1
|
Nakatsu Y, Matsunaga Y, Nakanishi M, Yamamotoya T, Sano T, Kanematsu T, Asano T. Prolyl isomerase Pin1 in skeletal muscles contributes to systemic energy metabolism and exercise capacity through regulating SERCA activity. Biochem Biophys Res Commun 2024; 715:150001. [PMID: 38676996 DOI: 10.1016/j.bbrc.2024.150001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
The skeletal muscle is a pivotal organ involved in the regulation of both energy metabolism and exercise capacity. There is no doubt that exercise contributes to a healthy life through the consumption of excessive energy or the release of myokines. Skeletal muscles exhibit insulin sensitivity and can rapidly uptake blood glucose. In addition, they can undergo non-shivering thermogenesis through actions of both the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) and small peptide, sarcolipin, resulting in systemic energy metabolism. Accordingly, the maintenance of skeletal muscles is important for both metabolism and exercise. Prolyl isomerase Pin1 is an enzyme that converts the cis-trans form of proline residues and controls substrate function. We have previously reported that Pin1 plays important roles in insulin release, thermogenesis, and lipolysis. However, the roles of Pin1 in skeletal muscles remains unknown. To clarify this issue, we generated skeletal muscle-specific Pin1 knockout mice. Pin1 deficiency had no effects on muscle weights, morphology and ratio of fiber types. However, they showed exacerbated obesity or insulin resistance when fed with a high-fat diet. They also showed a lower ability to exercise than wild type mice did. We also found that Pin1 interacted with SERCA and elevated its activity, resulting in the upregulation of oxygen consumption. Overall, our study reveals that Pin1 in skeletal muscles contributes to both systemic energy metabolism and exercise capacity.
Collapse
Affiliation(s)
- Yusuke Nakatsu
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan.
| | - Yasuka Matsunaga
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan; John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mikako Nakanishi
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Takeshi Yamamotoya
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan; Division of Diabetes and Metabolic Diseases, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi-ku, 173-8610, Tokyo, Japan
| | - Tomomi Sano
- Department of Cell Biology, Aging Science, and Pharmacology, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Kanematsu
- Department of Cell Biology, Aging Science, and Pharmacology, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoichiro Asano
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| |
Collapse
|
2
|
Caligiuri I, Vincenzo C, Asano T, Kumar V, Rizzolio F. The metabolic crosstalk between PIN1 and the tumour microenvironment. Semin Cancer Biol 2023; 91:143-157. [PMID: 36871635 DOI: 10.1016/j.semcancer.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) is a member of a family of peptidyl-prolyl isomerases that specifically recognizes and binds phosphoproteins, catalyzing the rapid cis-trans isomerization of phosphorylated serine/threonine-proline motifs, which leads to changes in the structures and activities of the targeted proteins. Through this complex mechanism, PIN1 regulates many hallmarks of cancer including cell autonomous metabolism and the crosstalk with the cellular microenvironment. Many studies showed that PIN1 is largely overexpressed in cancer turning on a set of oncogenes and abrogating the function of tumor suppressor genes. Among these targets, recent evidence demonstrated that PIN1 is involved in lipid and glucose metabolism and accordingly, in the Warburg effect, a characteristic of tumor cells. As an orchestra master, PIN1 finely tunes the signaling pathways allowing cancer cells to adapt and take advantage from a poorly organized tumor microenvironment. In this review, we highlight the trilogy among PIN1, the tumor microenvironment and the metabolic program rewiring.
Collapse
Affiliation(s)
- Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Canzonieri Vincenzo
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Tomochiro Asano
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, Uttar Pradesh, India.
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30123 Venezia, Italy.
| |
Collapse
|
3
|
Kanamoto M, Takahagi S, Aoyama S, Kido Y, Nakanishi M, Naito M, Kanna M, Yamamotoya T, Tanaka A, Hide M, Asano T, Nakatsu Y. The expression of prolyl isomerase Pin1 is expanded in the skin of patients with atopic dermatitis and facilitates
IL
‐33 expression in
HaCaT
cells. J Dermatol 2022; 50:462-471. [PMID: 37006202 DOI: 10.1111/1346-8138.16633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022]
Abstract
Atopic dermatitis (AD) is attributable to both a genetic predisposition and environmental factors. Among numerous cytokines involved in the pathogenesis of AD, interleukin-33 (IL-33), reportedly escaping exocytotically in response to a scratch, is abundantly expressed in the skin tissues of patients with AD and is postulated to induce inflammatory and autoimmune responses. In this study, we first demonstrated that peptidylprolyl cis/trans isomerase, NIMA-interacting 1 (Pin1), a unique enzyme which isomerizes the proline residues of target proteins, is abundantly expressed in keratinocytes, and that the areas where it is present in the skin tissues of AD patients became expanded due to hyperkeratosis. Thus, we investigated the effects of Pin1 on the regulation of IL-33 expression using the human keratinocyte cell line HaCaT. Interestingly, silencing of the Pin1 gene or treatment with Pin1 inhibitors dramatically reduced IL-33 expressions in HaCaT cells, although Pin1 overexpression did not elevate it. Subsequently, we showed that Pin1 binds to STAT1 and the nuclear factor-kappaB (NF-κB) subunit p65. Silencing the Pin1 gene with small interfering RNAs significantly reduced the phosphorylation of p65, while no marked effects of Pin1 on the STAT1 pathway were detected. Thus, it is likely that Pin1 contributes to increased expression of IL-33 via the NF-κB subunit p65 in HaCaT cells, at least modestly. Nevertheless, further study is necessary to demonstrate the pathogenic roles of Pin1 and IL-33 in AD development.
Collapse
Affiliation(s)
- Mayu Kanamoto
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
- Department of Dermatology, Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Shunsuke Takahagi
- Department of Dermatology, Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Shunya Aoyama
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Yuri Kido
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Mikako Nakanishi
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Miki Naito
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Machi Kanna
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Takeshi Yamamotoya
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Akio Tanaka
- Department of Dermatology, Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Michihiro Hide
- Department of Dermatology, Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
- Department of Dermatology Hiroshima Citizens Hospital Hiroshima Japan
| | - Tomoichiro Asano
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Yusuke Nakatsu
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| |
Collapse
|
4
|
Chen Y, Hou X, Pang J, Yang F, Li A, Lin S, Lin N, Lee TH, Liu H. The role of peptidyl-prolyl isomerase Pin1 in neuronal signaling in epilepsy. Front Mol Neurosci 2022; 15:1006419. [PMID: 36304997 PMCID: PMC9592815 DOI: 10.3389/fnmol.2022.1006419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a common symptom of many neurological disorders and can lead to neuronal damage that plays a major role in seizure-related disability. The peptidyl-prolyl isomerase Pin1 has wide-ranging influences on the occurrence and development of neurological diseases. It has also been suggested that Pin1 acts on epileptic inhibition, and the molecular mechanism has recently been reported. In this review, we primarily focus on research concerning the mechanisms and functions of Pin1 in neurons. In addition, we highlight the significance and potential applications of Pin1 in neuronal diseases, especially epilepsy. We also discuss the molecular mechanisms by which Pin1 controls synapses, ion channels and neuronal signaling pathways to modulate epileptic susceptibility. Since neurotransmitters and some neuronal signaling pathways, such as Notch1 and PI3K/Akt, are vital to the nervous system, the role of Pin1 in epilepsy is discussed in the context of the CaMKII-AMPA receptor axis, PSD-95-NMDA receptor axis, NL2/gephyrin-GABA receptor signaling, and Notch1 and PI3K/Akt pathways. The effect of Pin1 on the progression of epilepsy in animal models is discussed as well. This information will lead to a better understanding of Pin1 signaling pathways in epilepsy and may facilitate development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yuwen Chen
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaojun Hou
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Jiao Pang
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fan Yang
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Angcheng Li
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Suijin Lin
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Na Lin
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tae Ho Lee
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Hekun Liu
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- *Correspondence: Hekun Liu,
| |
Collapse
|
5
|
Bianchi M, Manco M. Circulating levels of PIN1 and glucose metabolism in young people with obesity. J Endocrinol Invest 2022; 45:1741-1748. [PMID: 35585295 DOI: 10.1007/s40618-022-01812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Impaired activity of the peptidylprolyl cis/trans isomerase NIMA-interacting 1 (PIN1) isomerase might contribute to link disturbed glucose metabolism and risk of glucose related neurotoxicity, neurodegeneration and cognitive decline. The isomerase modulates also pathways of peripheral insulin sensitivity and secretion. We aimed at investigating the levels of circulating PIN1 in adolescents with obesity and any association with their glucose metabolism. METHODS We enrolled 145 adolescents (age 12-17.8 years); 67 lean controls (46.2%) and 78 (53.8%) with overweight or obesity (males n = 62, 46%). We estimated glucose and insulin in fasting condition and after a standard oral glucose tolerance test; fasting serum levels of PIN1, amyloid β-protein 42 (Aβ42), presenilin 1 (PSEN1), glucagon-like peptide 1 (GLP1) and Non Esterified Fatty Acids (NEFA). We calculated the homeostasis model assessment of insulin resistance (HOMA-IR), the β cell function (HOMA-β) and the Adipo-IR. RESULTS There was no difference in PIN1 serum levels between normal weight individuals and patients with obesity. However, there was an inverse correlation between serum fasting PIN1 and glucose (r - 0.183 and p = 0.027). We confirmed levels of Aβ42 and PSEN1 were higher in teens with obesity than in lean controls and their correlation with the body mass index (Aβ42: r = 0.302, p = 0.0001, PSEN1 r = 0.231, p = 0.005) and the HOMA-IR (Aβ42: r = 0.219, p = 0.009, r = 0.170, p < 0.042). CONCLUSIONS There was no significant rise of circulating PIN1 levels in young individuals with obesity. Increased levels reported in the literature in adult patients are likely to occur late in the natural history of the disease with the onset of an overt impairment of glucose homeostasis.
Collapse
Affiliation(s)
- M Bianchi
- Research Area for Multi-Factorial Diseases, Bambino Gesù Children's Hospital, IRCCS, viale di San Paolo 15, 00146, Rome, Italy
| | - M Manco
- Research Area for Multi-Factorial Diseases, Bambino Gesù Children's Hospital, IRCCS, viale di San Paolo 15, 00146, Rome, Italy.
| |
Collapse
|
6
|
Lee YM, Teoh DEJ, Yeung K, Liou YC. The kingdom of the prolyl-isomerase Pin1: The structural and functional convergence and divergence of Pin1. Front Cell Dev Biol 2022; 10:956071. [PMID: 36111342 PMCID: PMC9468764 DOI: 10.3389/fcell.2022.956071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
More than 20 years since its discovery, our understanding of Pin1 function in various diseases continues to improve. Pin1 plays a crucial role in pathogenesis and has been implicated in metabolic disorders, cardiovascular diseases, inflammatory diseases, viral infection, cancer and neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s disease. In particular, the role of Pin1 in neurodegenerative diseases and cancer has been extensively studied. Our understanding of Pin1 in cancer also led to the development of cancer therapeutic drugs targeting Pin1, with some currently in clinical trial phases. However, identifying a Pin1-specific drug with good cancer therapeutic effect remains elusive, thus leading to the continued efforts in Pin1 research. The importance of Pin1 is highlighted by the presence of Pin1 orthologs across various species: from vertebrates to invertebrates and Kingdom Animalia to Plantae. Among these Pin1 orthologs, their sequence and structural similarity demonstrate the presence of conservation. Moreover, their similar functionality between species further highlights the conservancy of Pin1. As researchers continue to unlock the mysteries of Pin1 in various diseases, using different Pin1 models might shed light on how to better target Pin1 for disease therapeutics. This review aims to highlight the various Pin1 orthologs in numerous species and their divergent functional roles. We will examine their sequence and structural similarities and discuss their functional similarities and uniqueness to demonstrate the interconnectivity of Pin1 orthologs in multiple diseases.
Collapse
|
7
|
Nakatsu Y, Asano T. Prolyl Isomerase Pin1 Impacts on Metabolism in Muscle and Adipocytes. YAKUGAKU ZASSHI 2022; 142:449-456. [DOI: 10.1248/yakushi.21-00176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yusuke Nakatsu
- Department of Medical Chemistry, Division of Molecular Medical Science, Graduate School of Biomedical Sciences, Hiroshima University
| | - Tomoichiro Asano
- Department of Medical Chemistry, Division of Molecular Medical Science, Graduate School of Biomedical Sciences, Hiroshima University
| |
Collapse
|
8
|
Targeting Pin1 for Modulation of Cell Motility and Cancer Therapy. Biomedicines 2021; 9:biomedicines9040359. [PMID: 33807199 PMCID: PMC8065645 DOI: 10.3390/biomedicines9040359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/09/2023] Open
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) specifically binds and isomerizes the phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif, which leads to changes in protein conformation and function. Pin1 is widely overexpressed in cancers and plays an important role in tumorigenesis. Mounting evidence has revealed that targeting Pin1 is a potential therapeutic approach for various cancers by inhibiting cell proliferation, reducing metastasis, and maintaining genome stability. In this review, we summarize the underlying mechanisms of Pin1-mediated upregulation of oncogenes and downregulation of tumor suppressors in cancer development. Furthermore, we also discuss the multiple roles of Pin1 in cancer hallmarks and examine Pin1 as a desirable pharmaceutical target for cancer therapy. We also summarize the recent progress of Pin1-targeted small-molecule compounds for anticancer activity.
Collapse
|
9
|
Nakatsu Y, Yamamotoya T, Okumura M, Ishii T, Kanamoto M, Naito M, Nakanishi M, Aoyama S, Matsunaga Y, Kushiyama A, Sakoda H, Fujishiro M, Ono H, Asano T. Prolyl isomerase Pin1 interacts with adipose triglyceride lipase and negatively controls both its expression and lipolysis. Metabolism 2021; 115:154459. [PMID: 33279499 DOI: 10.1016/j.metabol.2020.154459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Lipolysis is essential for the supply of nutrients during fasting, the control of body weight, and remodeling of white adipose tissues and thermogenesis. In the obese state, lipolysis activity and the expression of adipose triglyceride lipase (ATGL), a rate-limiting enzyme, is suppressed. However, the mechanism underlying the regulation of ATGL remains largely unknown. We previously reported that a high-fat diet obviously increases protein levels of the prolyl isomerase, Pin1, in epididymal white adipose tissue (epiWAT) of mice and that Pin1 KO mice are resistant to developing obesity. RESULTS The present study found that deletion of the Pin1 gene in epiWAT upregulated lipolysis and increased ATGL protein expression by ~2-fold. In addition, it was demonstrated that Pin1 directly associated with ATGL and enhanced its degradation through the ubiquitin proteasome system. Indeed, Pin1 overexpression decreased ATGL expression levels, whereas Pin1 knockdown by siRNA treatment upregulated ATGL protein levels without altering mRNA levels. Moreover, under a high fat diet (HFD)-fed condition, adipocyte-specific Pin1 KO (adipoPin1 KO) mice had 2-fold increase lipolytic activity and upregulated β-oxidation-related gene expressions. These mice also gained less body weight, and had better glucose metabolism according to the results of glucose and insulin tolerance tests. CONCLUSION Taken together, these results showed that Pin1 directly interacted with and degraded ATGL via a ubiquitin-proteasome system, consequently causing the downregulation of lipolysis. Therefore, Pin1 could be considered a target for the treatment of dyslipidemia and related disorders.
Collapse
Affiliation(s)
- Yusuke Nakatsu
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Takeshi Yamamotoya
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Mizuki Okumura
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Tetsuhiro Ishii
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Mayu Kanamoto
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Miki Naito
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Mikako Nakanishi
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Shunya Aoyama
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Yasuka Matsunaga
- Center for Translational Research in Infection & Inflammation, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Akifumi Kushiyama
- Department of Pharmacotherapy, Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan
| | - Hideyuki Sakoda
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Midori Fujishiro
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Hiraku Ono
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8670, Japan
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan.
| |
Collapse
|
10
|
Li J, Mo C, Guo Y, Zhang B, Feng X, Si Q, Wu X, Zhao Z, Gong L, He D, Shao J. Roles of peptidyl-prolyl isomerase Pin1 in disease pathogenesis. Theranostics 2021; 11:3348-3358. [PMID: 33537091 PMCID: PMC7847688 DOI: 10.7150/thno.45889] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
Pin1 belongs to the peptidyl-prolyl cis-trans isomerases (PPIases) superfamily and catalyzes the cis-trans conversion of proline in target substrates to modulate diverse cellular functions including cell cycle progression, cell motility, and apoptosis. Dysregulation of Pin1 has wide-ranging influences on the fate of cells; therefore, it is closely related to the occurrence and development of various diseases. This review summarizes the current knowledge of Pin1 in disease pathogenesis.
Collapse
Affiliation(s)
- Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Chunfen Mo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yifan Guo
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Bowen Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Xiao Feng
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Qiuyue Si
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Xiaobo Wu
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Zhe Zhao
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Lixin Gong
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Dan He
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Jichun Shao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Liu K, Zheng M, Lu R, Du J, Zhao Q, Li Z, Li Y, Zhang S. The role of CDC25C in cell cycle regulation and clinical cancer therapy: a systematic review. Cancer Cell Int 2020; 20:213. [PMID: 32518522 PMCID: PMC7268735 DOI: 10.1186/s12935-020-01304-w] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
One of the most prominent features of tumor cells is uncontrolled cell proliferation caused by an abnormal cell cycle, and the abnormal expression of cell cycle-related proteins gives tumor cells their invasive, metastatic, drug-resistance, and anti-apoptotic abilities. Recently, an increasing number of cell cycle-associated proteins have become the candidate biomarkers for early diagnosis of malignant tumors and potential targets for cancer therapies. As an important cell cycle regulatory protein, Cell Division Cycle 25C (CDC25C) participates in regulating G2/M progression and in mediating DNA damage repair. CDC25C is a cyclin of the specific phosphatase family that activates the cyclin B1/CDK1 complex in cells for entering mitosis and regulates G2/M progression and plays an important role in checkpoint protein regulation in case of DNA damage, which can ensure accurate DNA information transmission to the daughter cells. The regulation of CDC25C in the cell cycle is affected by multiple signaling pathways, such as cyclin B1/CDK1, PLK1/Aurora A, ATR/CHK1, ATM/CHK2, CHK2/ERK, Wee1/Myt1, p53/Pin1, and ASK1/JNK-/38. Recently, it has evident that changes in the expression of CDC25C are closely related to tumorigenesis and tumor development and can be used as a potential target for cancer treatment. This review summarizes the role of CDC25C phosphatase in regulating cell cycle. Based on the role of CDC25 family proteins in the development of tumors, it will become a hot target for a new generation of cancer treatments.
Collapse
Affiliation(s)
- Kai Liu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Rui Lu
- Department of Pathology, Tianjin Nankai Hospital, Tianjin, People's Republic of China
| | - Jiaxing Du
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Qi Zhao
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Zugui Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Yuwei Li
- Departments of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| |
Collapse
|
12
|
Pin1 Plays Essential Roles in NASH Development by Modulating Multiple Target Proteins. Cells 2019; 8:cells8121545. [PMID: 31795496 PMCID: PMC6952946 DOI: 10.3390/cells8121545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Pin1 is one of the three known prolyl-isomerase types and its hepatic expression level is markedly enhanced in the obese state. Pin1 plays critical roles in favoring the exacerbation of both lipid accumulation and fibrotic change accompanying inflammation. Indeed, Pin1-deficient mice are highly resistant to non-alcoholic steatohepatitis (NASH) development by either a high-fat diet or methionine-choline-deficient diet feeding. The processes of NASH development can basically be separated into lipid accumulation and subsequent fibrotic change with inflammation. In this review, we outline the molecular mechanisms by which increased Pin1 promotes both of these phases of NASH. The target proteins of Pin1 involved in lipid accumulation include insulin receptor substrate 1 (IRS-1), AMP-activated protein kinase (AMPK) and acetyl CoA carboxylase 1 (ACC1), while the p60 of the NF-kB complex and transforming growth factor β (TGF-β) pathway appear to be involved in the fibrotic process accelerated by Pin1. Interestingly, Pin1 deficiency does not cause abnormalities in liver size, appearance or function. Therefore, we consider the inhibition of increased Pin1 to be a promising approach to treating NASH and preventing hepatic fibrosis.
Collapse
|
13
|
Nakatsu Y, Yamamotoya T, Ueda K, Ono H, Inoue MK, Matsunaga Y, Kushiyama A, Sakoda H, Fujishiro M, Matsubara A, Asano T. Prolyl isomerase Pin1 in metabolic reprogramming of cancer cells. Cancer Lett 2019; 470:106-114. [PMID: 31678165 DOI: 10.1016/j.canlet.2019.10.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/21/2019] [Accepted: 10/26/2019] [Indexed: 12/20/2022]
Abstract
Pin1 is one member of a group consisting of three prolyl isomerases. Pin1 interacts with the motif containing phospho-Ser/Thr-Pro of substrates and enhances cis-trans isomerization of peptide bonds, thereby controlling the functions of these substrates. Importantly, the Pin1 expression level is highly upregulated in most cancer cells and correlates with malignant properties, and thereby with poor outcomes. In addition, Pin1 was revealed to promote the functions of multiple oncogenes and to abrogate tumor suppressors. Accordingly, Pin1 is well recognized as a master regulator of malignant processes. Recent studies have shown that Pin1 also binds to a variety of metabolic regulators, such as AMP-activated protein kinase, acetyl CoA carboxylase and pyruvate kinase2, indicating Pin1 to have major impacts on lipid and glucose metabolism in cancer cells. In this review, we focus on the roles of Pin1 in metabolic reprogramming, such as "Warburg effects", of cancer cells. Our aim is to introduce these important roles of Pin1, as well as to present evidence supporting the possibility of Pin1 inhibition as a novel anti-cancer strategy.
Collapse
Affiliation(s)
- Yusuke Nakatsu
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Takeshi Yamamotoya
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Koji Ueda
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Hiraku Ono
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
| | - Masa-Ki Inoue
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Yasuka Matsunaga
- Center for Translational Research in Infection & Inflammation, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Akifumi Kushiyama
- Department of Pharmacotherapy, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose City, Tokyo, 204-8588, Japan
| | - Hideyuki Sakoda
- The Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - Midori Fujishiro
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| | - Akio Matsubara
- Department of Urology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan.
| |
Collapse
|
14
|
SNV discovery and functional candidate gene identification for milk composition based on whole genome resequencing of Holstein bulls with extremely high and low breeding values. PLoS One 2019; 14:e0220629. [PMID: 31369641 PMCID: PMC6675115 DOI: 10.1371/journal.pone.0220629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
We have sequenced the whole genomes of eight proven Holstein bulls from the four half-sib or full-sib families with extremely high and low estimated breeding values (EBV) for milk protein percentage (PP) and fat percentage (FP) using Illumina re-sequencing technology. Consequently, 2.3 billion raw reads were obtained with an average effective depth of 8.1×. After single nucleotide variant (SNV) calling, total 10,961,243 SNVs were identified, and 57,451 of them showed opposite fixed sites between the bulls with high and low EBVs within each family (called as common differential SNVs). Next, we annotated the common differential SNVs based on the bovine reference genome, and observed that 45,188 SNVs (78.70%) were located in the intergenic region of genes and merely 11,871 SNVs (20.67%) located within the protein-coding genes. Of them, 13,099 common differential SNVs that were within or close to protein-coding genes with less than 5 kb were chosen for identification of candidate genes for milk compositions in dairy cattle. By integrated analysis of the 2,657 genes with the GO terms and pathways related to protein and fat metabolism, and the known quantitative trait loci (QTLs) for milk protein and fat traits, we identified 17 promising candidate genes: ALG14, ATP2C1, PLD1, C3H1orf85, SNX7, MTHFD2L, CDKN2D, COL5A3, FDX1L, PIN1, FIG4, EXOC7, LASP1, PGS1, SAO, GPLD1 and MGEA5. Our findings provided an important foundation for further study and a prompt for molecular breeding of dairy cattle.
Collapse
|
15
|
Prolyl Isomerase Pin1 Suppresses Thermogenic Programs in Adipocytes by Promoting Degradation of Transcriptional Co-activator PRDM16. Cell Rep 2019; 26:3221-3230.e3. [DOI: 10.1016/j.celrep.2019.02.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/12/2018] [Accepted: 02/15/2019] [Indexed: 02/08/2023] Open
|
16
|
Zannini A, Rustighi A, Campaner E, Del Sal G. Oncogenic Hijacking of the PIN1 Signaling Network. Front Oncol 2019; 9:94. [PMID: 30873382 PMCID: PMC6401644 DOI: 10.3389/fonc.2019.00094] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Cellular choices are determined by developmental and environmental stimuli through integrated signal transduction pathways. These critically depend on attainment of proper activation levels that in turn rely on post-translational modifications (PTMs) of single pathway members. Among these PTMs, post-phosphorylation prolyl-isomerization mediated by PIN1 represents a unique mechanism of spatial, temporal and quantitative control of signal transduction. Indeed PIN1 was shown to be crucial for determining activation levels of several pathways and biological outcomes downstream to a plethora of stimuli. Of note, studies performed in different model organisms and humans have shown that hormonal, nutrient, and oncogenic stimuli simultaneously affect both PIN1 activity and the pathways that depend on PIN1-mediated prolyl-isomerization, suggesting the existence of evolutionarily conserved molecular circuitries centered on this isomerase. This review focuses on molecular mechanisms and cellular processes like proliferation, metabolism, and stem cell fate, that are regulated by PIN1 in physiological conditions, discussing how these are subverted in and hijacked by cancer cells. Current status and open questions regarding the use of PIN1 as biomarker and target for cancer therapy as well as clinical development of PIN1 inhibitors are also addressed.
Collapse
Affiliation(s)
- Alessandro Zannini
- National Laboratory CIB, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandra Rustighi
- National Laboratory CIB, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Giannino Del Sal
- National Laboratory CIB, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy.,IFOM - Istituto FIRC Oncologia Molecolare, Milan, Italy
| |
Collapse
|
17
|
Jinasena D, Simmons R, Gyamfi H, Fitzkee NC. Molecular Mechanism of the Pin1-Histone H1 Interaction. Biochemistry 2019; 58:788-798. [PMID: 30507159 DOI: 10.1021/acs.biochem.8b01036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pin1 is an essential peptidyl-prolyl isomerase (PPIase) that catalyzes cis-trans prolyl isomerization in proteins containing pSer/Thr-Pro motifs. It has an N-terminal WW domain that targets these motifs and a C-terminal PPIase domain that catalyzes isomerization. Recently, Pin1 was shown to modify the conformation of phosphorylated histone H1 and stabilize the chromatin-H1 interaction by increasing its residence time. This Pin1-histone H1 interaction plays a key role in pathogen response, in infection, and in cell cycle control; therefore, anti-Pin1 therapeutics are an important focus for treating infections as well as cancer. Each of the H1 histones (H1.0-H1.5) contains several potential Pin1 recognition pSer/pThr-Pro motifs. To understand the Pin1-histone H1 interaction fully, we investigated how both the isolated WW domain and full-length Pin1 interact with three H1 histone substrate peptide sequences that were previously identified as important binding partners (H1.1, H1.4, and H1.5). NMR spectroscopy was used to measure the binding affinities and the interdomain dynamics upon binding to these sequences. We observed different KD values depending on the histone binding site, suggesting that energetics play a role in guiding the Pin1-histone interaction. While interdomain interactions vary between the peptides, we find no evidence for allosteric activation for the histone H1 substrates.
Collapse
Affiliation(s)
- Dinusha Jinasena
- Department of Chemistry , Mississippi State University , Mississippi State , Mississippi 39762 , United States
| | - Robert Simmons
- Department of Chemistry , Mississippi State University , Mississippi State , Mississippi 39762 , United States
| | - Hawa Gyamfi
- Department of Chemistry , University of Waterloo , Waterloo , Ontario , Ontario N2l 3G1 , Canada
| | - Nicholas C Fitzkee
- Department of Chemistry , Mississippi State University , Mississippi State , Mississippi 39762 , United States
| |
Collapse
|
18
|
Inoue MK, Matsunaga Y, Nakatsu Y, Yamamotoya T, Ueda K, Kushiyama A, Sakoda H, Fujishiro M, Ono H, Iwashita M, Sano T, Nishimura F, Morii K, Sasaki K, Masaki T, Asano T. Possible involvement of normalized Pin1 expression level and AMPK activation in the molecular mechanisms underlying renal protective effects of SGLT2 inhibitors in mice. Diabetol Metab Syndr 2019; 11:57. [PMID: 31367234 PMCID: PMC6647324 DOI: 10.1186/s13098-019-0454-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/08/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Recently, clinical studies have shown the protective effects of sodium glucose co-transporter2 (SGLT2) inhibitors against progression of diabetic nephropathy, but the underlying molecular mechanisms remain unclear. METHODS Diabetic mice were prepared by injecting nicotinamide and streptozotocin, followed by high-sucrose diet feeding (NA/STZ/Suc mice). The SGLT2 inhibitor canagliflozin was administered as a 0.03% (w/w) mixture in the diet for 4 weeks. Then, various parameters and effects of canagliflozin on diabetic nephropathy were investigated. RESULTS Canagliflozin administration to NA/STZ/Suc mice normalized hyperglycemia as well as elevated renal mRNA of collagen 1a1, 1a2, CTGF, TNFα and MCP-1. Microscopic observation revealed reduced fibrotic deposition in the kidneys of canagliflozin-treated NA/STZ/Suc mice. Interestingly, the protein level of Pin1, reportedly involved in the inflammation and fibrosis affecting several tissues, was markedly increased in the NA/STZ/Suc mouse kidney, but this was normalized with canagliflozin treatment. The cells showing increased Pin1 expression in the kidney were mainly mesangial cells, along with podocytes, based on immunohistochemical analysis. Furthermore, it was revealed that canagliflozin induced AMP-activated kinase (AMPK) activation concentration-dependently in CRL1927 mesangial as well as THP-1 macrophage cell lines. AMPK activation was speculated to suppress mesangial cell proliferation and exert anti-inflammatory effects in hematopoietic cells. CONCLUSION Therefore, we can reasonably suggest that normalized Pin1 expression and AMPK activation contribute to the molecular mechanisms underlying SGLT2 inhibitor-induced suppression of diabetic nephropathy, possibly at least in part by reducing inflammation and fibrotic change.
Collapse
Affiliation(s)
- Masa-Ki Inoue
- Department of Medical Science, Graduate School of Medicine, University of Hiroshima, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8551 Japan
| | - Yasuka Matsunaga
- Center for Translational Research in Infection & Inflammation, School of Medicine, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118 USA
| | - Yusuke Nakatsu
- Department of Medical Science, Graduate School of Medicine, University of Hiroshima, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8551 Japan
| | - Takeshi Yamamotoya
- Department of Medical Science, Graduate School of Medicine, University of Hiroshima, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8551 Japan
| | - Koji Ueda
- Department of Medical Science, Graduate School of Medicine, University of Hiroshima, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8551 Japan
| | - Akifumi Kushiyama
- Division of Diabetes and Metabolism, The Institute for Adult Diseases, Asahi Life Foundation, Chuo-ku, Tokyo, 103-0002 Japan
| | - Hideyuki Sakoda
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692 Japan
| | - Midori Fujishiro
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610 Japan
| | - Hiraku Ono
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8670 Japan
| | - Misaki Iwashita
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka 812-0054 Japan
| | - Tomomi Sano
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka 812-0054 Japan
| | - Fusanori Nishimura
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka 812-0054 Japan
| | - Kenichi Morii
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8551 Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8551 Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8551 Japan
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, University of Hiroshima, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8551 Japan
| |
Collapse
|
19
|
Prolyl isomerase Pin1: a promoter of cancer and a target for therapy. Cell Death Dis 2018; 9:883. [PMID: 30158600 PMCID: PMC6115400 DOI: 10.1038/s41419-018-0844-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/15/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022]
Abstract
Pin1 is the only known peptidyl-prolyl cis–trans isomerase (PPIase) that specifically recognizes and isomerizes the phosphorylated Serine/Threonine-Proline (pSer/Thr-Pro) motif. The Pin1-mediated structural transformation posttranslationally regulates the biofunctions of multiple proteins. Pin1 is involved in many cellular processes, the aberrance of which lead to both degenerative and neoplastic diseases. Pin1 is highly expressed in the majority of cancers and its deficiency significantly suppresses cancer progression. According to the ground-breaking summaries by Hanahan D and Weinberg RA, the hallmarks of cancer comprise ten biological capabilities. Multiple researches illuminated that Pin1 contributes to these aberrant behaviors of cancer via promoting various cancer-driving pathways. This review summarized the detailed mechanisms of Pin1 in different cancer capabilities and certain Pin1-targeted small-molecule compounds that exhibit anticancer activities, expecting to facilitate anticancer therapies by targeting Pin1.
Collapse
|
20
|
Pin1 Modulation in Physiological Status and Neurodegeneration. Any Contribution to the Pathogenesis of Type 3 Diabetes? Int J Mol Sci 2018; 19:ijms19082319. [PMID: 30096758 PMCID: PMC6121450 DOI: 10.3390/ijms19082319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/29/2022] Open
Abstract
Prolyl isomerases (Peptidylprolyl isomerase, PPIases) are enzymes that catalyze the isomerization between the cis/trans Pro conformations. Three subclasses belong to the class: FKBP (FK506 binding protein family), Cyclophilin and Parvulin family (Pin1 and Par14). Among Prolyl isomerases, Pin1 presents as distinctive feature, the ability of binding to the motif pSer/pThr-Pro that is phosphorylated by kinases. Modulation of Pin1 is implicated in cellular processes such as mitosis, differentiation and metabolism: The enzyme is dysregulated in many diverse pathological conditions, i.e., cancer progression, neurodegenerative (i.e., Alzheimer’s diseases, AD) and metabolic disorders (i.e., type 2 diabetes, T2D). Indeed, Pin1 KO mice develop a complex phenotype of premature aging, cognitive impairment in elderly mice and neuronal degeneration resembling that of the AD in humans. In addition, since the molecule modulates glucose homeostasis in the brain and peripherally, Pin1 KO mice are resistant to diet-induced obesity, insulin resistance, peripheral glucose intolerance and diabetic vascular dysfunction. In this review, we revise first critically the role of Pin1 in neuronal development and differentiation and then focus on the in vivo studies that demonstrate its pivotal role in neurodegenerative processes and glucose homeostasis. We discuss evidence that enables us to speculate about the role of Pin1 as molecular link in the pathogenesis of type 3 diabetes i.e., the clinical association of dementia/AD and T2D.
Collapse
|
21
|
Trk-fused gene (TFG) regulates pancreatic β cell mass and insulin secretory activity. Sci Rep 2017; 7:13026. [PMID: 29026155 PMCID: PMC5638802 DOI: 10.1038/s41598-017-13432-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
The Trk-fused gene (TFG) is reportedly involved in the process of COPII-mediated vesicle transport and missense mutations in TFG cause several neurodegenerative diseases including hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P). The high coincidence ratio between HMSN-P and diabetes mellitus suggests TFG to have an important role(s) in glucose homeostasis. To examine this possibility, β-cell specific TFG knockout mice (βTFG KO) were generated. Interestingly, βTFG KO displayed marked glucose intolerance with reduced insulin secretion. Immunohistochemical analysis revealed smaller β-cell masses in βTFG KO than in controls, likely attributable to diminished β-cell proliferation. Consistently, β-cell expansion in response to a high-fat, high-sucrose (HFHS) diet was significantly impaired in βTFG KO. Furthermore, glucose-induced insulin secretion was also markedly impaired in islets isolated from βTFG KO. Electron microscopic observation revealed endoplasmic reticulum (ER) dilatation, suggestive of ER stress, and smaller insulin crystal diameters in β-cells of βTFG KO. Microarray gene expression analysis indicated downregulation of NF-E2 related factor 2 (Nrf2) and its downstream genes in TFG depleted islets. Collectively, TFG in pancreatic β-cells plays a vital role in maintaining both the mass and function of β-cells, and its dysfunction increases the tendency to develop glucose intolerance.
Collapse
|