1
|
Zhang Z, Zhan F. Type 2 Cystatins and Their Roles in the Regulation of Human Immune Response and Cancer Progression. Cancers (Basel) 2023; 15:5363. [PMID: 38001623 PMCID: PMC10670837 DOI: 10.3390/cancers15225363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Cystatins are a family of intracellular and extracellular protease inhibitors that inhibit cysteine cathepsins-a group of lysosomal cysteine proteases that participate in multiple biological processes, including protein degradation and post-translational cleavage. Cysteine cathepsins are associated with the development of autoimmune diseases, tumor progression, and metastasis. Cystatins are categorized into three subfamilies: type 1, type 2, and type 3. The type 2 cystatin subfamily is the largest, containing 10 members, and consists entirely of small secreted proteins. Although type 2 cystatins have many shared biological roles, each member differs in structure, post-translational modifications (e.g., glycosylation), and expression in different cell types. These distinctions allow the type 2 cystatins to have unique biological functions and properties. This review provides an overview of type 2 cystatins, including their biological similarities and differences, their regulatory effect on human immune responses, and their roles in tumor progression, immune evasion, and metastasis.
Collapse
Affiliation(s)
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
2
|
Azimi A, Jabbour S, Patrick E, Fernandez-Penas P. Non-invasive diagnosis of early cutaneous squamous cell carcinoma. Exp Dermatol 2023; 32:1946-1959. [PMID: 37688398 DOI: 10.1111/exd.14921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/28/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Early cutaneous squamous cell carcinoma (cSCC) can be challenging to diagnose using clinical criteria as it could present similar to actinic keratosis (AK) or Bowen's disease (BD), precursors of cSCC. Currently, histopathological assessment of an invasive biopsy is the gold standard for diagnosis. A non-invasive diagnostic approach would reduce patient and health system burden. Therefore, this study used non-invasive sampling by tape-stripping coupled with data-independent acquisition mass spectrometry (DIA-MS) proteomics to profile the proteome of histopathologically diagnosed AK, BD and cSCC, as well as matched normal samples. Proteomic data were analysed to identify proteins and biological functions that are significantly different between lesions. Additionally, a support vector machine (SVM) machine learning algorithm was used to assess the usefulness of proteomic data for the early diagnosis of cSCC. A total of 696 proteins were identified across the samples studied. A machine learning model constructed using the proteomic data classified premalignant (AK + BD) and malignant (cSCC) lesions at 77.5% accuracy. Differential abundance analysis identified 144 and 21 protein groups that were significantly changed in the cSCC, and BD samples compared to the normal skin, respectively (adj. p < 0.05). Changes in pivotal carcinogenic pathways such as LXR/RXR activation, production of reactive oxygen species, and Hippo signalling were observed that may explain the progression of cSCC from premalignant lesions. In summary, this study demonstrates that DIA-MS analysis of tape-stripped samples can identify non-invasive protein biomarkers with the potential to be developed into a complementary diagnostic tool for early cSCC.
Collapse
Affiliation(s)
- Ali Azimi
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Steven Jabbour
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Ellis Patrick
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Pablo Fernandez-Penas
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
3
|
Ni J, Chen C, Wang S, Liu X, Tan L, Lu L, Fan Y, Hou Y, Dou H, Liang J. Novel CSF biomarkers for diagnosis and integrated analysis of neuropsychiatric systemic lupus erythematosus: based on antibody profiling. Arthritis Res Ther 2023; 25:165. [PMID: 37684700 PMCID: PMC10486090 DOI: 10.1186/s13075-023-03146-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Neuropsychiatric systemic lupus erythematosus (NPSLE), with various morbidities and multiple manifestations in the central nervous system, remains a limited standard for diagnosis. Our study was to discover novel biomarkers for improving the diagnostic efficiency for NPSLE. METHODS We performed a quantitative planar protein antibody microarray to screen 1000 proteins in cerebrospinal fluid from controls, systemic lupus erythematosus (SLE, non-NPSLE) patients, and NPSLE patients. Differentially expressed proteins (DEPs) as candidate biomarkers were developed into a custom multiplexed protein antibody array for further validation in an independent larger cohort. Subsequently, we used least absolute shrinkage and selection operator regression (LASSO) analysis and multivariable logistic regression analysis for optimizing feature selection and constructing a diagnostic model. A receiver operating characteristic curve (ROC) was generated to assess the effectiveness of the models. RESULTS The expression of 29 proteins in CSF was significantly altered in the comparison of the three groups. We selected 17 proteins as candidate biomarkers in accordance with protein interaction analysis. In the larger cohort, we identified 5 DEPs as biomarkers for NPSLE, including TCN2, CST6, KLK5, L-selectin, and Trappin-2. The diagnostic model included 3 hub proteins (CST6, TCN2, KLK5) and was best at discriminating NPSLE from SLE patients. These CSF biomarkers were also highly associated with disease activity. In addition, there were 6 molecules with remarkable changes in NPSLE CSF and hippocampus, which indicated the consistency of the environment in the brain and the promising molecular targets in the pathogenesis of NPSLE. CONCLUSIONS The dual-chips screening strategy demonstrated KLK5, L-selectin, Trappin-2, TCN2, and CST6 as CSF biomarkers for diagnosing NPSLE.
Collapse
Affiliation(s)
- Jiali Ni
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Chen Chen
- Department of Clinical Nutrition, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Shuangan Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Xuan Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Liping Tan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Li Lu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yu Fan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China.
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
4
|
Gai D, Chen JR, Stewart JP, Nookaew I, Habelhah H, Ashby C, Sun F, Cheng Y, Li C, Xu H, Peng B, Garg TK, Schinke C, Thanendrarajan S, Zangari M, Chen F, Barlogie B, van Rhee F, Tricot G, Shaughnessy JD, Zhan F. CST6 suppresses osteolytic bone disease in multiple myeloma by blocking osteoclast differentiation. J Clin Invest 2022; 132:159527. [PMID: 35881476 PMCID: PMC9479617 DOI: 10.1172/jci159527] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Osteolytic bone disease is a hallmark of multiple myeloma (MM). A significant fraction (~20%) of MM patients do not develop osteolytic lesions (OL). The molecular basis for the absence of bone disease in MM is not understood. We combined PET-CT and gene expression profiling (GEP) of purified bone marrow (BM) CD138+ MM cells from 512 newly diagnosed MM patients to reveal that elevated expression of cystatin M/E (CST6) was significantly associated with the absence of OL in MM. An enzyme-linked immunosorbent assay revealed a strong correlation between CST6 levels in BM serum/plasma and CST6 mRNA expression. Both recombinant CST6 protein and BM serum from patients with high CST6 significantly inhibited the activity of the osteoclast-specific protease cathepsin K, and blocked osteoclast differentiation and function. Recombinant CST6 inhibited bone destruction in ex vivo and in vivo myeloma models. Single cell RNA-sequencing identified that CST6 attenuates polarization of monocytes to osteoclast precursors. Furthermore, CST6 protein blocks osteoclast differentiation by suppressing cathepsin-mediated cleavage of NF-κB/p100 and TRAF3 following RANKL stimulation. Secretion by MM cells of CST6, an inhibitor of osteoclast differentiation and function, suppresses osteolytic bone disease in MM and probably other diseases associated with osteoclast-mediated bone loss.
Collapse
Affiliation(s)
- Dongzheng Gai
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Jin-Ran Chen
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - James P Stewart
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Hasem Habelhah
- Department of Pathology, University of Iowa, Iowa City, United States of America
| | - Cody Ashby
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Fumou Sun
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Yan Cheng
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Can Li
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Hongwei Xu
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Bailu Peng
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Tarun K Garg
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Carolina Schinke
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Sharmilan Thanendrarajan
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Maurizio Zangari
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Fangping Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Bart Barlogie
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Frits van Rhee
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Guido Tricot
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - John D Shaughnessy
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Fenghuang Zhan
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| |
Collapse
|
5
|
Zhang M, Zhu J, Wang W, Jiang Z. Active legumain promotes invasion and migration of neuroblastoma by regulating epithelial-mesenchymal transition. Open Life Sci 2022; 17:676-685. [PMID: 35800070 PMCID: PMC9214917 DOI: 10.1515/biol-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroblastoma (NB) is a commonly occurring malignancy in children. Epithelial-mesenchymal transition (EMT) is an adaptive change in promoting tumor metastasis. As an important factor in regulating tumor metastasis, whether legumain could promote metastasis of NB by EMT is still unexplored. Legumain is the active form of prolegumain, abundant in tumor plasma. So in the current study, different forms of legumain were identified in NB. Second, correlation analysis of N-cadherin and active legumain was identified by western blot analysis. Third, legumain gene amplification or gene knockdown were proceeded to examine the effect of legumain on EMT by scratch and transwell assay; meanwhile, active mature legumain or its asparagine endopeptidase (AEP) inhibitor was also added in. Finally, legumain can be detected differently in NB cells. Changes in legumain could influence NB metastasis by regulating EMT markers (e.g., N-cadherin, vimentin, and slug). Besides, the effect of legumain on EMT by its AEP activity was proved by intervention experiment of AEP gene transfection and gene knockdown experiments or adding recombinant human legumain suspension or specific inhibitor of AEP in NB cells (p < 0.05). These results suggest that legumain can promote invasion and migration of NB by regulating EMT, and EMT of NB is regulated by AEP activity of legumain, which can be inhibited by a specific AEP inhibitor.
Collapse
Affiliation(s)
- Min Zhang
- Department of Emergency & Trauma Surgery, Shanghai University of Medicine and Health Sciences, Affiliated Zhoupu Hospital , Shanghai 201318 , P. R. China
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200092 , P. R. China
| | - Jianhua Zhu
- Department of Emergency & Trauma Surgery, Shanghai University of Medicine and Health Sciences, Affiliated Zhoupu Hospital , Shanghai 201318 , P. R. China
| | - Wei Wang
- Department of Emergency & Trauma Surgery, Shanghai University of Medicine and Health Sciences, Affiliated Zhoupu Hospital , Shanghai 201318 , P. R. China
| | - Zhiteng Jiang
- Colloge of Pharmacy, Shanghai University of Medicine and Health Sciences , Shanghai 201318 , P. R. China
| |
Collapse
|
6
|
Xu D, Ding S, Cao M, Yu X, Wang H, Qiu D, Xu Z, Bi X, Mu Z, Li K. A Pan-Cancer Analysis of Cystatin E/M Reveals Its Dual Functional Effects and Positive Regulation of Epithelial Cell in Human Tumors. Front Genet 2021; 12:733211. [PMID: 34603393 PMCID: PMC8484784 DOI: 10.3389/fgene.2021.733211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Cystatin E/M (CST6), a representative cysteine protease inhibitor, plays both tumor-promoting and tumor-suppressing functions and is pursued as an epigenetically therapeutic target in special cancer types. However, a comprehensive and systematic analysis for CST6 in pan-cancer level is still lacking. In the present study, we explored the expression pattern of CST6 in multiple cancer types across ∼10,000 samples from TCGA (The Cancer Genome Atlas) and ∼8,000 samples from MMDs (Merged Microarray-acquired Datasets). We found that the dynamic expression alteration of CST6 was consistent with dual function in different types of cancer. In addition, we observed that the expression of CST6 was globally regulated by the DNA methylation in its promoter region. CST6 expression was positively correlated with the epithelial cell infiltration involved in epithelial-to-mesenchymal transition (EMT) and proliferation. The relationship between CST6 and tumor microenvironment was also explored. In particular, we found that CST6 serves a protective function in the process of melanoma metastasis. Finally, the clinical association analysis further revealed the dual function of CST6 in cancer, and a combination of the epithelial cell infiltration and CST6 expression could predict the prognosis for SKCM patients. In summary, this first CST6 pan-cancer study improves the understanding of the dual functional effects on CST6 in different types of human cancer.
Collapse
Affiliation(s)
- Dahua Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shun Ding
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Meng Cao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaorong Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Dongqin Qiu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Zhengyang Xu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xiaoman Bi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Zhonglin Mu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Kongning Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China.,College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Wallin H, Hunaiti S, Abrahamson M. Externally added cystatin C reduces growth of A375 melanoma cells by increasing cell cycle time. FEBS Open Bio 2021; 11:1645-1658. [PMID: 33837649 PMCID: PMC8167853 DOI: 10.1002/2211-5463.13162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Some secreted cysteine protease inhibitors of the cystatin family appear to affect intracellular proteolysis and growth of human cells, as a result of internalization. Here, we studied the effects of external addition of the most abundant human cystatin, cystatin C, on viability and proliferation of cancer cells in culture. A dose‐dependent decrease in viable cells was seen for A375 melanoma, MCF‐7 breast cancer, and PC‐3 prostate cancer cells cultured in 1–5 µm cystatin C after 24 h. Real‐time assessment of growth rates in A375 cell cultures for 48 h by digital holographic microscopy showed an increased doubling time for cells cultured in the presence of 5 µm cystatin C (20.1 h) compared with control cells (14.7 h). A prolonged doubling time was already observed during the first 12 h, indicating a rapid general decrease in cell proliferation at the population level. Tracking of individual cells in phase holographic images showed that dividing cells incubated with 5 µm cystatin C underwent fewer mitoses during 48 h than control cells. In addition, the time between cell divisions was longer, especially for the first cell cycle. Incubation with the variant W106F‐cystatin C (with high cellular uptake rate) resulted in a lower number of viable cells and a prolonged doubling time than when cells were incubated with wild‐type cystatin C, but no effect was observed for (R24A,R25A)‐cystatin C (low cellular uptake). Thus, cystatin C causes prolonged cell division leading to decreased proliferation of melanoma cells, and internalization seems to be a prerequisite for this effect.
Collapse
Affiliation(s)
- Hanna Wallin
- Division of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, Sweden
| | - Samar Hunaiti
- Division of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, Sweden
| | - Magnus Abrahamson
- Division of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, Sweden
| |
Collapse
|
8
|
Cystatin M/E (Cystatin 6): A Janus-Faced Cysteine Protease Inhibitor with Both Tumor-Suppressing and Tumor-Promoting Functions. Cancers (Basel) 2021; 13:cancers13081877. [PMID: 33919854 PMCID: PMC8070812 DOI: 10.3390/cancers13081877] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023] Open
Abstract
Alongside its contribution in maintaining skin homeostasis and its probable involvement in fetal and placental development, cystatin M/E (also known as cystatin 6) was first described as a tumor suppressor of breast cancer. This review aims to provide an update on cystatin M/E with particular attention paid to its role during tumorigenesis. Cystatin M/E, which is related to type 2 cystatins, displays the unique property of being a dual tight-binding inhibitor of both legumain (also known as asparagine endopeptidase) and cysteine cathepsins L, V and B, while its expression level is epigenetically regulated via the methylation of the CST6 promoter region. The tumor-suppressing role of cystatin M/E was further reported in melanoma, cervical, brain, prostate, gastric and renal cancers, and cystatin M/E was proposed as a biomarker of prognostic significance. Contrariwise, cystatin M/E could have an antagonistic function, acting as a tumor promoter (e.g., oral, pancreatic cancer, thyroid and hepatocellular carcinoma). Taking into account these apparently divergent functions, there is an urgent need to decipher the molecular and cellular regulatory mechanisms of the expression and activity of cystatin M/E associated with the safeguarding homeostasis of the proteolytic balance as well as its imbalance in cancer.
Collapse
|
9
|
Dai H, Guo L, Lin M, Cheng Z, Li J, Tang J, Huan X, Huang Y, Xu K. Comprehensive analysis and identification of key genes and signaling pathways in the occurrence and metastasis of cutaneous melanoma. PeerJ 2020; 8:e10265. [PMID: 33240619 PMCID: PMC7680623 DOI: 10.7717/peerj.10265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/07/2020] [Indexed: 01/02/2023] Open
Abstract
Background Melanoma is a malignant tumor of melanocytes, and the incidence has increased faster than any other cancer over the past half century. Most primary melanoma can be cured by local excision, but metastatic melanoma has a poor prognosis. Cutaneous melanoma (CM) is prone to metastasis, so the research on the mechanism of melanoma occurrence and metastasis will be beneficial to diagnose early, improve treatment, and prolong life survival. In this study, we compared the gene expression of normal skin (N), primary cutaneous melanoma (PM) and metastatic cutaneous melanoma (MM) in the Gene Expression Omnibus (GEO) database. Then we identified the key genes and molecular pathways that may be involved in the development and metastasis of cutaneous melanoma, thus to discover potential markers or therapeutic targets. Methods Three gene expression profiles (GSE7553, GSE15605 and GSE46517) were downloaded from the GEO database, which contained 225 tissue samples. R software identified the differentially expressed genes (DEGs) between pairs of N, PM and MM samples in the three sets of data. Subsequently, we analyzed the gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of the DEGs, and constructed a protein-protein interaction (PPI) network. MCODE was used to seek the most important modules in PPI network, and then the GO function and KEGG pathway of them were analyzed. Finally, the hub genes were calculated by the cytoHubba in Cytoscape software. The Cancer Genome Atlas (TCGA) data were analyzed using UALCAN and GEPIA to validate the hub genes and analyze the prognosis of patients. Results A total of 134, 317 and 147 DEGs were identified between N, PM and MM in pair. GO functions and KEGG pathways analysis results showed that the upregulated DEGs mainly concentrated in cell division, spindle microtubule, protein kinase activity and the pathway of transcriptional misregulation in cancer. The downregulated DEGs occurred in epidermis development, extracellular exosome, structural molecule activity, metabolic pathways and p53 signaling pathway. The PPI network obtained the most important module, whose GO function and KEGG pathway were enriched in oxidoreductase activity, cell division, cell exosomes, protein binding, structural molecule activity, and metabolic pathways. 14, 18 and 18 DEGs were identified respectively as the hub genes between N, PM and MM, and TCGA data confirmed the expression differences of hub genes. In addition, the overall survival curve of hub genes showed that the differences in these genes may lead to a significant decrease in overall survival of melanoma patients. Conclusions In this study, several hub genes were found from normal skin, primary melanoma and metastatic melanoma samples. These hub genes may play an important role in the production, invasion, recurrence or death of CM, and may provide new ideas and potential targets for its diagnosis or treatment.
Collapse
Affiliation(s)
- Hanying Dai
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, ChangSha, HuNan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, ChangSha, HuNan, People's Republic of China
| | - Lihuang Guo
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, ChangSha, HuNan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, ChangSha, HuNan, People's Republic of China
| | - Mingyue Lin
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, ChangSha, HuNan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, ChangSha, HuNan, People's Republic of China
| | - Zhenbo Cheng
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, ChangSha, HuNan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, ChangSha, HuNan, People's Republic of China
| | - Jiancheng Li
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, ChangSha, HuNan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, ChangSha, HuNan, People's Republic of China
| | - Jinxia Tang
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, ChangSha, HuNan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, ChangSha, HuNan, People's Republic of China
| | - Xisha Huan
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, ChangSha, HuNan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, ChangSha, HuNan, People's Republic of China
| | - Yue Huang
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, ChangSha, HuNan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, ChangSha, HuNan, People's Republic of China
| | - Keqian Xu
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, ChangSha, HuNan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, ChangSha, HuNan, People's Republic of China
| |
Collapse
|
10
|
Liu Y, Wang Y, Shen X, Chen C, Ni H, Sheng N, Hua M, Wu Y. Down-regulation of lncRNA PCGEM1 inhibits cervical carcinoma by modulating the miR-642a-5p/LGMN axis. Exp Mol Pathol 2020; 117:104561. [PMID: 33121976 DOI: 10.1016/j.yexmp.2020.104561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/30/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023]
Abstract
LncRNA PCGEM1 (PCGEM1) has been reported to exert essential effects on the development and progress of various tumors, while the detailed effects and possible mechanisms of PCGEM1 in cervical carcinoma remain unknown. In the present study, PCGEM1 was over-expressed in cervical carcinoma cells as evidenced by real-time quantitative polymerase chain reaction (RT-qPCR) assay. Knockdown of PCGEM1 significantly repressed proliferation, migration, and invasion, while induced G1 arrest in cervical carcinoma cells. In addition, PCGEM1 was predicted to target miR-642a-5p by bioinformatics software, which was further confirmed by luciferase reporter assay. Besides, RT-qPCR assay indicated that miR-642a-5p expression was decreased in cervical carcinoma cells and knockdown of PCGEM1 could accelerate miR-642a-5p expression. Moreover, inhibition of miR-642a-5p partly abolished the functions of PCGEM1 knockdown on proliferation, cell cycle, migration and invasion of cervical carcinoma cells. Furthermore, miR-642a-5p could bind to the 3'-UTR of LGMN, which was over-expressed in the cervical carcinoma cells. Suppression of LGMN partly restored the functions of miR-642a-5p inhibitor on proliferation, cell cycle distribution, migration and invasion in the cervical carcinoma cells treated with the PCGEM1 shRNA. Taken together, our data indicated that knockdown of PCGEM1 inhibited proliferation, migration and invasion in cervical carcinoma by modulating the miR-642a-5p/ LGMN axis.
Collapse
Affiliation(s)
- Yuanlin Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Ye Wang
- Shanghai Hanghua International Shipping Agency Co. LTD, Shanghai, China
| | - Xiang Shen
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Chen Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Huihua Ni
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Nan Sheng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Minhui Hua
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yanling Wu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
11
|
Hunaiti S, Wallin H, Eriksson M, Järås M, Abrahamson M. Secreted cystatins decrease proliferation and enhance apoptosis of human leukemic cells. FEBS Open Bio 2020; 10:2166-2181. [PMID: 32810913 PMCID: PMC7530398 DOI: 10.1002/2211-5463.12958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/15/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Cysteine proteases are implicated in proteolysis events favoring cancer cell growth, spread, and death by apoptosis. Herein, we have studied whether the net growth and survival of the leukemic cell lines Jurkat, U937, and HL‐60 are affected by external addition of five proteins acting as natural cysteine protease inhibitors. None of the cystatins examined (A, C, D, and E/M) or chagasin showed consistent effects on Fas‐induced apoptosis when evaluated at 1 µm. In contrast, when the intrinsic apoptosis pathway was activated by hydrogen peroxide, addition of cystatin D augmented caspase‐3‐like activity within all three cell lines. Flow cytometric analysis of U937 cells also showed increased numbers of annexin V‐positive cells when hydrogen peroxide was used to initiate apoptosis and cells were cultured in the presence of cystatin D or C. Moreover, stimulation of hydrogen peroxide‐induced apoptotic U937 cells with either cystatin C or D resulted in a dose‐dependent decrease in the number of cells. Cell viability was also decreased when U937 cells were cultured in the presence of cystatin C or D (1–9 µm) only, demonstrating that these cystatins can reduce cell proliferation by themselves in addition to enhancing apoptosis induced by oxidative stress. These effects on U937 cells were paralleled by internalization of cystatins C and D, indicating these effects are caused by downregulation of intracellular proteolysis. External addition of cystatins C and D to HL‐60 and Jurkat cells demonstrated similar degrees of cystatin D uptake and decreased viability as for U937 cells, indicating that these effects are general for leukemic cells.
Collapse
Affiliation(s)
- Samar Hunaiti
- Division of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, Sweden
| | - Hanna Wallin
- Division of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, Sweden
| | - Mia Eriksson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Sweden
| | - Marcus Järås
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Sweden
| | - Magnus Abrahamson
- Division of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, Sweden
| |
Collapse
|
12
|
Poreba M. Recent advances in the development of legumain-selective chemical probes and peptide prodrugs. Biol Chem 2020; 400:1529-1550. [PMID: 31021817 DOI: 10.1515/hsz-2019-0135] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
Legumain, which is also known as vacuolar processing enzyme (VPE) or asparaginyl endopeptidase (AEP), is a cysteine protease that was first discovered and characterized in the leguminous seeds of the moth bean in the early 1990s. Later, this enzyme was also detected in higher organisms, including eukaryotes. This pH-dependent protease displays the highest activity in acidic endolysosomal compartments; however, legumain also displays nuclear, cytosolic and extracellular activity when stabilized by other proteins or intramolecular complexes. Based on the results from over 25 years of research, this protease is involved in multiple cellular events, including protein degradation and antigen presentation. Moreover, when dysregulated, this protease contributes to the progression of several diseases, with cancer being the well-studied example. Research on legumain biology was undoubtedly facilitated by the use of small molecule chemical tools. Therefore, in this review, I present the historical perspectives and most current strategies for the development of small molecule substrates, inhibitors and activity-based probes for legumain. These tools are of paramount importance in elucidating the roles of legumain in multiple biological processes. Finally, as this enzyme appears to be a promising molecular target for anticancer therapies, the development of legumain-activated prodrugs is also described.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Bioorganic Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
13
|
Zhang Z, Tian Y, Ye K. δ-secretase in neurodegenerative diseases: mechanisms, regulators and therapeutic opportunities. Transl Neurodegener 2020; 9:1. [PMID: 31911834 PMCID: PMC6943888 DOI: 10.1186/s40035-019-0179-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/26/2019] [Indexed: 11/10/2022] Open
Abstract
Mammalian asparagine endopeptidase (AEP) is a cysteine protease that cleaves its protein substrates on the C-terminal side of asparagine residues. Converging lines of evidence indicate that AEP may be involved in the pathogenesis of several neurological diseases, including Alzheimer's disease, Parkinson's disease, and frontotemporal dementia. AEP is activated in the aging brain, cleaves amyloid precursor protein (APP) and promotes the production of amyloid-β (Aβ). We renamed AEP to δ-secretase to emphasize its role in APP fragmentation and Aβ production. AEP also cleaves other substrates, such as tau, α-synuclein, SET, and TAR DNA-binding protein 43, generating neurotoxic fragments and disturbing their physiological functions. The activity of δ-secretase is tightly regulated at both the transcriptional and posttranslational levels. Here, we review the recent advances in the role of δ-secretase in neurodegenerative diseases, with a focus on its biochemical properties and the transcriptional and posttranslational regulation of its activity, and discuss the clinical implications of δ-secretase as a diagnostic biomarker and therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060 People’s Republic of China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060 People’s Republic of China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
14
|
Li Z, Wang S, Huo X, Yu H, Lu J, Zhang S, Li X, Cao Q, Li C, Guo M, Lv J, Du X, Chen Z. Cystatin C Expression is Promoted by VEGFA Blocking, With Inhibitory Effects on Endothelial Cell Angiogenic Functions Including Proliferation, Migration, and Chorioallantoic Membrane Angiogenesis. J Am Heart Assoc 2019; 7:e009167. [PMID: 30571388 PMCID: PMC6404187 DOI: 10.1161/jaha.118.009167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Vascular development, including vasculogenesis and angiogenesis, is involved in many diseases. Cystatin C ( CST 3) is a commonly used marker of renal dysfunction, and we have previously reported that its expression level is associated with variations in the gerbil circle of Willis. Thus, we hypothesized that CST 3 may affect endothelial function and angiogenic capacity. In the current study, we sought to determine the influence of CST 3 on endothelial function and explore its potential regulatory pathway. Methods and Results We analyzed CST 3 and vascular endothelial growth factor A ( VEGFA) levels in different developmental stages of gerbils using ELISA s and immunofluorescence (to examine the relationship between CST 3 and VEGFA . We used a real-time cell analyzer, cytotoxicity assays, and the chorioallantoic membrane assay to investigate the function of CST 3 in endothelial cells and the chorioallantoic membrane. Additionally, we used Western blotting to explore the downstream targets of CST 3. The expression levels of both CST 3 and VEGFA were at their highest on day 10 of the embryonic stage. CST 3 inhibited endothelial cell proliferation, migration, tube formation, and permeability, as well as vascular development in the chorioallantoic membrane. Blocking of VEGFA dose-dependently increased CST 3 expression in arterial and venous endothelial cells. Furthermore, overexpression and knockdown of CST 3 significantly affected the protein levels of p53 and CAPN10 (calpain 10), suggesting that CST 3 might play a role in vascular development through these proteins. Conclusions CST 3 may be associated with vascular development and angiogenesis, and this effect could be promoted by blocking VEGFA .
Collapse
Affiliation(s)
- Zhenkun Li
- 1 School of Basic Medical Sciences Capital Medical University Beijing Key Laboratory of Cancer Invasion & Metastasis Research Beijing China
| | - Shiyuan Wang
- 1 School of Basic Medical Sciences Capital Medical University Beijing Key Laboratory of Cancer Invasion & Metastasis Research Beijing China
| | - Xueyun Huo
- 1 School of Basic Medical Sciences Capital Medical University Beijing Key Laboratory of Cancer Invasion & Metastasis Research Beijing China
| | - Hefen Yu
- 1 School of Basic Medical Sciences Capital Medical University Beijing Key Laboratory of Cancer Invasion & Metastasis Research Beijing China
| | - Jing Lu
- 1 School of Basic Medical Sciences Capital Medical University Beijing Key Laboratory of Cancer Invasion & Metastasis Research Beijing China
| | - Shuangyue Zhang
- 1 School of Basic Medical Sciences Capital Medical University Beijing Key Laboratory of Cancer Invasion & Metastasis Research Beijing China
| | - Xiaohong Li
- 1 School of Basic Medical Sciences Capital Medical University Beijing Key Laboratory of Cancer Invasion & Metastasis Research Beijing China
| | - Qi Cao
- 1 School of Basic Medical Sciences Capital Medical University Beijing Key Laboratory of Cancer Invasion & Metastasis Research Beijing China
| | - Changlong Li
- 1 School of Basic Medical Sciences Capital Medical University Beijing Key Laboratory of Cancer Invasion & Metastasis Research Beijing China
| | - Meng Guo
- 1 School of Basic Medical Sciences Capital Medical University Beijing Key Laboratory of Cancer Invasion & Metastasis Research Beijing China
| | - Jianyi Lv
- 1 School of Basic Medical Sciences Capital Medical University Beijing Key Laboratory of Cancer Invasion & Metastasis Research Beijing China
| | - Xiaoyan Du
- 1 School of Basic Medical Sciences Capital Medical University Beijing Key Laboratory of Cancer Invasion & Metastasis Research Beijing China
| | - Zhenwen Chen
- 1 School of Basic Medical Sciences Capital Medical University Beijing Key Laboratory of Cancer Invasion & Metastasis Research Beijing China
| |
Collapse
|
15
|
Dall E, Hollerweger JC, Dahms SO, Cui H, Häussermann K, Brandstetter H. Structural and functional analysis of cystatin E reveals enzymologically relevant dimer and amyloid fibril states. J Biol Chem 2018; 293:13151-13165. [PMID: 29967063 PMCID: PMC6109925 DOI: 10.1074/jbc.ra118.002154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/26/2018] [Indexed: 12/26/2022] Open
Abstract
Protein activity is often regulated by altering the oligomerization state. One mechanism of multimerization involves domain swapping, wherein proteins exchange parts of their structures and thereby form long-lived dimers or multimers. Domain swapping has been specifically observed in amyloidogenic proteins, for example the cystatin superfamily of cysteine protease inhibitors. Cystatins are twin-headed inhibitors, simultaneously targeting the lysosomal cathepsins and legumain, with important roles in cancer progression and Alzheimer's disease. Although cystatin E is the most potent legumain inhibitor identified so far, nothing is known about its propensity to oligomerize. In this study, we show that conformational destabilization of cystatin E leads to the formation of a domain-swapped dimer with increased conformational stability. This dimer was active as a legumain inhibitor by forming a trimeric complex. By contrast, the binding sites toward papain-like proteases were buried within the cystatin E dimer. We also showed that the dimers could further convert to amyloid fibrils. Unexpectedly, cystatin E amyloid fibrils contained functional protein, which inhibited both legumain and papain-like enzymes. Fibril formation was further regulated by glycosylation. We speculate that cystatin amyloid fibrils might serve as a binding platform to stabilize the pH-sensitive legumain and cathepsins in the extracellular environment, contributing to their physiological and pathological functions.
Collapse
Affiliation(s)
- Elfriede Dall
- From the Department of Biosciences, University of Salzburg, A-5020 Salzburg, Austria and
| | - Julia C Hollerweger
- From the Department of Biosciences, University of Salzburg, A-5020 Salzburg, Austria and
| | - Sven O Dahms
- From the Department of Biosciences, University of Salzburg, A-5020 Salzburg, Austria and
| | - Haissi Cui
- the Center for Integrated Protein Science Munich, Technical University of Munich, D-85748 Munich, Germany
| | - Katharina Häussermann
- the Center for Integrated Protein Science Munich, Technical University of Munich, D-85748 Munich, Germany
| | - Hans Brandstetter
- From the Department of Biosciences, University of Salzburg, A-5020 Salzburg, Austria and
| |
Collapse
|
16
|
Leto G, Crescimanno M, Flandina C. On the role of cystatin C in cancer progression. Life Sci 2018; 202:152-160. [DOI: 10.1016/j.lfs.2018.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/17/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
|