1
|
Call DH, Adjei JA, Pilgrim R, Jeong JW, Willis EV, Zegarra RA, Tapia NL, Osterhaus M, Vance JA, Voyton CM, Call JA, Pizarro SS, Morris JC, Christensen KA. A multiplexed high throughput screening assay using flow cytometry identifies glycolytic molecular probes in bloodstream form Trypanosoma brucei. Int J Parasitol Drugs Drug Resist 2024; 26:100557. [PMID: 39163740 PMCID: PMC11381906 DOI: 10.1016/j.ijpddr.2024.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024]
Abstract
Kinetoplastid organisms, including Trypanosoma brucei, are a significant health burden in many tropical and semitropical countries. Much of their metabolism is poorly understood. To better study kinetoplastid metabolism, chemical probes that inhibit kinetoplastid enzymes are needed. To discover chemical probes, we have developed a high-throughput flow cytometry screening assay that simultaneously measures multiple glycolysis-relevant metabolites in live T. brucei bloodstream form parasites. We transfected parasites with biosensors that measure glucose, ATP, or glycosomal pH. The glucose and ATP sensors were FRET biosensors, while the pH sensor was a GFP-based biosensor. The pH sensor exhibited a different fluorescent profile from the FRET sensors, allowing us to simultaneously measure pH and either glucose or ATP. Cell viability was measured in tandem with the biosensors using thiazole red. We pooled sensor cell lines, loaded them onto plates containing a compound library, and then analyzed them by flow cytometry. The library was analyzed twice, once with the pooled pH and glucose sensor cell lines and once with the pH and ATP sensor cell lines. Multiplexing sensors provided some internal validation of active compounds and gave potential clues for each compound's target(s). We demonstrated this using the glycolytic inhibitor 2-deoxyglucose and the alternative oxidase inhibitor salicylhydroxamic acid. Individual biosensor-based assays exhibited a Z'-factor value acceptable for high-throughput screening, including when multiplexed. We tested assay performance in a pilot screen of 14,976 compounds from the Life Chemicals Compound Library. We obtained hit rates from 0.2 to 0.4% depending on the biosensor, with many compounds impacting multiple sensors. We rescreened 44 hits, and 28 (64%) showed repeatable activity for one or more sensors. One compound exhibited EC50 values in the low micromolar range against two sensors. We expect this method will enable the discovery of glycolytic chemical probes to improve metabolic studies in kinetoplastid parasites.
Collapse
Affiliation(s)
- Daniel H Call
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - John Asafo Adjei
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - Ryan Pilgrim
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - James W Jeong
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - E Vance Willis
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - Ronald A Zegarra
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - Nicholas L Tapia
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - Madalyn Osterhaus
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - Jacob A Vance
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - Charles M Voyton
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA; Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA.
| | - James A Call
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - Sabrina S Pizarro
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, USA.
| | - James C Morris
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, USA.
| | | |
Collapse
|
2
|
Paul A, Roy PK, Babu NK, Singh S. Clotrimazole causes membrane depolarization and induces sub G 0 cell cycle arrest in Leishmania donovani. Acta Trop 2024; 252:107139. [PMID: 38307362 DOI: 10.1016/j.actatropica.2024.107139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Clotrimazole is an FDA approved drug and is widely used as an antifungal agent. An extensive body of research is available about its mechanism of action on various cell types but its mode of killing of Leishmania donovani parasites is unknown. L. donovani causes Visceral Leishmaniasis which is a public health problem with limited treatment options. Its present chemotherapy is expensive, has adverse effects and is plagued with drug resistance issues. In this study we have explored the possibility of repurposing clotrimazole as an antileishmanial drug. We have assessed its efficacy on the parasites and attempted to understand its mode of action. We found that it has a half-maximal inhibitory concentration (IC50) of 35.75 ± 1.06 μM, 12.75 ± 0.35 μM and 73 ± 1.41 μM in promastigotes, intracellular amastigotes and macrophages, respectively. Clotrimazole is 5.73 times more selective for the intracellular amastigotes as compared to the mammalian cell. Effect of clotrimazole was reduced by ergosterol supplementation. It leads to impaired parasite morphology. It alters plasma membrane permeability and disrupts plasma membrane potential. Mitochondrial function is compromised as is evident from increased ROS generation, depolarized mitochondrial membrane and decreased ATP levels. Cell cycle analysis of clotrimazole treated parasites shows arrest at sub-G0 phase suggesting apoptotic mode of cell death.
Collapse
Affiliation(s)
- Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India
| | - Pradyot Kumar Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India
| | - Neerupudi Kishore Babu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India.
| |
Collapse
|
3
|
Call D, Pizarro SS, Tovey E, Knight E, Baumgardner C, Christensen KA, Morris JC. Measuring Dynamic Glycosomal pH Changes in Living Trypanosoma brucei. J Vis Exp 2024:10.3791/66279. [PMID: 38314910 PMCID: PMC10879817 DOI: 10.3791/66279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Glucose metabolism is critical for the African trypanosome, Trypanosoma brucei, as an essential metabolic process and regulator of parasite development. Little is known about the cellular responses generated when environmental glucose levels change. In both bloodstream and procyclic form (insect stage) parasites, glycosomes house most of glycolysis. These organelles are rapidly acidified in response to glucose deprivation, which likely results in the allosteric regulation of glycolytic enzymes such as hexokinase. In previous work, localizing the chemical probe used to make pH measurements was challenging, limiting its utility in other applications. This paper describes the development and use of parasites that express glycosomally localized pHluorin2, a heritable protein pH biosensor. pHluorin2 is a ratiometric pHluorin variant that displays a pH (acid)-dependent decrease in excitation at 395 nm while simultaneously yielding an increase in excitation at 475 nm. Transgenic parasites were generated by cloning the pHluorin2 open reading frame into the trypanosome expression vector pLEW100v5, enabling inducible protein expression in either lifecycle stage. Immunofluorescence was used to confirm the glycosomal localization of the pHluorin2 biosensor, comparing the localization of the biosensor to the glycosomal resident protein aldolase. The sensor responsiveness was calibrated at differing pH levels by incubating cells in a series of buffers that ranged in pH from 4 to 8, an approach we have previously used to calibrate a fluorescein-based pH sensor. We then measured pHluorin2 fluorescence at 405 nm and 488 nm using flow cytometry to determine glycosomal pH. We validated the performance of the live transgenic pHluorin2-expressing parasites, monitoring pH over time in response to glucose deprivation, a known trigger of glycosomal acidification in PF parasites. This tool has a range of potential applications, including potentially being used in high-throughput drug screening. Beyond glycosomal pH, the sensor could be adapted to other organelles or used in other trypanosomatids to understand pH dynamics in the live cell setting.
Collapse
Affiliation(s)
- Daniel Call
- Department Chemistry and Biochemistry, Brigham Young University
| | - Sabrina S Pizarro
- Eukaryotic Pathogens Innovation Center, Clemson University; Department of Genetics and Biochemistry, Clemson University
| | - Erica Tovey
- Department Chemistry and Biochemistry, Brigham Young University
| | - Emily Knight
- Eukaryotic Pathogens Innovation Center, Clemson University; Department of Genetics and Biochemistry, Clemson University
| | - Carrie Baumgardner
- Eukaryotic Pathogens Innovation Center, Clemson University; Department of Physics and Astronomy, Clemson University
| | | | - James C Morris
- Eukaryotic Pathogens Innovation Center, Clemson University;
| |
Collapse
|
4
|
Zuma AA, Dos Santos Barrias E, de Souza W. Basic Biology of Trypanosoma cruzi. Curr Pharm Des 2021; 27:1671-1732. [PMID: 33272165 DOI: 10.2174/1381612826999201203213527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
The present review addresses basic aspects of the biology of the pathogenic protozoa Trypanosoma cruzi and some comparative information of Trypanosoma brucei. Like eukaryotic cells, their cellular organization is similar to that of mammalian hosts. However, these parasites present structural particularities. That is why the following topics are emphasized in this paper: developmental stages of the life cycle in the vertebrate and invertebrate hosts; the cytoskeleton of the protozoa, especially the sub-pellicular microtubules; the flagellum and its attachment to the protozoan body through specialized junctions; the kinetoplast-mitochondrion complex, including its structural organization and DNA replication; glycosome and its role in the metabolism of the cell; acidocalcisome, describing its morphology, biochemistry, and functional role; cytostome and the endocytic pathway; the organization of the endoplasmic reticulum and Golgi complex; the nucleus, describing its structural organization during interphase and division; and the process of interaction of the parasite with host cells. The unique characteristics of these structures also make them interesting chemotherapeutic targets. Therefore, further understanding of cell biology aspects contributes to the development of drugs for chemotherapy.
Collapse
Affiliation(s)
- Aline A Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emile Dos Santos Barrias
- Laboratorio de Metrologia Aplicada a Ciencias da Vida, Diretoria de Metrologia Aplicada a Ciencias da Vida - Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Quiñones W, Acosta H, Gonçalves CS, Motta MCM, Gualdrón-López M, Michels PAM. Structure, Properties, and Function of Glycosomes in Trypanosoma cruzi. Front Cell Infect Microbiol 2020; 10:25. [PMID: 32083023 PMCID: PMC7005584 DOI: 10.3389/fcimb.2020.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/15/2020] [Indexed: 12/29/2022] Open
Abstract
Glycosomes are peroxisome-related organelles that have been identified in kinetoplastids and diplonemids. The hallmark of glycosomes is their harboring of the majority of the glycolytic enzymes. Our biochemical studies and proteome analysis of Trypanosoma cruzi glycosomes have located, in addition to enzymes of the glycolytic pathway, enzymes of several other metabolic processes in the organelles. These analyses revealed many aspects in common with glycosomes from other trypanosomatids as well as features that seem specific for T. cruzi. Their enzyme content indicates that T. cruzi glycosomes are multifunctional organelles, involved in both several catabolic processes such as glycolysis and anabolic ones. Specifically discussed in this minireview are the cross-talk between glycosomal metabolism and metabolic processes occurring in other cell compartments, and the importance of metabolite translocation systems in the glycosomal membrane to enable the coordination between the spatially separated processes. Possible mechanisms for metabolite translocation across the membrane are suggested by proteins identified in the organelle's membrane-homologs of the ABC and MCF transporter families-and the presence of channels as inferred previously from the detection of channel-forming proteins in glycosomal membrane preparations from the related parasite T. brucei. Together, these data provide insight in the way in which different parts of T. cruzi metabolism, although uniquely distributed over different compartments, are integrated and regulated. Moreover, this information reveals opportunities for the development of drugs against Chagas disease caused by these parasites and for which currently no adequate treatment is available.
Collapse
Affiliation(s)
- Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Héctor Acosta
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Camila Silva Gonçalves
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Melisa Gualdrón-López
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, and Institute for Health Sciences Trias i Pujol, Barcelona, Spain
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
PAS domain-containing phosphoglycerate kinase deficiency in Leishmania major results in increased autophagosome formation and cell death. Biochem J 2019; 476:1303-1321. [PMID: 30988012 DOI: 10.1042/bcj20190041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 11/17/2022]
Abstract
Per-Arnt-Sim (PAS) domains are structurally conserved and present in numerous proteins throughout all branches of the phylogenetic tree. Although PAS domain-containing proteins are major players for the adaptation to environmental stimuli in both prokaryotic and eukaryotic organisms, these types of proteins are still uncharacterized in the trypanosomatid parasites, Trypanosome and Leishmania In addition, PAS-containing phosphoglycerate kinase (PGK) protein is uncharacterized in the literature. Here, we report a PAS domain-containing PGK (LmPAS-PGK) in the unicellular pathogen Leishmania The modeled structure of N-terminal of this protein exhibits four antiparallel β sheets centrally flanked by α helices, which is similar to the characteristic signature of PAS domain. Activity measurements suggest that acidic pH can directly stimulate PGK activity. Localization studies demonstrate that the protein is highly enriched in the glycosome and its presence can also be seen in the lysosome. Gene knockout, overexpression and complement studies suggest that LmPAS-PGK plays a fundamental role in cell survival through autophagy. Furthermore, the knockout cells display a marked decrease in virulence when host macrophage and BALB/c mice were infected with them. Our work begins to clarify how acidic pH-dependent ATP generation by PGK is likely to function in cellular adaptability of Leishmania.
Collapse
|