1
|
Li H, Xu M, Chen D, Wen W, Luo J. Pirfenidone ameliorates alcohol-induced promotion of breast cancer in mice. Front Oncol 2024; 14:1351839. [PMID: 38590657 PMCID: PMC10999600 DOI: 10.3389/fonc.2024.1351839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Purpose Alcohol consumption increases the risk of breast cancer and promotes cancer progression. Alcohol exposure could affect both processes of the mammary carcinogenesis, namely, the cell transformation and onset of tumorigenesis as well as cancer aggressiveness including metastasis and drug resistance/recurrence. However, the cellular and molecular mechanisms underlying alcohol tumor promotion remain unclear. There are four members of the mammalian p38 mitogen-activated protein kinase (MAPK) family, namely, p38α, p38β, p38γ and p38δ. We have previously demonstrated alcohol exposure selectively activated p38γ MAPK in breast cancer cells in vitro and in vivo. Pirfenidone (PFD), an antifibrotic compound approved for the treatment of idiopathic pulmonary fibrosis, is also a pharmacological inhibitor of p38γ MAPK. This study aimed to determine whether PFD is useful to inhibit alcohol-induced promotion of breast cancer. Methods Female adolescent (5 weeks) MMTV-Wnt1 mice were exposed to alcohol with a liquid diet containing 6.7% ethanol. Some mice received intraperitoneal (IP) injection of PFD (100 mg/kg) every other day. After that, the effects of alcohol and PFD on mammary tumorigenesis and metastasis were examined. Results Alcohol promoted the progression of mammary tumors in adolescent MMTV-Wnt1 mice. Treatment of PFD blocked tumor growth and alcohol-promoted metastasis. It also significantly inhibited alcohol-induced tumorsphere formation and cancer stem cell (CSC) population. Conclusion PFD inhibited mammary tumor growth and alcohol-promoted metastasis. Since PFD is an FDA-approved drug, the current findings may be helpful to re-purpose its application in treating aggressive breast cancer and alcohol-promoted mammary tumor progression.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Danlei Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, IA, United States
| |
Collapse
|
2
|
Sengupta P, Dutta A, Suseela YV, Roychowdhury T, Banerjee N, Dutta A, Halder S, Jana K, Mukherjee G, Chattopadhyay S, Govindaraju T, Chatterjee S. G-quadruplex structural dynamics at MAPK12 promoter dictates transcriptional switch to determine stemness in breast cancer. Cell Mol Life Sci 2024; 81:33. [PMID: 38214819 PMCID: PMC11073236 DOI: 10.1007/s00018-023-05046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 01/13/2024]
Abstract
P38γ (MAPK12) is predominantly expressed in triple negative breast cancer cells (TNBC) and induces stem cell (CSC) expansion resulting in decreased survival of the patients due to metastasis. Abundance of G-rich sequences at MAPK12 promoter implied the functional probability to reverse tumorigenesis, though the formation of G-Quadruplex (G4) structures at MAPK12 promoter is elusive. Here, we identified two evolutionary consensus adjacent G4 motifs upstream of the MAPK12 promoter, forming parallel G4 structures. They exist in an equilibria between G4 and duplex, regulated by the binding turnover of Sp1 and Nucleolin that bind to these G4 motifs and regulate MAPK12 transcriptional homeostasis. To underscore the gene-regulatory functions of G4 motifs, we employed CRISPR-Cas9 system to eliminate G4s from TNBC cells and synthesized a naphthalene diimide (NDI) derivative (TGS24) which shows high-affinity binding to MAPK12-G4 and inhibits MAPK12 transcription. Deletion of G4 motifs and NDI compound interfere with the recruitment of the transcription factors, inhibiting MAPK12 expression in cancer cells. The molecular basis of NDI-induced G4 transcriptional regulation was analysed by RNA-seq analyses, which revealed that MAPK12-G4 inhibits oncogenic RAS transformation and trans-activation of NANOG. MAPK12-G4 also reduces CD44High/CD24Low population in TNBC cells and downregulates internal stem cell markers, arresting the stemness properties of cancer cells.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Anindya Dutta
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Y V Suseela
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka, 560064, India
| | - Tanaya Roychowdhury
- Department of Cancer Biology and Inflammatory Disorder, IICB, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Ananya Dutta
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Satyajit Halder
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Kuladip Jana
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Gopeswar Mukherjee
- Barasat Cancer Research and Welfare Centre, Barasat, Kolkata, West Bengal, India
| | - Samit Chattopadhyay
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka, 560064, India.
| | - Subhrangsu Chatterjee
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
3
|
Qi XM, Chen G. p38γ MAPK Inflammatory and Metabolic Signaling in Physiology and Disease. Cells 2023; 12:1674. [PMID: 37443708 PMCID: PMC10341180 DOI: 10.3390/cells12131674] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
p38γ MAPK (also called ERK6 or SAPK3) is a family member of stress-activated MAPKs and has common and specific roles as compared to other p38 proteins in signal transduction. Recent studies showed that, in addition to inflammation, p38γ metabolic signaling is involved in physiological exercise and in pathogenesis of cancer, diabetes, and Alzheimer's disease, indicating its potential as a therapeutic target. p38γphosphorylates at least 19 substrates through which p38γ activity is further modified to regulate life-important cellular processes such as proliferation, differentiation, cell death, and transformation, thereby impacting biological outcomes of p38γ-driven pathogenesis. P38γ signaling is characterized by its unique reciprocal regulation with its specific phosphatase PTPH1 and by its direct binding to promoter DNAs, leading to transcriptional activation of targets including cancer-like stem cell drivers. This paper will review recent findings about p38γ inflammation and metabolic signaling in physiology and diseases. Moreover, we will discuss the progress in the development of p38γ-specific pharmacological inhibitors for therapeutic intervention in disease prevention and treatment by targeting the p38γ signaling network.
Collapse
Affiliation(s)
- Xiao-Mei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Research Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| |
Collapse
|
4
|
Cheng Z, Bhave M, Hwang SS, Rahman T, Chee XW. Identification of Potential p38γ Inhibitors via In Silico Screening, In Vitro Bioassay and Molecular Dynamics Simulation Studies. Int J Mol Sci 2023; 24:ijms24087360. [PMID: 37108523 PMCID: PMC10139033 DOI: 10.3390/ijms24087360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Protein kinase p38γ is an attractive target against cancer because it plays a pivotal role in cancer cell proliferation by phosphorylating the retinoblastoma tumour suppressor protein. Therefore, inhibition of p38γ with active small molecules represents an attractive alternative for developing anti-cancer drugs. In this work, we present a rigorous and systematic virtual screening framework to identify potential p38γ inhibitors against cancer. We combined the use of machine learning-based quantitative structure activity relationship modelling with conventional computer-aided drug discovery techniques, namely molecular docking and ligand-based methods, to identify potential p38γ inhibitors. The hit compounds were filtered using negative design techniques and then assessed for their binding stability with p38γ through molecular dynamics simulations. To this end, we identified a promising compound that inhibits p38γ activity at nanomolar concentrations and hepatocellular carcinoma cell growth in vitro in the low micromolar range. This hit compound could serve as a potential scaffold for further development of a potent p38γ inhibitor against cancer.
Collapse
Affiliation(s)
- Zixuan Cheng
- School of Engineering and Science, Swinburne University of Technology Sarawak, Kuching 93350, Malaysia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Siaw San Hwang
- School of Engineering and Science, Swinburne University of Technology Sarawak, Kuching 93350, Malaysia
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Xavier Wezen Chee
- School of Engineering and Science, Swinburne University of Technology Sarawak, Kuching 93350, Malaysia
| |
Collapse
|
5
|
Yang J, Niu H, Pang S, Liu M, Chen F, Li Z, He L, Mo J, Yi H, Xiao J, Huang Y. MARK3 kinase: Regulation and physiologic roles. Cell Signal 2023; 103:110578. [PMID: 36581219 DOI: 10.1016/j.cellsig.2022.110578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Microtubule affinity-regulating kinase 3 (MARK3), a member of the MARK family, regulates several essential pathways, including the cell cycle, ciliated cell differentiation, and osteoclast differentiation. It is important to understand the control of their activities as MARK3 contains an N-terminal serine/threonine kinase domain, ubiquitin-associated domain, and C-terminal kinase-associated domain, which perform multiple regulatory functions. These functions include post-translational modification (e.g., phosphorylation) and interaction with scaffolding and other proteins. Differences in the amino acid sequence and domain position result in different three-dimensional protein structures and affect the function of MARK3, which distinguish it from the other MARK family members. Recent data indicate a potential role of MARK3 in several pathological conditions, including congenital blepharophimosis syndrome, osteoporosis, and tumorigenesis. The present review focuses on the physiological and pathological role of MARK3, its regulation, and recent developments in the small molecule inhibitors of the MARK3 signalling cascade.
Collapse
Affiliation(s)
- Jingyu Yang
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - Heng Niu
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - ShiGui Pang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Mignlong Liu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Feng Chen
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Zhaoxin Li
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Lifei He
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Jianmei Mo
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Huijun Yi
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Juanjuan Xiao
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Yingze Huang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China.
| |
Collapse
|
6
|
Zarczynska I, Gorska-Arcisz M, Cortez AJ, Kujawa KA, Wilk AM, Skladanowski AC, Stanczak A, Skupinska M, Wieczorek M, Lisowska KM, Sadej R, Kitowska K. p38 Mediates Resistance to FGFR Inhibition in Non-Small Cell Lung Cancer. Cells 2021; 10:cells10123363. [PMID: 34943871 PMCID: PMC8699485 DOI: 10.3390/cells10123363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022] Open
Abstract
FGFR signalling is one of the most prominent pathways involved in cell growth and development as well as cancer progression. FGFR1 amplification occurs in approximately 20% of all squamous cell lung carcinomas (SCC), a predominant subtype of non-small cell lung carcinoma (NSCLC), indicating FGFR as a potential target for the new anti-cancer treatment. However, acquired resistance to this type of therapies remains a serious clinical challenge. Here, we investigated the NSCLC cell lines response and potential mechanism of acquired resistance to novel selective FGFR inhibitor CPL304110. We found that despite significant genomic differences between CPL304110-sensitive cell lines, their resistant variants were characterised by upregulated p38 expression/phosphorylation, as well as enhanced expression of genes involved in MAPK signalling. We revealed that p38 inhibition restored sensitivity to CPL304110 in these cells. Moreover, the overexpression of this kinase in parental cells led to impaired response to FGFR inhibition, thus confirming that p38 MAPK is a driver of resistance to a novel FGFR inhibitor. Taken together, our results provide an insight into the potential direction for NSCLC targeted therapy.
Collapse
Affiliation(s)
- Izabela Zarczynska
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
| | - Monika Gorska-Arcisz
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
| | - Alexander Jorge Cortez
- Department of Biostatistics and Bioinformatics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (A.J.C.); (A.M.W.)
| | - Katarzyna Aleksandra Kujawa
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (K.A.K.); (K.M.L.)
| | - Agata Małgorzata Wilk
- Department of Biostatistics and Bioinformatics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (A.J.C.); (A.M.W.)
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Andrzej Cezary Skladanowski
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
| | - Aleksandra Stanczak
- Clinical Development Department, Celon Pharma S.A., Marymoncka 15, 05-152 Kazuń Nowy, Poland; (A.S.); (M.W.)
| | - Monika Skupinska
- Preclinical Development Departament, Celon Pharma S.A., Marymoncka 15, 05-152 Kazuń Nowy, Poland;
| | - Maciej Wieczorek
- Clinical Development Department, Celon Pharma S.A., Marymoncka 15, 05-152 Kazuń Nowy, Poland; (A.S.); (M.W.)
| | - Katarzyna Marta Lisowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (K.A.K.); (K.M.L.)
| | - Rafal Sadej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
- Correspondence: (R.S.); (K.K.)
| | - Kamila Kitowska
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
- Correspondence: (R.S.); (K.K.)
| |
Collapse
|
7
|
Jin J, Wahlang B, Shi H, Hardesty JE, Falkner KC, Head KZ, Srivastava S, Merchant ML, Rai SN, Cave MC, Prough RA. Dioxin-like and non-dioxin-like PCBs differentially regulate the hepatic proteome and modify diet-induced nonalcoholic fatty liver disease severity. Med Chem Res 2020; 29:1247-1263. [PMID: 32831531 PMCID: PMC7440142 DOI: 10.1007/s00044-020-02581-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with metabolic disruption and non-alcoholic fatty liver disease (NAFLD). Based on their ability to activate the aryl hydrocarbon receptor (AhR), PCBs are subdivided into two classes: dioxin-like (DL) and non-dioxin-like (NDL) PCBs. Previously, we demonstrated that NDL PCBs compromised the liver to promote more severe diet-induced NAFLD. Here, the hepatic effects and potential mechanisms (by untargeted liver proteomics) of DL PCBs, NDL PCBs or co-exposure to both in diet-induced NAFLD are investigated. Male C57Bl/6 mice were fed a 42% fat diet and exposed to vehicle control; Aroclor1260 (20 mg/kg, NDL PCB mixture); PCB126 (20 μg/kg, DL PCB congener); or a mixture of Aroclor1260 (20 mg/kg)+PCB126 (20 μg/kg) for 12 weeks. Each exposure was associated with a distinct hepatic proteome. Phenotypic and proteomic analyses revealed increased hepatic inflammation and phosphoprotein signaling disruption by Aroclor1260. PCB126 decreased hepatic inflammation and fibrosis at the molecular level; while altering cytoskeletal remodeling, metal homeostasis, and intermediary/xenobiotic metabolism. PCB126 attenuated Aroclor1260-induced hepatic inflammation but increased hepatic free fatty acids in the co-exposure group. Aroclor1260+PCB126 exposure was strongly associated with multiple epigenetic processes, and these could potentially explain the observed non-additive effects of the exposures on the hepatic proteome. Taken together, the results demonstrated that PCB exposures differentially regulated the hepatic proteome and the histologic severity of diet-induced NAFLD. Future research is warranted to determine the AhR-dependence of the observed effects including metal homeostasis and the epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Jian Jin
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Banrida Wahlang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- UofL Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
| | - Hongxue Shi
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Josiah E. Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - K. Cameron Falkner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Kimberly Z. Head
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Sudhir Srivastava
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, 40202, USA
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Michael L. Merchant
- UofL Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
- Division of Nephrology and Hypertension, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Shesh N. Rai
- UofL Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Matthew C. Cave
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- UofL Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, KY, 40206, USA
| | - Russell A. Prough
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
8
|
Boyle KA, Van Wickle J, Hill RB, Marchese A, Kalyanaraman B, Dwinell MB. Mitochondria-targeted drugs stimulate mitophagy and abrogate colon cancer cell proliferation. J Biol Chem 2018; 293:14891-14904. [PMID: 30087121 DOI: 10.1074/jbc.ra117.001469] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 07/20/2018] [Indexed: 12/13/2022] Open
Abstract
Mutations in the KRAS proto-oncogene are present in 50% of all colorectal cancers and are increasingly associated with chemotherapeutic resistance to frontline biologic drugs. Accumulating evidence indicates key roles for overactive KRAS mutations in the metabolic reprogramming from oxidative phosphorylation to aerobic glycolysis in cancer cells. Here, we sought to exploit the more negative membrane potential of cancer cell mitochondria as an untapped avenue for interfering with energy metabolism in KRAS variant-containing and KRAS WT colorectal cancer cells. Mitochondrial function, intracellular ATP levels, cellular uptake, energy sensor signaling, and functional effects on cancer cell proliferation were assayed. 3-Carboxyl proxyl nitroxide (Mito-CP) and Mito-Metformin, two mitochondria-targeted compounds, depleted intracellular ATP levels and persistently inhibited ATP-linked oxygen consumption in both KRAS WT and KRAS variant-containing colon cancer cells and had only limited effects on nontransformed intestinal epithelial cells. These anti-proliferative effects reflected the activation of AMP-activated protein kinase (AMPK) and the phosphorylation-mediated suppression of the mTOR target ribosomal protein S6 kinase B1 (RPS6KB1 or p70S6K). Moreover, Mito-CP and Mito-Metformin released Unc-51-like autophagy-activating kinase 1 (ULK1) from mTOR-mediated inhibition, affected mitochondrial morphology, and decreased mitochondrial membrane potential, all indicators of mitophagy. Pharmacological inhibition of the AMPK signaling cascade mitigated the anti-proliferative effects of Mito-CP and Mito-Metformin. This is the first demonstration that drugs selectively targeting mitochondria induce mitophagy in cancer cells. Targeting bioenergetic metabolism with mitochondria-targeted drugs to stimulate mitophagy provides an attractive approach for therapeutic intervention in KRAS WT and overactive mutant-expressing colon cancer.
Collapse
Affiliation(s)
- Kathleen A Boyle
- From the Department of Microbiology & Immunology.,MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | | | - R Blake Hill
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.,Department of Biochemistry
| | - Adriano Marchese
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.,Department of Biochemistry
| | - Balaraman Kalyanaraman
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.,Department of Biophysics
| | - Michael B Dwinell
- From the Department of Microbiology & Immunology, .,MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.,Department of Surgery, and
| |
Collapse
|
9
|
Targeting an oncogenic kinase/phosphatase signaling network for cancer therapy. Acta Pharm Sin B 2018; 8:511-517. [PMID: 30109176 PMCID: PMC6089844 DOI: 10.1016/j.apsb.2018.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 01/10/2023] Open
Abstract
Protein kinases and phosphatases signal by phosphorylation and dephosphorylation to precisely control the activities of their individual and common substrates for a coordinated cellular outcome. In many situations, a kinase/phosphatase complex signals dynamically in time and space through their reciprocal regulations and their cooperative actions on a substrate. This complex may be essential for malignant transformation and progression and can therefore be considered as a target for therapeutic intervention. p38γ is a unique MAPK family member that contains a PDZ motif at its C-terminus and interacts with a PDZ domain-containing protein tyrosine phosphatase PTPH1. This PDZ-coupled binding is required for both PTPH1 dephosphorylation and inactivation of p38γ and for p38γ phosphorylation and activation of PTPH1. Moreover, the p38γ/PTPH1 complex can further regulate their substrates phosphorylation and dephosphorylation, which impacts Ras transformation, malignant growth and progression, and therapeutic response. This review will use the p38γ/PTPH1 signaling network as an example to discuss the potential of targeting the kinase/phosphatase signaling complex for development of novel targeted cancer therapy.
Collapse
|
10
|
MiRNA signature predicts the response of patients with advanced lung adenocarcinoma to platinum-based treatment. J Cancer Res Clin Oncol 2017; 144:431-438. [PMID: 29288364 DOI: 10.1007/s00432-017-2562-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Accumulating literature proved that miRNAs can regulate the sensitivity of platinum and act as a promising candidate to predict the response of patients with lung adenocarcinoma to chemotherapy. However, most studies on miRNAs were restricted to in vitro experiments. This study aimed to evaluate whether miRNAs alone or in combination (miRNA signature) can act as predictive biomarkers of platinum-based chemotherapy in patients with lung adenocarcinoma. METHODS Eight miRNAs that most probably predict the efficacy of platinum were screened in 111 tumor tissues of lung adenocarcinoma. Univariate and multivariate Cox analyses, Kaplan-Meier survival curve analysis, Chi-square test, and univariate and multivariate logistic regression analyses were employed to determine whether miRNA expression is associated with the response of patients to platinum-based chemotherapy. The maximum significant odds ratio value was acquired by multiple cycles of multivariate logistic regression analysis. The cut-off points of miRNAs were obtained. A miRNA chemo-sensibility index (CI) formula was established, and its prediction performance was confirmed in another independent set (n = 31). RESULTS Underexpression of three miRNAs (miRNA-21, miRNA-125b, and miRNA-224) was independently associated with the chemotherapy sensitivity of patients with lung adenocarcinoma. The miRNA CI formula containing these three miRNAs was calculated as (1.364 × miR-21) + (1.323 × miR-125b) + (1.131 × miR-224). A high CI was related to platinum-based chemotherapy resistance, and its prediction performance was confirmed in the testing set. The MAPK, PI3K-Akt, Ras, and cGMP-PKG signaling pathways were considered to be most probably correlated with platinum resistance. CONCLUSION Our miRNA CI formula can act as an independent predictor to predict the response of patients with lung adenocarcinoma to platinum-based chemotherapy.
Collapse
|