1
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
2
|
Mascarenhas R, Ruetz M, Gouda H, Heitman N, Yaw M, Banerjee R. Architecture of the human G-protein-methylmalonyl-CoA mutase nanoassembly for B 12 delivery and repair. Nat Commun 2023; 14:4332. [PMID: 37468522 PMCID: PMC10356863 DOI: 10.1038/s41467-023-40077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
G-proteins function as molecular switches to power cofactor translocation and confer fidelity in metal trafficking. The G-protein, MMAA, together with MMAB, an adenosyltransferase, orchestrate cofactor delivery and repair of B12-dependent human methylmalonyl-CoA mutase (MMUT). The mechanism by which the complex assembles and moves a >1300 Da cargo, or fails in disease, are poorly understood. Herein, we report the crystal structure of the human MMUT-MMAA nano-assembly, which reveals a dramatic 180° rotation of the B12 domain, exposing it to solvent. The complex, stabilized by MMAA wedging between two MMUT domains, leads to ordering of the switch I and III loops, revealing the molecular basis of mutase-dependent GTPase activation. The structure explains the biochemical penalties incurred by methylmalonic aciduria-causing mutations that reside at the MMAA-MMUT interfaces we identify here.
Collapse
Affiliation(s)
- Romila Mascarenhas
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Markus Ruetz
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Harsha Gouda
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Natalie Heitman
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Madeline Yaw
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Mascarenhas R, Ruetz M, Gouda H, Heitman N, Yaw M, Banerjee R. Architecture of the human G-protein-methylmalonyl-CoA mutase nanoassembly for B 12 delivery and repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533963. [PMID: 36993209 PMCID: PMC10055420 DOI: 10.1101/2023.03.23.533963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
G-proteins function as molecular switches to power cofactor translocation and confer fidelity in metal trafficking. MMAA, a G-protein motor, together with MMAB, an adenosyltransferase, orchestrate cofactor delivery and repair of B 12 -dependent human methylmalonyl-CoA mutase (MMUT). The mechanism by which the motor assembles and moves a >1300 Da cargo, or fails in disease, are poorly understood. Herein, we report the crystal structure of the human MMUT-MMAA nanomotor assembly, which reveals a dramatic 180° rotation of the B 12 domain, exposing it to solvent. The nanomotor complex, stabilized by MMAA wedging between two MMUT domains, leads to ordering of the switch I and III loops, revealing the molecular basis of mutase-dependent GTPase activation. The structure explains the biochemical penalties incurred by methylmalonic aciduria-causing mutations that reside at the newly identified MMAA-MMUT interfaces.
Collapse
|
4
|
Gouda H, Mascarenhas R, Ruetz M, Yaw M, Banerjee R. Bivalent molecular mimicry by ADP protects metal redox state and promotes coenzyme B 12 repair. Proc Natl Acad Sci U S A 2023; 120:e2220677120. [PMID: 36888659 PMCID: PMC10243129 DOI: 10.1073/pnas.2220677120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023] Open
Abstract
Control over transition metal redox state is essential for metalloprotein function and can be achieved via coordination chemistry and/or sequestration from bulk solvent. Human methylmalonyl-Coenzyme A (CoA) mutase (MCM) catalyzes the isomerization of methylmalonyl-CoA to succinyl-CoA using 5'-deoxyadenosylcobalamin (AdoCbl) as a metallocofactor. During catalysis, the occasional escape of the 5'-deoxyadenosine (dAdo) moiety leaves the cob(II)alamin intermediate stranded and prone to hyperoxidation to hydroxocobalamin, which is recalcitrant to repair. In this study, we have identified the use of bivalent molecular mimicry by ADP, coopting the 5'-deoxyadenosine and diphosphate moieties in the cofactor and substrate, respectively, to protect against cob(II)alamin overoxidation on MCM. Crystallographic and electron paramagnetic resonance (EPR) data reveal that ADP exerts control over the metal oxidation state by inducing a conformational change that seals off solvent access, rather than by switching five-coordinate cob(II)alamin to the more air stable four-coordinate state. Subsequent binding of methylmalonyl-CoA (or CoA) promotes cob(II)alamin off-loading from MCM to adenosyltransferase for repair. This study identifies an unconventional strategy for controlling metal redox state by an abundant metabolite to plug active site access, which is key to preserving and recycling a rare, but essential, metal cofactor.
Collapse
Affiliation(s)
- Harsha Gouda
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI48109
| | - Romila Mascarenhas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI48109
| | - Markus Ruetz
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI48109
| | - Madeline Yaw
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI48109
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI48109
| |
Collapse
|
5
|
Vaccaro FA, Born DA, Drennan CL. Structure of metallochaperone in complex with the cobalamin-binding domain of its target mutase provides insight into cofactor delivery. Proc Natl Acad Sci U S A 2023; 120:e2214085120. [PMID: 36787360 PMCID: PMC9974510 DOI: 10.1073/pnas.2214085120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/13/2023] [Indexed: 02/15/2023] Open
Abstract
G-protein metallochaperone MeaB in bacteria [methylmalonic aciduria type A (MMAA) in humans] is responsible for facilitating the delivery of adenosylcobalamin (AdoCbl) to methylmalonyl-CoA mutase (MCM), the only AdoCbl-dependent enzyme in humans. Genetic defects in the switch III region of MMAA lead to the genetic disorder methylmalonic aciduria in which the body is unable to process certain lipids. Here, we present a crystal structure of Methylobacterium extorquens MeaB bound to a nonhydrolyzable guanosine triphosphate (GTP) analog guanosine-5'-[(β,γ)-methyleno]triphosphate (GMPPCP) with the Cbl-binding domain of its target mutase enzyme (MeMCMcbl). This structure provides an explanation for the stimulation of the GTP hydrolyase activity of MeaB afforded by target protein binding. We find that upon MCMcbl association, one protomer of the MeaB dimer rotates ~180°, such that the inactive state of MeaB is converted to an active state in which the nucleotide substrate is now surrounded by catalytic residues. Importantly, it is the switch III region that undergoes the largest change, rearranging to make direct contacts with the terminal phosphate of GMPPCP. These structural data additionally provide insights into the molecular basis by which this metallochaperone contributes to AdoCbl delivery without directly binding the cofactor. Our data suggest a model in which GTP-bound MeaB stabilizes a conformation of MCM that is open for AdoCbl insertion, and GTP hydrolysis, as signaled by switch III residues, allows MCM to close and trap its cofactor. Substitutions of switch III residues destabilize the active state of MeaB through loss of protein:nucleotide and protein:protein interactions at the dimer interface, thus uncoupling GTP hydrolysis from AdoCbl delivery.
Collapse
Affiliation(s)
- Francesca A. Vaccaro
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA01239
| | - David A. Born
- Graduate Program in Biophysics, Harvard University, Cambridge, MA01238
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA01239
| | - Catherine L. Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA01239
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA01239
- HHMI,Massachusetts Institute of Technology, Cambridge, MA01239
| |
Collapse
|
6
|
Jafari M, Karami F, Setoodeh A, Rahmanifar A, Bagherian H, Alaei MR, Rohani F, Zeinali S. Identification of Novel Mutations in the MMAA and MUT Genes among Methylmalonic Aciduria Families. IRANIAN BIOMEDICAL JOURNAL 2023; 27:397-403. [PMID: 38158783 PMCID: PMC10826912 DOI: 10.61186/ibj.3782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/08/2023] [Indexed: 01/03/2024]
Abstract
Background Methylmalonic aciduria is a rare inherited metabolic disorder with autosomal recessive inheritance pattern. There are still MMA patients without known mutations in the responsible genes. This study aimed to identify mutations in Iranian MMA families using autozygosity mapping and NGS. Methods Multiplex PCR was performed on DNAs isolated from 12 unrelated MMA patients and their family members using 19 STR markers flanking MUT, MMAA, and MMAB genes, followed by Sanger sequencing. WES was carried out in the patients with no mutation. Results Haplotype analysis and Sanger sequencing revealed two novel, mutations, A252Vf*5 and G87R, within the MMAA and MUT genes, respectively. Three patients showed no mutations in either autozygosity mapping or NGS analysis. Conclusion High-frequency mutations within exons 2 and 3 of MUT gene and exon 7 of MMAB gene are consistent with the global expected frequency of genetic variations among MMA patients.
Collapse
Affiliation(s)
- Mahboobeh Jafari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- These authors were contributed equally in the present work
| | - Fatemeh Karami
- Department of Medical Genetics, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
- These authors were contributed equally in the present work
| | - Aria Setoodeh
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rahmanifar
- Clinical and Research Unit, Iranian National Society for the Study of Inborn Errors of Metabolism, Tehran, Iran
| | | | - Mohammad Reza Alaei
- Department of Pediatric Endocrinology and Metabolism, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Rohani
- Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran
| | - Sirous Zeinali
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
McCorvie TJ, Ferreira D, Yue WW, Froese DS. The complex machinery of human cobalamin metabolism. J Inherit Metab Dis 2023; 46:406-420. [PMID: 36680553 DOI: 10.1002/jimd.12593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Vitamin B12 (cobalamin, Cbl) is required as a cofactor by two human enzymes, 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) and methylmalonyl-CoA mutase (MMUT). Within the body, a vast array of transporters, enzymes and chaperones are required for the generation and delivery of these cofactor forms. How they perform these functions is dictated by the structure and interactions of the proteins involved, the molecular bases of which are only now being elucidated. In this review, we highlight recent insights into human Cbl metabolism and address open questions in the field by employing a protein structure and interactome based perspective. We discuss how three very similar proteins-haptocorrin, intrinsic factor and transcobalamin-exploit slight structural differences and unique ligand receptor interactions to effect selective Cbl absorption and internalisation. We describe recent advances in the understanding of how endocytosed Cbl is transported across the lysosomal membrane and the implications of the recently solved ABCD4 structure. We detail how MMACHC and MMADHC cooperate to modify and target cytosolic Cbl to the client enzymes MTR and MMUT using ingenious modifications to an ancient nitroreductase fold, and how MTR and MMUT link with their accessory enzymes to sustainably harness the supernucleophilic potential of Cbl. Finally, we provide an outlook on how future studies may combine structural and interactome based approaches and incorporate knowledge of post-translational modifications to bring further insights.
Collapse
Affiliation(s)
- Thomas J McCorvie
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Douglas Ferreira
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wyatt W Yue
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Li Z, Gouda H, Pillay S, Yaw M, Ruetz M, Banerjee R. The human B 12 trafficking chaperones: CblA, ATR, CblC and CblD. Methods Enzymol 2022; 668:137-156. [PMID: 35589192 PMCID: PMC9418966 DOI: 10.1016/bs.mie.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammals rely on an elaborate intracellular trafficking pathway for processing and delivering vitamin B12 to two client enzymes. CblC (also known as MMACHC) is postulated to receive the cofactor as it enters the cytoplasm and converts varied B12 derivatives to a common cob(II)alamin intermediate. CblD (or MMADHC) reacts with CblC-bound cob(II)alamin forming an interprotein thiolato-cobalt coordination complex and, by a mechanism that remains to be elucidated, transfers the cofactor to methionine synthase. In the mitochondrion, CblB (also known as MMAB or adenosyltransferase) synthesizes AdoCbl from cob(II)alamin and ATP in the presence of an electron donor. CblA (or MMAA), a GTPase, gates cofactor loading from CblB to methylmalonyl-CoA mutase and off-loading of cob(II)alamin in the reverse direction. This chapter focuses on assays for measuring the activities of the four B12 chaperones CblA-D.
Collapse
Affiliation(s)
- Zhu Li
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Harsha Gouda
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Shubhadra Pillay
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Madeline Yaw
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Markus Ruetz
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Edmonds KA, Jordan MR, Giedroc DP. COG0523 proteins: a functionally diverse family of transition metal-regulated G3E P-loop GTP hydrolases from bacteria to man. Metallomics 2021; 13:6327566. [PMID: 34302342 PMCID: PMC8360895 DOI: 10.1093/mtomcs/mfab046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
Transition metal homeostasis ensures that cells and organisms obtain sufficient metal to meet cellular demand while dispensing with any excess so as to avoid toxicity. In bacteria, zinc restriction induces the expression of one or more Zur (zinc-uptake repressor)-regulated Cluster of Orthologous Groups (COG) COG0523 proteins. COG0523 proteins encompass a poorly understood sub-family of G3E P-loop small GTPases, others of which are known to function as metallochaperones in the maturation of cobalamin (CoII) and NiII cofactor-containing metalloenzymes. Here, we use genomic enzymology tools to functionally analyse over 80 000 sequences that are evolutionarily related to Acinetobacter baumannii ZigA (Zur-inducible GTPase), a COG0523 protein and candidate zinc metallochaperone. These sequences segregate into distinct sequence similarity network (SSN) clusters, exemplified by the ZnII-Zur-regulated and FeIII-nitrile hydratase activator CxCC (C, Cys; X, any amino acid)-containing COG0523 proteins (SSN cluster 1), NiII-UreG (clusters 2, 8), CoII-CobW (cluster 4), and NiII-HypB (cluster 5). A total of five large clusters that comprise ≈ 25% of all sequences, including cluster 3 which harbors the only structurally characterized COG0523 protein, Escherichia coli YjiA, and many uncharacterized eukaryotic COG0523 proteins. We also establish that mycobacterial-specific protein Y (Mpy) recruitment factor (Mrf), which promotes ribosome hibernation in actinomycetes under conditions of ZnII starvation, segregates into a fifth SSN cluster (cluster 17). Mrf is a COG0523 paralog that lacks all GTP-binding determinants as well as the ZnII-coordinating Cys found in CxCC-containing COG0523 proteins. On the basis of this analysis, we discuss new perspectives on the COG0523 proteins as cellular reporters of widespread nutrient stress induced by ZnII limitation.
Collapse
Affiliation(s)
- Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Matthew R Jordan
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
10
|
Banerjee R, Gouda H, Pillay S. Redox-Linked Coordination Chemistry Directs Vitamin B 12 Trafficking. Acc Chem Res 2021; 54:2003-2013. [PMID: 33797888 DOI: 10.1021/acs.accounts.1c00083] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metals are partners for an estimated one-third of the proteome and vary in complexity from mononuclear centers to organometallic cofactors. Vitamin B12 or cobalamin represents the epitome of this complexity and is the product of an assembly line comprising some 30 enzymes. Unable to biosynthesize cobalamin, mammals rely on dietary provision of this essential cofactor, which is needed by just two enzymes, one each in the cytoplasm (methionine synthase) and the mitochondrion (methylmalonyl-CoA mutase). Brilliant clinical genetics studies on patients with inborn errors of cobalamin metabolism spanning several decades had identified at least seven genetic loci in addition to the two encoding B12 enzymes. While cells are known to house a cadre of chaperones dedicated to metal trafficking pathways that contain metal reactivity and confer targeting specificity, the seemingly supernumerary chaperones in the B12 pathway had raised obvious questions as to the rationale for their existence.With the discovery of the genes underlying cobalamin disorders, our laboratory has been at the forefront of ascribing functions to B12 chaperones and elucidating the intricate redox-linked coordination chemistry and protein-linked cofactor conformational dynamics that orchestrate the processing and translocation of cargo along the trafficking pathway. These studies have uncovered novel chemistry that exploits the innate chemical versatility of alkylcobalamins, i.e., the ability to form and dismantle the cobalt-carbon bond using homolytic or heterolytic chemistry. In addition, they have revealed the practical utility of the dimethylbenzimidazole tail, an appendage unique to cobalamins and absent in the structural cousins, porphyrin, chlorin, and corphin, as an instrument for facilitating cofactor transfer between active sites.In this Account, we navigate the chemistry of the B12 trafficking pathway from its point of entry into cells, through lysosomes, and into the cytoplasm, where incoming cobalamin derivatives with a diversity of upper ligands are denuded by the β-ligand transferase activity of CblC to the common cob(II)alamin intermediate. The broad reaction and lax substrate specificity of CblC also enables conversion of cyanocobalamin (technically, vitamin B12, i.e., the form of the cofactor in one-a-day supplements), to cob(II)alamin. CblD then hitches up with CblC via a unique Co-sulfur bond to cob(II)alamin at a bifurcation point, leading to the cytoplasmic methylcobalamin or mitochondrial 5'-deoxyadenosylcobalamin branch. Mutations at loci upstream of the junction point typically affect both branches, leading to homocystinuria and methylmalonic aciduria, whereas mutations in downstream loci lead to one or the other disease. Elucidation of the biochemical penalties associated with individual mutations is providing molecular insights into the clinical data and, in some instances, identifying which cobalamin derivative(s) might be therapeutically beneficial.Our studies on B12 trafficking are revealing strategies for cofactor sequestration and mobilization from low- to high-affinity and low- to high-coordination-number sites, which in turn are regulated by protein dynamics that constructs ergonomic cofactor binding pockets. While these B12 lessons might be broadly relevant to other metal trafficking pathways, much remains to be learned. This Account concludes by identifying some of the major gaps and challenges that are needed to complete our understanding of B12 trafficking.
Collapse
Affiliation(s)
- Ruma Banerjee
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Harsha Gouda
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shubhadra Pillay
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Jordan MR, Wang J, Weiss A, Skaar EP, Capdevila DA, Giedroc DP. Mechanistic Insights into the Metal-Dependent Activation of Zn II-Dependent Metallochaperones. Inorg Chem 2019; 58:13661-13672. [PMID: 31247880 DOI: 10.1021/acs.inorgchem.9b01173] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Members of the COG0523 subfamily of candidate GTPase metallochaperones function in bacterial transition-metal homeostasis, but the nature of the cognate metal, mechanism of metal transfer, and identification of target protein(s) for metal delivery remain open questions. Here, we explore the multifunctionality of members of the subfamily linked to delivering ZnII to apoprotein targets under conditions of host-imposed transition-metal depletion. We examine two zinc-uptake repressor (Zur)-regulated COG0523 family members, each from a major human pathogen, Acinetobacter baumannii (AbZigA) and Staphylococcus aureus (SaZigA), in an effort to develop a model for ZnII metallochaperone activity. ZnII chelator competition experiments reveal one high-affinity (KZn1 ≈ 1010-1011 M-1) metal-binding site in each GTPase, while AbZigA and SaZigA are characterized by an additional one and two (lower-affinity) metal-binding sites, respectively. CoII titrations reveal that both metallochaperones have similar electronic absorption characteristics that indicate the presence of two tetrahedral metal coordination sites. High-affinity metal binding at the CXCC motif activates the GTPase activity of both enzymes, with ZnII more effective than CoII. Both GTPases bind the product, GDP, more tightly in the apoprotein than the ZnII-bound state and exhibit what is best described as a "locked" conformation around the GTP substrate. Negative thermodynamic linkage is observed between nucleotide binding and metal binding, leading to a new mechanistic model for COG0523-catalyzed metal delivery.
Collapse
Affiliation(s)
| | | | - Andy Weiss
- Department of Pathology, Microbiology, and Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
| | | | | |
Collapse
|
12
|
Ruetz M, Campanello GC, McDevitt L, Yokom AL, Yadav PK, Watkins D, Rosenblatt DS, Ohi MD, Southworth DR, Banerjee R. Allosteric Regulation of Oligomerization by a B 12 Trafficking G-Protein Is Corrupted in Methylmalonic Aciduria. Cell Chem Biol 2019; 26:960-969.e4. [PMID: 31056463 DOI: 10.1016/j.chembiol.2019.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/07/2019] [Accepted: 03/25/2019] [Indexed: 10/26/2022]
Abstract
Allosteric regulation of methylmalonyl-CoA mutase (MCM) by the G-protein chaperone CblA is transduced via three "switch" elements that gate the movement of the B12 cofactor to and from MCM. Mutations in CblA and MCM cause hereditary methylmalonic aciduria. Unlike the bacterial orthologs used previously to model disease-causing mutations, human MCM and CblA exhibit a complex pattern of regulation that involves interconverting oligomers, which are differentially sensitive to the presence of GTP versus GDP. Patient mutations in the switch III region of CblA perturb the nucleotide-sensitive distribution of the oligomeric complexes with MCM, leading to loss of regulated movement of B12 to and/or from MCM and explain the molecular mechanism of the resulting disease.
Collapse
Affiliation(s)
- Markus Ruetz
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Gregory C Campanello
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Liam McDevitt
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Adam L Yokom
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pramod K Yadav
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Watkins
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - David S Rosenblatt
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|