1
|
Stein NV, Eder M, Brameyer S, Schwenkert S, Jung H. The ABC transporter family efflux pump PvdRT-OpmQ of Pseudomonas putida KT2440: purification and initial characterization. FEBS Lett 2023; 597:1403-1414. [PMID: 36807028 DOI: 10.1002/1873-3468.14601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/20/2023]
Abstract
Tripartite efflux systems of the ABC-type family transport a variety of substrates and contribute to the antimicrobial resistance of Gram-negative bacteria. PvdRT-OpmQ, a member of this family, is thought to be involved in the secretion of the newly synthesized and recycled siderophore pyoverdine in Pseudomonas species. Here, we purified and characterized the inner membrane component PvdT and the periplasmic adapter protein PvdR of the plant growth-promoting soil bacterium Pseudomonas putida KT2440. We show that PvdT possesses an ATPase activity that is stimulated by the addition of PvdR. In addition, we provide the first biochemical evidence for direct interactions between pyoverdine and PvdRT.
Collapse
Affiliation(s)
- Nicola Victoria Stein
- Microbiology, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Michelle Eder
- Microbiology, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Sophie Brameyer
- Microbiology, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany.,Service Unit Bioanalytics, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Serena Schwenkert
- Service Unit Mass Spectrometry of Biomolecules, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Heinrich Jung
- Microbiology, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| |
Collapse
|
2
|
Saha I, Chakraborty S, Agarwal S, Mukherjee P, Ghosh B, Dasgupta J. Mechanistic insights of ABC importer HutCD involved in heme internalization by Vibrio cholerae. Sci Rep 2022; 12:7152. [PMID: 35504999 PMCID: PMC9065009 DOI: 10.1038/s41598-022-11213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
Heme internalization by pathogenic bacteria inside a human host to accomplish the requirement of iron for important cellular processes is of paramount importance. Despite this, the mechanism of heme import by the ATP-binding-cassette (ABC) transporter HutCD in Vibrio cholerae remains unexplored. We have performed biochemical studies on ATPase HutD and its mutants, along with molecular modelling, docking and unbiased all-atom MD simulations on lipid-solvated models of permease-ATPase complex HutCD. The results demonstrated mechanisms of ATP binding/hydrolysis and trapped transient and global conformational changes in HutCD, necessary for heme internalization. ATPase HutD forms a dimer, independent of the permease HutC. Each HutD monomer canonically binds ATP in a 1:1 stoichiometry. MD simulations demonstrated that a rotational motion of HutC dimer occurs synchronously with the inter-dimeric D-loop interactions of HutDs. F151 of TM4–TM5 loop of HutC, packs with ATP and Y15 of HutD, initiating ‘cytoplasmic gate opening’ which mimics an ‘outward-facing’ to ‘inward-facing’ conformational switching upon ATP hydrolysis. The simulation on ‘inward-facing’ HutCD culminates to an ‘occluded’ state. The simulation on heme-docked HutCD indicated that the event of heme release occurs in ATP-free ‘inward-facing’ state. Gradual conformational changes of the TM5 helices of HutC towards the ‘occluded’ state facilitate ejection of heme.
Collapse
Affiliation(s)
- Indrila Saha
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Shrestha Chakraborty
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Shubhangi Agarwal
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, India.,Weill Cornell Medicine, Department of Anesthesiology, 1300 York Ave, New York, NY, 10065, USA
| | - Peeali Mukherjee
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Biplab Ghosh
- Macromolecular Crystallography Section, Beamline Development & Application Section, Bhabha Atomic Research Center, Trombay, Mumbai, 400085, India.
| | - Jhimli Dasgupta
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, India.
| |
Collapse
|
3
|
Ran X, Zhu Z, Long H, Tian Q, You L, Wu X, Liu Q, Huang S, Li S, Niu X, Wang J. Manganese Stress Adaptation Mechanisms of Bacillus safensis Strain ST7 From Mine Soil. Front Microbiol 2021; 12:758889. [PMID: 34899642 PMCID: PMC8656422 DOI: 10.3389/fmicb.2021.758889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/21/2021] [Indexed: 11/23/2022] Open
Abstract
The mechanism of bacterial adaption to manganese-polluted environments was explored using 50 manganese-tolerant strains of bacteria isolated from soil of the largest manganese mine in China. Efficiency of manganese removal by the isolated strains was investigated using atomic absorption spectrophotometry. Bacillus safensis strain ST7 was the most effective manganese-oxidizing bacteria among the tested isolates, achieving up to 82% removal at a Mn(II) concentration of 2,200 mg/L. Bacteria-mediated manganese oxide precipitates and high motility were observed, and the growth of strain ST7 was inhibited while its biofilm formation was promoted by the presence of Mn(II). In addition, strain ST7 could grow in the presence of high concentrations of Al(III), Cr(VI), and Fe(III). Genome-wide analysis of the gene expression profile of strain ST7 using the RNA-seq method revealed that 2,580 genes were differently expressed under Mn(II) exposure, and there were more downregulated genes (n = 2,021) than upregulated genes (n = 559) induced by Mn stress. KAAS analysis indicated that these differently expressed genes were mainly enriched in material metabolisms, cellular processes, organism systems, and genetic and environmental information processing pathways. A total of twenty-six genes from the transcriptome of strain ST7 were involved in lignocellulosic degradation. Furthermore, after 15 genes were knocked out by homologous recombination technology, it was observed that the transporters, multicopper oxidase, and proteins involved in sporulation and flagellogenesis contributed to the removal of Mn(II) in strain ST7. In summary, B. safensis ST7 adapted to Mn exposure by changing its metabolism, upregulating cation transporters, inhibiting sporulation and flagellogenesis, and activating an alternative stress-related sigB pathway. This bacterial strain could potentially be used to restore soil polluted by multiple heavy metals and is a candidate to support the consolidated bioprocessing community.
Collapse
Affiliation(s)
- Xueqin Ran
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Zhongmei Zhu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Hong Long
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Qun Tian
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Longjiang You
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Xingdiao Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Qin Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Shihui Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Sheng Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Xi Niu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Jiafu Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Zhang Y, Edmonds KA, Raines DJ, Murphy BA, Wu H, Guo C, Nolan EM, VanNieuwenhze MS, Duhme-Klair AK, Giedroc DP. The Pneumococcal Iron Uptake Protein A (PiuA) Specifically Recognizes Tetradentate Fe IIIbis- and Mono-Catechol Complexes. J Mol Biol 2020; 432:5390-5410. [PMID: 32795535 DOI: 10.1016/j.jmb.2020.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Streptococcus pneumoniae (Spn) is an important Gram-positive human pathogen that causes millions of infections worldwide with an increasing occurrence of antibiotic resistance. Fe acquisition is a crucial virulence determinant in Spn; further, Spn relies on exogenous FeIII-siderophore scavenging to meet nutritional Fe needs. Recent studies suggest that the human catecholamine stress hormone, norepinephrine (NE), facilitates Fe acquisition in Spn under conditions of transferrin-mediated Fe starvation. Here we show that the solute binding lipoprotein PiuA from the piu Fe acquisition ABC transporter PiuBCDA, previously described as an Fe-hemin binding protein, binds tetradentate catechol FeIII complexes, including NE and the hydrolysis products of enterobactin. Two protein-derived ligands (H238, Y300) create a coordinately saturated FeIII complex, which parallel recent studies in the Gram-negative intestinal pathogen Campylobacter jejuni. Our in vitro studies using NMR spectroscopy and 54Fe LC-ICP-MS confirm the FeIII can move from transferrin to apo-PiuA in an NE-dependent manner. Structural analysis of PiuA FeIII-bis-catechol and GaIII-bis-catechol and GaIII-(NE)2 complexes by NMR spectroscopy reveals only localized structural perturbations in PiuA upon ligand binding, largely consistent with recent descriptions of other solute binding proteins of type II ABC transporters. We speculate that tetradentate FeIII complexes formed by mono- and bis-catechol species are important Fe sources in Gram-positive human pathogens, since PiuA functions in the same way as SstD from Staphylococcus aureus.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Daniel J Raines
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Brennan A Murphy
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Hongwei Wu
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Chuchu Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Anne-K Duhme-Klair
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
5
|
Acar B, Rose J, Aykac Fas B, Ben-Tal N, Lewinson O, Haliloglu T. Distinct Allosteric Networks Underlie Mechanistic Speciation of ABC Transporters. Structure 2020; 28:651-663.e5. [DOI: 10.1016/j.str.2020.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/20/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023]
|
6
|
Bartoschik T, Gupta A, Kern B, Hitchcock A, Adams NBP, Tschammer N. Quantifying the Interaction of Phosphite with ABC Transporters: MicroScale Thermophoresis and a Novel His-Tag Labeling Approach. Methods Mol Biol 2020; 2168:51-62. [PMID: 33582986 DOI: 10.1007/978-1-0716-0724-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The combination of MicroScale Thermophoresis (MST) and near-native site-specific His-tag labeling enables simple, robust, and reliable determination of the binding affinity between proteins and ligands. To demonstrate its applicability for periplasmic proteins, we provide a detailed protocol for determination of the binding affinity of phosphite to three ABC transporter periplasmic-binding proteins from environmental microorganisms. ABC transporters are central to many important biomedical phenomena, including resistance of cancers and pathogenic microbes to drugs. The protocol described here can be used to quantify protein-ligand and protein-protein interactions for other soluble, membrane-associated and integral membrane proteins.
Collapse
Affiliation(s)
| | - Amit Gupta
- NanoTemper Technologies GmbH, Munich, Germany
| | - Beate Kern
- NanoTemper Technologies GmbH, Munich, Germany
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Nathan B P Adams
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Nuska Tschammer
- CRELUX GmbH, a WuXi AppTec company, Planegg-Martinsried, Germany.
| |
Collapse
|
7
|
Bacterial ABC transporters of iron containing compounds. Res Microbiol 2019; 170:345-357. [DOI: 10.1016/j.resmic.2019.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 11/20/2022]
|
8
|
Tamura K, Sugimoto H, Shiro Y, Sugita Y. Chemo-Mechanical Coupling in the Transport Cycle of a Heme ABC Transporter. J Phys Chem B 2019; 123:7270-7281. [PMID: 31362510 DOI: 10.1021/acs.jpcb.9b04356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The heme importer from pathogenic bacteria is a member of the ATP-binding cassette (ABC) transporter family, which uses the energy of ATP-binding and hydrolysis for extensive conformational changes. Previous studies have indicated that conformational changes after heme translocation are triggered by ATP-binding to nucleotide binding domains (NBDs) and then, in turn, induce conformational transitions of the transmembrane domains (TMDs). In this study, we applied a template-based iterative all-atom molecular dynamics (MD) simulation to predict the ATP-bound outward-facing conformation of the Burkholderia cenocepacia heme importer BhuUV-T. The resulting model showed a stable conformation of the TMD with the cytoplasmic gate in the closed state and the periplasmic gate in the open state. Furthermore, targeted MD simulation predicted the intermediate structure of an occluded form (Occ) with bound ATP, in which both ends of the heme translocation channel are closed. The MD simulation of the predicted Occ revealed that Ser147 on the ABC signature motifs (LSGG[Q/E]) of NBDs occasionally flips and loses the active conformation required for ATP-hydrolysis. The flipping motion was found to be coupled to the inter-NBD distance. Our results highlight the functional significance of the signature motif of ABC transporters in regulation of ATPase and chemo-mechanical coupling mechanism.
Collapse
Affiliation(s)
- Koichi Tamura
- Computational Biophysics Research Team , RIKEN Center for Computational Science , 6-7-1 minatojima-Minamimachi, Chuo-ku , Kobe , Hyogo 650-0047 , Japan
| | - Hiroshi Sugimoto
- Graduate School of Life Science , University of Hyogo , 3-2-1 Kouto, Kamigori , Ako , Hyogo 678-1297 , Japan.,Synchrotron Radiation Life Science Instrumentation Team , RIKEN SPring-8 Center , 1-1-1 Kouto , Sayo , Hyogo 679-5148 , Japan
| | - Yoshitsugu Shiro
- Graduate School of Life Science , University of Hyogo , 3-2-1 Kouto, Kamigori , Ako , Hyogo 678-1297 , Japan
| | - Yuji Sugita
- Computational Biophysics Research Team , RIKEN Center for Computational Science , 6-7-1 minatojima-Minamimachi, Chuo-ku , Kobe , Hyogo 650-0047 , Japan.,Theoretical Molecular Science Laboratory , RIKEN Cluster for Pioneering Research , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan.,Laboratory for Biomolecular Function Simulation , RIKEN Center for Biosystems Dynamics Research , 6-7-1 minatojima-Minamimachi, Chuo-ku , Kobe , Hyogo 650-0047 , Japan
| |
Collapse
|
9
|
Fiorentino F, Bolla JR, Mehmood S, Robinson CV. The Different Effects of Substrates and Nucleotides on the Complex Formation of ABC Transporters. Structure 2019; 27:651-659.e3. [PMID: 30799075 PMCID: PMC6453779 DOI: 10.1016/j.str.2019.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/17/2018] [Accepted: 01/18/2019] [Indexed: 11/27/2022]
Abstract
The molybdate importer (ModBC-A of Archaeoglobus fulgidus) and the vitamin B12 importer (BtuCD-F of Escherichia coli) are members of the type I and type II ABC importer families. Here we study the influence of substrate and nucleotide binding on complex formation and stability. Using native mass spectrometry we show that the interaction between the periplasmic substrate-binding protein (SBP) ModA and the transporter ModBC is dependent upon binding of molybdate. By contrast, vitamin B12 disrupts interactions between the transporter BtuCD and the SBP BtuF. Moreover, while ATP binds cooperatively to BtuCD-F, and acts synergistically with vitamin B12 to destabilize the BtuCD-F complex, no effect is observed for ATP binding on the stability of ModBC-A. These observations not only highlight the ability of mass spectrometry to capture these importer-SBP complexes but allow us to add molecular detail to proposed transport mechanisms.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Jani Reddy Bolla
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Shahid Mehmood
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| |
Collapse
|
10
|
Richard KL, Kelley BR, Johnson JG. Heme Uptake and Utilization by Gram-Negative Bacterial Pathogens. Front Cell Infect Microbiol 2019; 9:81. [PMID: 30984629 PMCID: PMC6449446 DOI: 10.3389/fcimb.2019.00081] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is a transition metal utilized by nearly all forms of life for essential cellular processes, such as DNA synthesis and cellular respiration. During infection by bacterial pathogens, the host utilizes various strategies to sequester iron in a process termed, nutritional immunity. To circumvent these defenses, Gram-negative pathogens have evolved numerous mechanisms to obtain iron from heme. In this review we outline the systems that exist in several Gram-negative pathogens that are associated with heme transport and utilization, beginning with hemolysis and concluding with heme degradation. In addition, Gram-negative pathogens must also closely regulate the intracellular concentrations of iron and heme, since high levels of iron can lead to the generation of toxic reactive oxygen species. As such, we also provide several examples of regulatory pathways that control heme utilization, showing that co-regulation with other cellular processes is complex and often not completely understood.
Collapse
Affiliation(s)
- Kaylie L Richard
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Brittni R Kelley
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Jeremiah G Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
11
|
Evidence from Mutational Analysis for a Single Transmembrane Substrate Binding Site in the Histidine ATP-Binding Cassette Transporter of Salmonella enterica Serovar Typhimurium. J Bacteriol 2018; 201:JB.00521-18. [PMID: 30348830 DOI: 10.1128/jb.00521-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/14/2018] [Indexed: 11/20/2022] Open
Abstract
The histidine ATP-binding cassette (ABC) transporter of Salmonella enterica serovar Typhimurium is among the best-studied type I ABC import systems. The transporter consists of two transmembrane subunits, HisQ and HisM, and a homodimer of the nucleotide-binding subunit, HisP. Substrates are delivered by two periplasmic solute binding proteins, HisJ and LAO, with preferences for histidine and for lysine, arginine, and ornithine, respectively. A homology model was built by using the arginine-bound crystal structure of the closely related Art(QN)2 transporter of Thermoanaerobacter tengcongensis as the template. In the homodimeric Art(QN)2, one substrate molecule is bound to each of the ArtQ subunits, whereas the structural model and sequence alignments predict only one substrate molecule in contact with HisM. To address the question whether one or two binding sites exist in heterodimeric HisQM, we have studied the functional consequences of mutations by monitoring (i) the complementation of growth on d-histidine of auxotrophic tester strains, (ii) the growth of tester strains on arginine as a nitrogen source, and (iii) ATPase activity of purified variants in a lipid environment. Our results demonstrate that two negatively charged residues, namely, HisM-E166 and HisQ-D61, are indispensable for function. Furthermore, the complete reconstruction of an ArtQ-like binding site in HisQ resulted in an inactive transporter. Likewise, switching the positions of both negatively charged residues between HisQ and HisM caused transport-deficient phenotypes. Thus, we propose that one substrate molecule is primarily liganded by residues of HisM while HisQ-D61 forms a crucial salt bridge with the α-amino group of the substrate.IMPORTANCE Canonical ATP-binding cassette (ABC) importers are major players in the translocation of numerous nutrients, vitamins, and growth factors to the cytoplasm of prokaryotes. Moreover, some ABC importers have been identified as virulence factors in bacterial pathogenesis. Thus, a full understanding of their mode of action is considered a prerequisite, among others, for the development of novel antibacterial drugs. However, mainly owing to the lack of structural information, the knowledge of the chemical nature and number of substrate binding sites formed by the transmembrane subunits of ABC importers is scarce. Here, we provide evidence from mutational analyses that, in contrast to homologous homodimeric systems, the heterodimeric histidine transporter of Salmonella enterica serovar Typhimurium is liganding only one substrate molecule between its transmembrane subunits, HisM and HisQ.
Collapse
|
12
|
Yang M, Livnat Levanon N, Acar B, Aykac Fas B, Masrati G, Rose J, Ben-Tal N, Haliloglu T, Zhao Y, Lewinson O. Single-molecule probing of the conformational homogeneity of the ABC transporter BtuCD. Nat Chem Biol 2018; 14:715-722. [PMID: 29915236 DOI: 10.1038/s41589-018-0088-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023]
Abstract
ATP-binding cassette (ABC) transporters use the energy of ATP hydrolysis to move molecules through cellular membranes. They are directly linked to human diseases, cancer multidrug resistance, and bacterial virulence. Very little is known of the conformational dynamics of ABC transporters, especially at the single-molecule level. Here, we combine single-molecule spectroscopy and a novel molecular simulation approach to investigate the conformational dynamics of the ABC transporter BtuCD. We observe a single dominant population of molecules in each step of the transport cycle and tight coupling between conformational transitions and ligand binding. We uncover transient conformational changes that allow substrate to enter the transporter. This is followed by a 'squeezing' motion propagating from the extracellular to the intracellular side of the translocation cavity. This coordinated sequence of events provides a mechanism for the unidirectional transport of vitamin B12 by BtuCD.
Collapse
Affiliation(s)
- Min Yang
- National Laboratory of Macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Nurit Livnat Levanon
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Burçin Acar
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
| | - Burcu Aykac Fas
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
| | - Gal Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jessica Rose
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Turkan Haliloglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey.
| | - Yongfang Zhao
- National Laboratory of Macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Oded Lewinson
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
13
|
One Intact Transmembrane Substrate Binding Site Is Sufficient for the Function of the Homodimeric Type I ATP-Binding Cassette Importer for Positively Charged Amino Acids Art(MP) 2 of Geobacillus stearothermophilus. J Bacteriol 2018; 200:JB.00092-18. [PMID: 29581409 DOI: 10.1128/jb.00092-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/20/2018] [Indexed: 02/04/2023] Open
Abstract
ATP-binding cassette (ABC) transport systems comprise two transmembrane domains/subunits that form a translocation path and two nucleotide-binding domains/subunits that bind and hydrolyze ATP. Prokaryotic canonical ABC import systems require an extracellular substrate-binding protein for function. Knowledge of substrate-binding sites within the transmembrane subunits is scarce. Recent crystal structures of the ABC importer Art(QN)2 for positively charged amino acids of Thermoanerobacter tengcongensis revealed the presence of one substrate molecule in a defined binding pocket in each of the transmembrane subunits, ArtQ (J. Yu, J. Ge, J. Heuveling, E. Schneider, and M. Yang, Proc Natl Acad Sci U S A 112:5243-5248, 2015, https://doi.org/10.1073/pnas.1415037112). This finding raised the question of whether both sites must be loaded with substrate prior to initiation of the transport cycle. To address this matter, we first explored the role of key residues that form the binding pocket in the closely related Art(MP)2 transporter of Geobacillus stearothermophilus, by monitoring consequences of mutations in ArtM on ATPase and transport activity at the level of purified proteins embedded in liposomes. Our results emphasize that two negatively charged residues (E153 and D160) are crucial for wild-type function. Furthermore, the variant Art[M(L67D)P]2 exhibited strongly impaired activities, which is why it was considered for construction of a hybrid complex containing one intact and one impaired substrate-binding site. Activity assays clearly revealed that one intact binding site was sufficient for function. To our knowledge, our study provides the first biochemical evidence on transmembrane substrate-binding sites of an ABC importer.IMPORTANCE Canonical prokaryotic ATP-binding cassette importers mediate the uptake of a large variety of chemicals, including nutrients, osmoprotectants, growth factors, and trace elements. Some also play a role in bacterial pathogenesis, which is why full understanding of their mode of action is of the utmost importance. One of the unsolved problems refers to the chemical nature and number of substrate binding sites formed by the transmembrane subunits. Here, we report that a hybrid amino acid transporter of G. stearothermophilus, encompassing one intact and one impaired transmembrane binding site, is fully competent in transport, suggesting that the binding of one substrate molecule is sufficient to trigger the translocation process.
Collapse
|
14
|
Zhang L, Zhao G, Hu X, Liu J, Li M, Batool K, Chen M, Wang J, Xu J, Huang T, Pan X, Xu L, Yu XQ, Guan X. Cry11Aa Interacts with the ATP-Binding Protein from Culex quinquefasciatus To Improve the Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10884-10890. [PMID: 29215274 DOI: 10.1021/acs.jafc.7b04427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cry11Aa displays high toxicity to the larvae of several mosquito species, including Aedes, Culex, and Anopheles. To study its binding characterization against Culex quinquefasciatus, Cry11Aa was purified and western blot results showed that Cry11Aa could bind successfully to the brush border membrane vesicles. To identify Cry11Aa-binding proteins in C. quinquefasciatus, a biotin-based protein pull-down experiment was performed and seven Cry11Aa-binding proteins were isolated from the midgut of C. quinquefasciatus larvae. Analysis of liquid chromatography-tandem mass spectrometry showed that one of the Cry11Aa-binding proteins is the ATP-binding domain 1 family member B. To investigate its binding property and effect on the toxicity of Cry11Aa, western blot, far-western blot, enzyme-linked immunosorbent assay, and bioassays of Cry11Aa in the presence and absence of the recombinant ATP-binding protein were performed. Our results showed that the ATP-binding protein interacted with Cry11Aa and increased the toxicity of Cry11Aa against C. quinquefasciatus. Our study suggests that midgut proteins other than the toxin receptors may modulate the toxicity of Cry toxins against mosquitoes.
Collapse
Affiliation(s)
- Lingling Zhang
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City , Kansas City, Missouri 64110, United States
| | | | | | | | | | | | | | | | | | | | | | | | - Xiao-Qiang Yu
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City , Kansas City, Missouri 64110, United States
| | | |
Collapse
|