IQUIBICEN (CONICET), Ciudad Universitaria, Pabellón 2, Piso 4, Buenos Aires, 1428, Argentina.
| | - J G Julander
- Institute for Antiviral Research, Utah State University, Logan, UT, USA.
| | - V Castilla
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/ IQUIBICEN (CONICET), Ciudad Universitaria, Pabellón 2, Piso 4, Buenos Aires, 1428, Argentina.
| |
Collapse
|
8
|
Duan Y, Zeng M, Jiang B, Zhang W, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, Pan L, Chen S, Cheng A. Flavivirus RNA-Dependent RNA Polymerase Interacts with Genome UTRs and Viral Proteins to Facilitate Flavivirus RNA Replication. Viruses 2019; 11:v11100929. [PMID: 31658680 PMCID: PMC6832647 DOI: 10.3390/v11100929] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Flaviviruses, most of which are emerging and re-emerging human pathogens and significant public health concerns worldwide, are positive-sense RNA viruses. Flavivirus replication occurs on the ER and is regulated by many mechanisms and factors. NS5, which consists of a C-terminal RdRp domain and an N-terminal methyltransferase domain, plays a pivotal role in genome replication and capping. The C-terminal RdRp domain acts as the polymerase for RNA synthesis and cooperates with diverse viral proteins to facilitate productive RNA proliferation within the replication complex. Here, we provide an overview of the current knowledge of the functions and characteristics of the RdRp, including the subcellular localization of NS5, as well as the network of interactions formed between the RdRp and genome UTRs, NS3, and the methyltransferase domain. We posit that a detailed understanding of RdRp functions may provide a target for antiviral drug discovery and therapeutics.
Collapse
Affiliation(s)
- YanPing Duan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Miao Zeng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Bowen Jiang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Wei Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - ShaQiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - YunYa Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - YanLing Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Leichang Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| |
Collapse
|
9
|
Xu S, Ci Y, Wang L, Yang Y, Zhang L, Xu C, Qin C, Shi L. Zika virus NS3 is a canonical RNA helicase stimulated by NS5 RNA polymerase. Nucleic Acids Res 2019; 47:8693-8707. [PMID: 31361901 PMCID: PMC6895266 DOI: 10.1093/nar/gkz650] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 01/19/2023] Open
Abstract
Zika virus is a positive single-strand RNA virus whose replication involved RNA unwinding and synthesis. ZIKV NS3 contains a helicase domain, but its enzymatic activity is not fully characterized. Here, we established a dsRNA unwinding assay based on the FRET effect to study the helicase activity of ZIKV NS3, which provided kinetic information in real time. We found that ZIKV NS3 specifically unwound dsRNA/dsDNA with a 3' overhang in the 3' to 5' direction. The RNA unwinding ability of NS3 significantly decreased when the duplex was longer than 18 base pairs. The helicase activity of NS3 depends on ATP hydrolysis and binding to RNA. Mutations in the ATP binding region or the RNA binding region of NS3 impair its helicase activity, thus blocking viral replication in the cell. Furthermore, we showed that ZIKV NS5 interacted with NS3 and stimulated its helicase activity. Disrupting NS3-NS5 interaction resulted in a defect in viral replication, revealing the tight coupling of RNA unwinding and synthesis. We suggest that NS3 helicase activity is stimulated by NS5; thus, viral replication can be carried out efficiently. Our work provides a molecular mechanism of ZIKV NS3 unwinding and novel insights into ZIKV replication.
Collapse
MESH Headings
- Adenosine Triphosphate/chemistry
- Adenosine Triphosphate/metabolism
- Animals
- Binding Sites
- Chlorocebus aethiops
- Cloning, Molecular
- Cricetulus
- Epithelial Cells/virology
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Gene Expression Regulation, Viral
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Kinetics
- Models, Molecular
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Structure, Tertiary
- RNA Helicases/chemistry
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Serine Endopeptidases/chemistry
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
- Substrate Specificity
- Vero Cells
- Viral Nonstructural Proteins/chemistry
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/metabolism
- Zika Virus/genetics
- Zika Virus/metabolism
Collapse
Affiliation(s)
- Shan Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yali Ci
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Leijie Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yang Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Leiliang Zhang
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Caimin Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Chengfeng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lei Shi
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
10
|
Infection of Aedes albopictus Mosquito C6/36 Cells with the wMelpop Strain of Wolbachia Modulates Dengue Virus-Induced Host Cellular Transcripts and Induces Critical Sequence Alterations in the Dengue Viral Genome. J Virol 2019; 93:JVI.00581-19. [PMID: 31092581 DOI: 10.1128/jvi.00581-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/06/2019] [Indexed: 12/16/2022] Open
Abstract
Dengue virus (DENV) causes frequent epidemics infecting ∼390 million people annually in over 100 countries. There are no approved vaccines or antiviral drugs for treatment of infected patients. However, there is a novel approach to control DENV transmission by the mosquito vectors, Aedes aegypti and Aedes albopictus, using the Wolbachia symbiont. The wMelPop strain of Wolbachia suppresses DENV transmission and shortens the mosquito life span. However, the underlying mechanism is poorly understood. To clarify this mechanism, either naive A. albopictus (C6/36) or wMelPop-C6/36 cells were infected with DENV serotype 2 (DENV2). Analysis of host transcript profiles by transcriptome sequencing (RNAseq) revealed that the presence of wMelPop dramatically altered the mosquito host cell transcription in response to DENV2 infection. The viral RNA evolved from wMelPop-C6/36 cells contained low-frequency mutations (∼25%) within the coding region of transmembrane domain 1 (TMD1) of E protein. Mutations with >97% frequencies were distributed within other regions of E, the NS5 RNA-dependent RNA polymerase (NS5POL) domain, and the TMDs of NS2A, NS2B, and NS4B. Moreover, while DENV2-infected naive C6/36 cells showed syncytium formation, DENV2-infected wMelPop-C6/36 cells did not. The Wolbachia-induced mutant DENV2 can readily infect and replicate in naive C6/36 cells, whereas in mutant DENV2-infected BHK-21 or Vero cells, virus replication was delayed. In LLC-MK2 cells, the mutant failed to produce plaques. Additionally, in BHK-21 cells, many mutations in the viral genome reverted to the wild type (WT) and compensatory mutations in NS3 gene appeared. Our results indicate that wMelPop impacts significantly the interactions of DENV2 with mosquito and mammalian host cells.IMPORTANCE Mosquito-borne diseases are of global significance causing considerable morbidity and mortality throughout the world. Dengue virus (DENV; serotypes 1 to 4), a member of the Flavivirus genus of the Flaviviridae family, causes millions of infections annually. Development of a safe vaccine is hampered due to absence of cross-protection and increased risk in secondary infections due to antibody-mediated immune enhancement. Infection of vector mosquitoes with Wolbachia bacteria offers a novel countermeasure to suppress DENV transmission, but the mechanisms are poorly understood. In this study, the host transcription profiles and viral RNA sequences were analyzed in naive A. albopictus (C6/36) and wMelPop-C6/36 cells by RNAseq. Our results showed that the wMelPop symbiont caused profound changes in host transcription profiles and morphology of DENV2-infected C6/36 cells. Accumulation of several mutations throughout DENV2 RNA resulted in loss of infectivity of progeny virions. Our findings offer new insights into the mechanism of Wolbachia-mediated suppression of DENV transmission.
Collapse
|
11
|
Zhang T, Wang ML, Zhang GR, Liu W, Xiao XQ, Yang YS, Li JT, Xun ZM, Li DY, Chan PK. Recombinant DENV 2 NS5: An effective antigen for diagnosis of DENV infection. J Virol Methods 2019; 265:35-41. [DOI: 10.1016/j.jviromet.2018.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/12/2022]
|
12
|
Comparative Analysis of NS5 Protein for Tick Borne Encephalitis Virus Strains in three Virus Subtypes. ACTA BIOMEDICA SCIENTIFICA 2019. [DOI: 10.29413/abs.2018-3.6.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Non-structural protein 5 (NS5) of tick-borne encephalitis virus is an enzyme which is responsible for a copying of viral RNA, and it has a strong structural similarity to RNA polymerases of another RNA virus families. The strains of the virus are separated into three subtypes, which differ by specific mutations in virus proteins, including NS5 protein. The methods of structural bioinformatics allow to construct a model of NS5 protein for several strains of the virus.The paper presents the comparative analysis of sequences and structures of NS5 protein, for three subtypes of the tick-borne encephalitis virus. The segments of protein were identified where the highest difference between subtypes and within subtypes is observed. These segments, where most of the mutations are accumulated, are located in methyltransferase domain, in the inter-domain interface, and in the three subdomains of polymerase domain. The association between the locations of mutations in NS5 protein and the flexibility of a protein backbone was observed using normal mode analysis. Namely, the most important mutations are located in the parts of protein where the amplitude of synchronous oscillations estimated using normal mode analysis is the highest: in the second zinc binding pocket within polymerase domain, in the N-terminal extension within inter-domain interface, and around an active site of methyltransferase domain.
Collapse
|
13
|
Gómez MM, Abreu FVSD, Santos AACD, Mello ISD, Santos MP, Ribeiro IP, Ferreira-de-Brito A, Miranda RMD, Castro MGD, Ribeiro MS, Laterrière Junior RDC, Aguiar SF, Meira GLS, Antunes D, Torres PHM, Mir D, Vicente ACP, Guimarães ACR, Caffarena ER, Bello G, Lourenço-de-Oliveira R, Bonaldo MC. Genomic and structural features of the yellow fever virus from the 2016-2017 Brazilian outbreak. J Gen Virol 2018; 99:536-548. [PMID: 29469689 DOI: 10.1099/jgv.0.001033] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Southeastern Brazil has been suffering a rapid expansion of a severe sylvatic yellow fever virus (YFV) outbreak since late 2016, which has reached one of the most populated zones in Brazil and South America, heretofore a yellow fever-free zone for more than 70 years. In the current study, we describe the complete genome of 12 YFV samples from mosquitoes, humans and non-human primates from the Brazilian 2017 epidemic. All of the YFV sequences belong to the modern lineage (sub-lineage 1E) of South American genotype I, having been circulating for several months prior to the December 2016 detection. Our data confirm that viral strains associated with the most severe YF epidemic in South America in the last 70 years display unique amino acid substitutions that are mainly located in highly conserved positions in non-structural proteins. Our data also corroborate that YFV has spread southward into Rio de Janeiro state following two main sylvatic dispersion routes that converged at the border of the great metropolitan area comprising nearly 12 million unvaccinated inhabitants. Our original results can help public health authorities to guide the surveillance, prophylaxis and control measures required to face such a severe epidemiological problem. Finally, it will also inspire other workers to further investigate the epidemiological and biological significance of the amino acid polymorphisms detected in the Brazilian 2017 YFV strains.
Collapse
Affiliation(s)
- Mariela Martínez Gómez
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Filipe Vieira Santos de Abreu
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Instituto Federal do Norte de Minas Gerais, Salinas, MG, Brazil
| | | | - Iasmim Silva de Mello
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marta Pereira Santos
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ieda Pereira Ribeiro
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Anielly Ferreira-de-Brito
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rafaella Moraes de Miranda
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcia Gonçalves de Castro
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Mario Sergio Ribeiro
- Superintendência de Vigilância Epidemiológica e Ambiental, Secretaria Estadual de Saúde, Rio de Janeiro, Brazil
| | | | | | | | - Deborah Antunes
- Programa de Computação Científica (PROCC), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Daiana Mir
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Carolina Paulo Vicente
- Laboratório de Genética Molecular de Microorganismos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Carolina Ramos Guimarães
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ernesto Raul Caffarena
- Programa de Computação Científica (PROCC), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ricardo Lourenço-de-Oliveira
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Myrna Cristina Bonaldo
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Potapova U, Feranchuk S, Leonova G, Belikov S. The rearrangement of motif F in the flavivirus RNA-directed RNA polymerase. Int J Biol Macromol 2017; 108:990-998. [PMID: 29113891 DOI: 10.1016/j.ijbiomac.2017.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/27/2022]
Abstract
In the flavivirus genus, the non-structural protein NS5 plays a central role in RNA viral replication and constitutes a major target for drug discovery. One of the prime challenges in the study of NS5 protein is to investigate the interplay between the two protein domains, namely, the RNA-dependent RNA polymerase (RdRp) domain and the methyltransferase (MTase) domain. These investigations could clarify the multiple roles of NS5 protein in the virus life cycle. Here we present the results of sequence analyses and structural bioinformatics studies of NS5 protein, which suggest that the conserved motif F in the NS5 protein could act as a lock which controls the rearrangement of the domains and as a switch in the protein enzymatic activity.
Collapse
Affiliation(s)
- Ulyana Potapova
- Limnological Institute, Siberian Branch of Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Sergey Feranchuk
- Limnological Institute, Siberian Branch of Russian Academy of Sciences, 664033 Irkutsk, Russia; Department of Informatics, National Research Technical University, 664074 Irkutsk, Russia.
| | - Galina Leonova
- Somov Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russia
| | - Sergei Belikov
- Limnological Institute, Siberian Branch of Russian Academy of Sciences, 664033 Irkutsk, Russia
| |
Collapse
|