1
|
Li J, Duan R, Traore ES, Nguyen RC, Davis I, Griffth WP, Goodwin DC, Jarzecki AA, Liu A. Indole N-Linked Hydroperoxyl Adduct of Protein-Derived Cofactor Modulating Catalase-Peroxidase Functions. Angew Chem Int Ed Engl 2024; 63:e202407018. [PMID: 39300819 DOI: 10.1002/anie.202407018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Bifunctional catalase-peroxidase (KatG) features a posttranslational methionine-tyrosine-tryptophan (MYW) crosslinked cofactor crucial for its catalase function, enabling pathogens to neutralize hydrogen peroxide during infection. We discovered the presence of indole nitrogen-linked hydroperoxyl adduct (MYW-OOH) in Mycobacterium tuberculosis KatG in the solution state under ambient conditions, suggesting its natural occurrence. By isolating predominantly MYW-OOH-containing KatG protein, we investigated the chemical stability and functional impact of MYW-OOH. We discovered that MYW-OOH inhibits catalase activity, presenting a unique temporary lock. Exposure to peroxide or increased temperature removes the hydroperoxyl adduct from the protein cofactor, converting MYW-OOH to MYW and restoring the detoxifying ability of the enzyme against hydrogen peroxide. Thus, the N-linked hydroperoxyl group is releasable. KatG with MYW-OOH represents a catalase dormant, but primed, state of the enzyme. These findings provide insight into chemical strategies targeting the bifunctional enzyme KatG in pathogens, highlighting the role of N-linked hydroperoxyl modifications in enzymatic function.
Collapse
Affiliation(s)
- Jiasong Li
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Ran Duan
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Ephrahime S Traore
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Romie C Nguyen
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Ian Davis
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Wendell P Griffth
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Douglas C Goodwin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | - Andrzej A Jarzecki
- Department of Chemistry and Biochemistry, Brooklyn College, New York, NY 11210, USA
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
2
|
Switala J, Donald L, Ivancich A. A remarkable peroxidase-like behavior of the catalase KatA from the pathogenic bacteria Helicobacter pylori: The oxidation reaction with formate as substrate and the stabilization of an [Fe(IV) = O Trp •] intermediate assessed by multifrequency EPR spectroscopy. J Inorg Biochem 2024; 257:112594. [PMID: 38749080 DOI: 10.1016/j.jinorgbio.2024.112594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 05/04/2024] [Indexed: 06/09/2024]
Abstract
We have characterized the catalytic cycle of the Helicobacter pylori KatA catalase (HPC). H. pylori is a human and animal pathogen responsible for gastrointestinal infections. Multifrequency (9-285 GHz) EPR spectroscopy was applied to identify the high-valent intermediates (5 ≤ pH ≤ 8.5). The broad (2000 G) 9-GHz EPR spectrum consistent with the [Fe(IV) = O Por•+] intermediate was detected, and showed a clear pH dependence on the exchange-coupling of the radical (delocalized over the porphyrin moiety) due to the magnetic interaction with the ferryl iron. In addition, Trp• (for pH ≤ 6) and Tyr• (for 5 ≤ pH ≤ 8.5) species were distinguished by the advantageous resolution of their g-values in the 285-GHz EPR spectrum. The unequivocal identification of the high-valent intermediates in HPC by their distinct EPR spectra allowed us to address their reactivity towards substrates. The stabilization of an [Fe(IV) = O Trp•] species in HPC, unprecedented in monofunctional catalases and possibly involved in the oxidation of formate to the formyloxyl radical at pH ≤ 6, is reminiscent of intermediates previously identified in the catalytic cycle of bifunctional catalase-peroxidases. The 2e- oxidation of formate by the [Fe(IV) = O Por•+] species, both at basic and acidic pH conditions, involving a 1H+/2e- oxidation in a cytochrome P450 peroxygenase-like reaction is proposed. Our findings demonstrate that moonlighting by the H. pylori catalase includes formate oxidation, an enzymatic reaction possibly related to the unique strategy of the neutrophile bacterium for gastric colonization, that is the release of CO2 to regulate the pH in the acidic environment.
Collapse
Affiliation(s)
- Jacek Switala
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Lynda Donald
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Anabella Ivancich
- Bioénergétique et Ingénierie des Protéines, UMR 7281 and IMM FR3479, CNRS, Aix-Marseille Univ., 31 chemin Joseph Aiguier, 13009 Marseille, France.
| |
Collapse
|
3
|
Anwar S, Alrumaihi F, Sarwar T, Babiker AY, Khan AA, Prabhu SV, Rahmani AH. Exploring Therapeutic Potential of Catalase: Strategies in Disease Prevention and Management. Biomolecules 2024; 14:697. [PMID: 38927099 PMCID: PMC11201554 DOI: 10.3390/biom14060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The antioxidant defense mechanisms play a critical role in mitigating the deleterious effects of reactive oxygen species (ROS). Catalase stands out as a paramount enzymatic antioxidant. It efficiently catalyzes the decomposition of hydrogen peroxide (H2O2) into water and oxygen, a potentially harmful byproduct of cellular metabolism. This reaction detoxifies H2O2 and prevents oxidative damage. Catalase has been extensively studied as a therapeutic antioxidant. Its applications range from direct supplementation in conditions characterized by oxidative stress to gene therapy approaches to enhance endogenous catalase activity. The enzyme's stability, bioavailability, and the specificity of its delivery to target tissues are significant hurdles. Furthermore, studies employing conventional catalase formulations often face issues related to enzyme purity, activity, and longevity in the biological milieu. Addressing these challenges necessitates rigorous scientific inquiry and well-designed clinical trials. Such trials must be underpinned by sound experimental designs, incorporating advanced catalase formulations or novel delivery systems that can overcome existing limitations. Enhancing catalase's stability, specificity, and longevity in vivo could unlock its full therapeutic potential. It is necessary to understand the role of catalase in disease-specific contexts, paving the way for precision antioxidant therapy that could significantly impact the treatment of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratory Technology, Mohan Institute of Nursing and Paramedical Sciences, Mohan Group of Institutions, Bareilly 243302, India;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Tarique Sarwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Sitrarasu Vijaya Prabhu
- Department of Biotechnology, Microbiology and Bioinformatics, National College (Autonomous), Tiruchirapalli 620001, India;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
4
|
Uribe-Vázquez B, Díaz-Vilchis A, Avila-Linares A, Saab-Rincón G, Marín-Tovar Y, Flores H, Pastor N, Huerta-Miranda G, Rudiño-Piñera E, Soberón X. Characterization of a catalase-peroxidase variant (L333V-KatG) identified in an INH-resistant Mycobacterium tuberculosis clinical isolate. Biochem Biophys Rep 2024; 37:101649. [PMID: 38318524 PMCID: PMC10839757 DOI: 10.1016/j.bbrep.2024.101649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/24/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Mycobacterium tuberculosis catalase-peroxidase (Mt-KatG) is a bifunctional heme-dependent enzyme that has been shown to activate isoniazid (INH), the widely used antibiotic against tuberculosis (TB). The L333V-KatG variant has been associated with INH resistance in clinical M. tuberculosis isolates from Mexico. To understand better the mechanisms of INH activation, its catalytic properties (catalase, peroxidase, and IN-NAD formation) and crystal structure were compared with those of the wild-type enzyme (WT-KatG). The rate of IN-NAD formation mediated by WT-KatG was 23% greater than L333V-KatG when INH concentration is varied. In contrast to WT-KatG, the crystal structure of the L333V-KatG variant has a perhydroxy modification of the indole nitrogen of W107 from MYW adduct. L333V-KatG shows most of the active site residues in a similar position to WT-KatG; only R418 is in the R-conformation instead of the double R and Y conformation present in WT-KatG. L333V-KatG shows a small displacement respect to WT-KatG in the helix from R385 to L404 towards the mutation site, an increase in length of the coordination bond between H270 and heme Fe, and a longer H-bond between proximal D381 and W321, compared to WT-KatG; these small displacements could explain the altered redox potential of the heme, and result in a less active and stable enzyme.
Collapse
Affiliation(s)
- Brenda Uribe-Vázquez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, México
| | - Adelaida Díaz-Vilchis
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, México
| | - Aylin Avila-Linares
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, México
| | - Gloria Saab-Rincón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, México
| | - Yerli Marín-Tovar
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, México
| | - Humberto Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, México
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, UAEM, Avenida Universidad 1001, Colonia Chamilpa, 62209, Cuernavaca, Morelos, México
| | - Guillermo Huerta-Miranda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, México
| | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, México
| | - Xavier Soberón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, México
| |
Collapse
|
5
|
Nguyen RC, Davis I, Dasgupta M, Wang Y, Simon PS, Butryn A, Makita H, Bogacz I, Dornevil K, Aller P, Bhowmick A, Chatterjee R, Kim IS, Zhou T, Mendez D, Paley D, Fuller F, Alonso-Mori R, Batyuk A, Sauter NK, Brewster AS, Orville AM, Yachandra VK, Yano J, Kern JF, Liu A. In Situ Structural Observation of a Substrate- and Peroxide-Bound High-Spin Ferric-Hydroperoxo Intermediate in the P450 Enzyme CYP121. J Am Chem Soc 2023; 145:25120-25133. [PMID: 37939223 PMCID: PMC10799213 DOI: 10.1021/jacs.3c04991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The P450 enzyme CYP121 from Mycobacterium tuberculosis catalyzes a carbon-carbon (C-C) bond coupling cyclization of the dityrosine substrate containing a diketopiperazine ring, cyclo(l-tyrosine-l-tyrosine) (cYY). An unusual high-spin (S = 5/2) ferric intermediate maximizes its population in less than 5 ms in the rapid freeze-quenching study of CYP121 during the shunt reaction with peracetic acid or hydrogen peroxide in acetic acid solution. We show that this intermediate can also be observed in the crystalline state by EPR spectroscopy. By developing an on-demand-rapid-mixing method for time-resolved serial femtosecond crystallography with X-ray free-electron laser (tr-SFX-XFEL) technology covering the millisecond time domain and without freezing, we structurally monitored the reaction in situ at room temperature. After a 200 ms peracetic acid reaction with the cocrystallized enzyme-substrate microcrystal slurry, a ferric-hydroperoxo intermediate is observed, and its structure is determined at 1.85 Å resolution. The structure shows a hydroperoxyl ligand between the heme and the native substrate, cYY. The oxygen atoms of the hydroperoxo are 2.5 and 3.2 Å from the iron ion. The end-on binding ligand adopts a near-side-on geometry and is weakly associated with the iron ion, causing the unusual high-spin state. This compound 0 intermediate, spectroscopically and structurally observed during the catalytic shunt pathway, reveals a unique binding mode that deviates from the end-on compound 0 intermediates in other heme enzymes. The hydroperoxyl ligand is only 2.9 Å from the bound cYY, suggesting an active oxidant role of the intermediate for direct substrate oxidation in the nonhydroxylation C-C bond coupling chemistry.
Collapse
Affiliation(s)
- Romie C. Nguyen
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| | - Ian Davis
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| | - Medhanjali Dasgupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Yifan Wang
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| | - Philipp S. Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Agata Butryn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Kednerlin Dornevil
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| | - Pierre Aller
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - In-Sik Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Tiankun Zhou
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Derek Mendez
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Daniel Paley
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Franklin Fuller
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Roberto Alonso-Mori
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Alexander Batyuk
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Jan F. Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| |
Collapse
|
6
|
Abstract
Some oxidoreductase enzymes use redox-active tyrosine, tryptophan, cysteine, and/or glycine residues as one-electron, high-potential redox (radical) cofactors. Amino-acid radical cofactors typically perform one of four tasks-they work in concert with a metallocofactor to carry out a multielectron redox process, serve as storage sites for oxidizing equivalents, activate the substrate molecules, or move oxidizing equivalents over long distances. It is challenging to experimentally resolve the thermodynamic and kinetic redox properties of a single-amino-acid residue. The inherently reactive and highly oxidizing properties of amino-acid radicals increase the experimental barriers further still. This review describes a family of stable and well-structured model proteins that was made specifically to study tyrosine and tryptophan oxidation-reduction. The so-called α3X model protein system was combined with very-high-potential protein film voltammetry, transient absorption spectroscopy, and theoretical methods to gain a comprehensive description of the thermodynamic and kinetic properties of protein tyrosine and tryptophan radicals.
Collapse
Affiliation(s)
- Cecilia Tommos
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA;
| |
Collapse
|
7
|
Gray HB, Winkler JR. Functional and protective hole hopping in metalloenzymes. Chem Sci 2021; 12:13988-14003. [PMID: 34760183 PMCID: PMC8565380 DOI: 10.1039/d1sc04286f] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023] Open
Abstract
Electrons can tunnel through proteins in microseconds with a modest release of free energy over distances in the 15 to 20 Å range. To span greater distances, or to move faster, multiple charge transfers (hops) are required. When one of the reactants is a strong oxidant, it is convenient to consider the movement of a positively charged "hole" in a direction opposite to that of the electron. Hole hopping along chains of tryptophan (Trp) and tyrosine (Tyr) residues is a critical function in several metalloenzymes that generate high-potential intermediates by reactions with O2 or H2O2, or by activation with visible light. Examination of the protein structural database revealed that Tyr/Trp chains are common protein structural elements, particularly among enzymes that react with O2 and H2O2. In many cases these chains may serve a protective role in metalloenzymes by deactivating high-potential reactive intermediates formed in uncoupled catalytic turnover.
Collapse
Affiliation(s)
- Harry B Gray
- Beckman Institute, California Institute of Technology 1200 E California Boulevard Pasadena CA 19925 USA
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology 1200 E California Boulevard Pasadena CA 19925 USA
| |
Collapse
|
8
|
A new regime of heme-dependent aromatic oxygenase superfamily. Proc Natl Acad Sci U S A 2021; 118:2106561118. [PMID: 34667125 DOI: 10.1073/pnas.2106561118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Two histidine-ligated heme-dependent monooxygenase proteins, TyrH and SfmD, have recently been found to resemble enzymes from the dioxygenase superfamily currently named after tryptophan 2,3-dioxygenase (TDO), that is, the TDO superfamily. These latest findings prompted us to revisit the structure and function of the superfamily. The enzymes in this superfamily share a similar core architecture and a histidine-ligated heme. Their primary functions are to promote O-atom transfer to an aromatic metabolite. TDO and indoleamine 2,3-dioxygenase (IDO), the founding members, promote dioxygenation through a two-step monooxygenation pathway. However, the new members of the superfamily, including PrnB, SfmD, TyrH, and MarE, expand its boundaries and mediate monooxygenation on a broader set of aromatic substrates. We found that the enlarged superfamily contains eight clades of proteins. Overall, this protein group is a more sizeable, structure-based, histidine-ligated heme-dependent, and functionally diverse superfamily for aromatics oxidation. The concept of TDO superfamily or heme-dependent dioxygenase superfamily is no longer appropriate for defining this growing superfamily. Hence, there is a pressing need to redefine it as a heme-dependent aromatic oxygenase (HDAO) superfamily. The revised concept puts HDAO in the context of thiol-ligated heme-based enzymes alongside cytochrome P450 and peroxygenase. It will update what we understand about the choice of heme axial ligand. Hemoproteins may not be as stringent about the type of axial ligand for oxygenation, although thiolate-ligated hemes (P450s and peroxygenases) more frequently catalyze oxygenation reactions. Histidine-ligated hemes found in HDAO enzymes can likewise mediate oxygenation when confronted with a proper substrate.
Collapse
|
9
|
Forget SM, Xia F(R, Hein JE, Brumer H. Determination of biocatalytic parameters of a copper radical oxidase using real-time reaction progress monitoring. Org Biomol Chem 2020; 18:2076-2084. [DOI: 10.1039/c9ob02757b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
VTNA is applied to reaction progress curves to glean key kinetic and mechanistic details for a copper radical oxidase.
Collapse
Affiliation(s)
- Stephanie M. Forget
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
- Michael Smith Laboratories
| | - Fan (Roderick) Xia
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
- Michael Smith Laboratories
| | - Jason E. Hein
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Harry Brumer
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
- Michael Smith Laboratories
| |
Collapse
|
10
|
Chakravarty D, Bihani SC, Banerjee M, Ballal A. Novel molecular insights into the anti-oxidative stress response and structure-function of a salt-inducible cyanobacterial Mn-catalase. PLANT, CELL & ENVIRONMENT 2019; 42:2508-2521. [PMID: 30993731 DOI: 10.1111/pce.13563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/07/2019] [Indexed: 06/09/2023]
Abstract
KatB, a salt-inducible Mn-catalase, protects the cyanobacterium Anabaena from salinity/oxidative stress. In this report, we provide distinctive insights into the biological-biochemical function of KatB at the molecular level. Anabaena overexpressing the wild-type KatB protein (KatBWT) detoxified H2 O2 efficiently, showing reduced burden of reactive oxygen species compared with the strain overproducing KatBF2V (wherein F-2 is replaced by V). Correspondingly, the KatBWT protein also displayed several folds more activity than KatBF2V. Interestingly, the KatB variants with large hydrophobic amino acids (F/W/Y) were more compact, showed enhanced activity, and were resistant to thermal/chemical denaturation than variants with smaller residues (G/A/V) at the second position. X-ray crystallography-based analysis showed that F-2 was required for appropriate interactions between two subunits. These contacts provided stability to the hexamer, making it more compact. F-2, through its interaction with F-66 and W-43, formed the proper hydrophobic pocket that held the active site together. Consequently, only residues that supported activity (i.e., F/Y/W) were selected at the second position in Mn-catalases during evolution. This study (a) demonstrates that modification of nonactive site residues can alter the response of catalases to environmental stress and (b) has expanded the scope of amino acids that can be targeted for rational protein engineering in plants.
Collapse
Affiliation(s)
- Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Subhash C Bihani
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
11
|
Zanetti-Polzi L, Daidone I, Corni S. Evidence of a Thermodynamic Ramp for Hole Hopping to Protect a Redox Enzyme from Oxidative Damage. J Phys Chem Lett 2019; 10:1450-1456. [PMID: 30855973 DOI: 10.1021/acs.jpclett.9b00403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Redox proteins and enzymes are at risk of irreversible oxidative damage from highly oxidizing intermediates generated in the active site in the case of unsuccessful functional reaction. Chains of tyrosine and/or tryptophan residues have been recently proposed to provide protection to the active site and the whole protein by delivering oxidizing equivalents (holes) out of the protein via a multistep hopping mechanism. In the present work we use a hybrid quantum/classical theoretical-computational methodology based on the perturbed matrix method and on molecular dynamics simulations to calculate the oxidation potential difference along a chain of tyrosine and tryptophan residues in a human redox enzyme of major importance, a superoxide dismutase, which acts as antioxidant defense. We show that the hole hopping is thermodynamically favored along such a chain and that the hopping propensity is strongly affected by the protein environment and in particular by the active site and its second coordination sphere.
Collapse
Affiliation(s)
- Laura Zanetti-Polzi
- Department of Physical and Chemical Sciences , University of L'Aquila , via Vetoio (Coppito 1) , 67010 L'Aquila , Italy
| | - Isabella Daidone
- Department of Physical and Chemical Sciences , University of L'Aquila , via Vetoio (Coppito 1) , 67010 L'Aquila , Italy
| | - Stefano Corni
- Department of Chemical Sciences , University of Padova , I-35131 Padova , Italy
- Center S3 , CNR-Institute of Nanoscience , Via Campi 213/A , 41125 Modena , Italy
| |
Collapse
|
12
|
Wang B, Fita I, Rovira C. Theory Uncovers the Role of the Methionine-Tyrosine-Tryptophan Radical Adduct in the Catalase Reaction of KatGs: O2
Release Mediated by Proton-Coupled Electron Transfer. Chemistry 2018; 24:5388-5395. [DOI: 10.1002/chem.201706076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Binju Wang
- Departament de Química Inorgànica i Orgànica, (secció de Química Orgànica) &, Institut de Química Teòrica i Computacional (IQTCUB); Universitat de Barcelona; Martí i Franquès 1 08028 Barcelona Spain
| | - Ignacio Fita
- Instituto de Biología Molecular (IBMB-CSIC) and; Maria de Maeztu Unit of Excellence. Barcelona Science Park; Baldiri i Reixac 10. 08028 Barcelona Spain
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica, (secció de Química Orgànica) &, Institut de Química Teòrica i Computacional (IQTCUB); Universitat de Barcelona; Martí i Franquès 1 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA); Passeig Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
13
|
Ma Z, Strickland KT, Cherne MD, Sehanobish E, Rohde KH, Self WT, Davidson VL. The Rv2633c protein of Mycobacterium tuberculosis is a non-heme di-iron catalase with a possible role in defenses against oxidative stress. J Biol Chem 2017; 293:1590-1595. [PMID: 29242190 DOI: 10.1074/jbc.ra117.000421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/13/2017] [Indexed: 12/19/2022] Open
Abstract
The Rv2633c gene in Mycobacterium tuberculosis is rapidly up-regulated after macrophage infection, suggesting that Rv2633c is involved in M. tuberculosis pathogenesis. However, the activity and role of the Rv2633c protein in host colonization is unknown. Here, we analyzed the Rv2633c protein sequence, which revealed the presence of an HHE cation-binding domain common in hemerythrin-like proteins. Phylogenetic analysis indicated that Rv2633c is a member of a distinct subset of hemerythrin-like proteins exclusive to mycobacteria. The Rv2633c sequence was significantly similar to protein sequences from other pathogenic strains within that subset, suggesting that these proteins are involved in mycobacteria virulence. We expressed and purified the Rv2633c protein in Escherichia coli and found that it contains two iron atoms, but does not behave like a hemerythrin. It migrated as a dimeric protein during size-exclusion chromatography. It was not possible to reduce the protein or observe any evidence for its interaction with O2 However, Rv2633c did exhibit catalase activity with a kcat of 1475 s-1 and Km of 10.1 ± 1.7 mm Cyanide and azide inhibited the catalase activity with Ki values of 3.8 μm and 37.7 μm, respectively. Rv2633c's activity was consistent with a role in defenses against oxidative stress generated during host immune responses after M. tuberculosis infection of macrophages. We note that Rv2633c is the first example of a non-heme di-iron catalase, and conclude that it is a member of a subset of hemerythrin-like proteins exclusive to mycobacteria, with likely roles in protection against host defenses.
Collapse
Affiliation(s)
- Zhongxin Ma
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Kyle T Strickland
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Michelle D Cherne
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Esha Sehanobish
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Kyle H Rohde
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - William T Self
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Victor L Davidson
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| |
Collapse
|