1
|
Shevtsov M, Bobkov D, Yudintceva N, Likhomanova R, Kim A, Fedorov E, Fedorov V, Mikhailova N, Oganesyan E, Shabelnikov S, Rozanov O, Garaev T, Aksenov N, Shatrova A, Ten A, Nechaeva A, Goncharova D, Ziganshin R, Lukacheva A, Sitovskaya D, Ulitin A, Pitkin E, Samochernykh K, Shlyakhto E, Combs SE. Membrane-bound Heat Shock Protein mHsp70 Is Required for Migration and Invasion of Brain Tumors. CANCER RESEARCH COMMUNICATIONS 2024; 4:2025-2044. [PMID: 39015084 PMCID: PMC11317918 DOI: 10.1158/2767-9764.crc-24-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Molecular chaperones, especially 70 kDa heat shock protein, in addition to their intracellular localization in cancer cells, can be exposed on the surface of the plasma membrane. We report that the membrane-associated chaperone mHsp70 of malignant brain tumors is required for high migratory and invasive activity of cancer cells. Live-cell inverted confocal microscopy of tumor samples from adult (n = 23) and pediatric (n = 9) neurooncologic patients showed pronounced protein expression on the membrane, especially in the perifocal zone. Mass spectrometry analysis of lipid rafts isolated from tumor cells confirmed the presence of the protein in the chaperone cluster (including representatives of other families, such as Hsp70, Hsc70, Hsp105, and Hsp90), which in turn, during interactome analysis, was associated with proteins involved in cell migration (e.g., Rac1, RhoC, and myosin-9). The use of small-molecule inhibitors of HSP70 (PES and JG98) led to a substantial decrease in the invasive potential of cells isolated from a tumor sample of patients, which indicates the role of the chaperone in invasion. Moreover, the use of HSP70 inhibitors in animal models of orthotopic brain tumors significantly delayed tumor progression, which was accompanied by an increase in overall survival. Data demonstrate that chaperone inhibitors, particularly JG98, disrupt the function of mHsp70, thereby providing an opportunity to better understand the diverse functions of this protein and offer aid in the development of novel cancer therapies. SIGNIFICANCE Membrane-bound mHsp70 is required for brain tumor cell migration and invasion and therefore could be employed as a target for anticancer therapies.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia.
| | - Danila Bobkov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia.
| | - Natalia Yudintceva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Ruslana Likhomanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Alexander Kim
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Evegeniy Fedorov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Viacheslav Fedorov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Natalia Mikhailova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Elena Oganesyan
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Sergey Shabelnikov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Oleg Rozanov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Timur Garaev
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Nikolay Aksenov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Alla Shatrova
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Artem Ten
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia.
| | - Anastasiya Nechaeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Daria Goncharova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Rustam Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.
| | - Anastasiya Lukacheva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Daria Sitovskaya
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Alexey Ulitin
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Emil Pitkin
- Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Evgeny Shlyakhto
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Stephanie E. Combs
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
2
|
Meng H, Yang R, Lin Q, Du W, Chu Z, Cao Y, Du M, Zhao Y, Xu J, Yang Z, Xie X, He L, Huang C. Isorhapontigenin inhibition of basal muscle-invasive bladder cancer attributed to its downregulation of SNHG1 and DNMT3b. BMC Cancer 2024; 24:737. [PMID: 38879516 PMCID: PMC11180402 DOI: 10.1186/s12885-024-12490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Bladder cancer (BC) is among the most prevalent malignant urothelial tumors globally, yet the prognosis for patients with muscle-invasive bladder cancer (MIBC) remains dismal, with a very poor 5-year survival rate. Consequently, identifying more effective and less toxic chemotherapeutic alternatives is critical for enhancing clinical outcomes for BC patients. Isorhapontigenin (ISO), a novel stilbene isolated from a Gnetum found in certain provinces of China, has shown potential as an anticancer agent due to its diverse anticancer activities. Despite its promising profile, the specific anticancer effects of ISO on BC and the underlying mechanisms are still largely unexplored. METHODS The anchorage-independent growth, migration and invasion of BC cells were assessed by soft agar and transwell invasion assays, respectively. The RNA levels of SOX2, miR-129 and SNHG1 were quantified by qRT-PCR, while the protein expression levels were validated through Western blotting. Furthermore, methylation-specific PCR was employed to assess the methylation status of the miR-129 promoter. Functional assays utilized siRNA knockdown, plasmid-mediated overexpression, and chemical inhibition approaches. RESULTS Our study demonstrated that ISO treatment significantly reduced SNHG1 expression in a dose- and time-dependent manner in BC cells, leading to the inhibition of anchorage-independent growth and invasion in human basal MIBC cells. This effect was accompanied by the downregulation of MMP-2 and MMP-9 and the upregulation of the tumor suppressor PTEN. Further mechanistic investigations revealed that SOX2, a key upstream regulator of SNHG1, played a crucial role in mediating the ISO-induced transcriptional suppression of SNHG1. Additionally, we found that ISO treatment led to a decrease in DNMT3b protein levels, which in turn mediated the hypomethylation of the miR-129 promoter and the subsequent suppression of SOX2 mRNA 3'-UTR activity, highlighting a novel pathway through which ISO exerts its anticancer effects. CONCLUSIONS Collectively, our study highlights the critical role of SNHG1 downregulation as well as its upstream DNMT3b/miR-129/SOX2 axis in mediating ISO anticancer activity. These findings not only elucidate the mechanism of action of ISO but also suggest novel targets for BC therapy.
Collapse
Affiliation(s)
- Hao Meng
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Rui Yang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qianqian Lin
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Wenqi Du
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zheng Chu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yaxin Cao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Mengxiang Du
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Yazhen Zhao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Jiheng Xu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ziyi Yang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Xiaomin Xie
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lijiong He
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Chuanshu Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China.
| |
Collapse
|
3
|
Suchitha GP, Balaya RDA, Raju R, Keshava Prasad TS, Dagamajalu S. A network map of cytoskeleton-associated protein 4 (CKAP4) mediated signaling pathway in cancer. J Cell Commun Signal 2023; 17:1097-1104. [PMID: 36944905 PMCID: PMC10409693 DOI: 10.1007/s12079-023-00739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
Cytoskeleton-associated protein 4 (CKAP4) is a non-glycosylated type II transmembrane protein that serves as a cell surface-activated receptor. It is expressed primarily in the plasma membranes of bladder epithelial cells, type II alveolar pneumocytes, and vascular smooth muscle cells. CKAP4 is involved in various biological activities including cell proliferation, cell migration, keratinocyte differentiation, glycogenesis, fibrosis, thymic development, cardiogenesis, neuronal apoptosis, and cancer. CKAP4 has been described as a pro-tumor molecule that regulates the progression of various cancers, including lung cancer, breast cancer, esophageal squamous cell carcinoma, hepatocellular carcinoma, cervical cancer, oral cancer, bladder cancer, cholangiocarcinoma, pancreatic cancer, myeloma, renal cell carcinoma, melanoma, squamous cell carcinoma, colorectal cancer, and osteosarcoma. CKAP4 and its isoform bind to DKK1 or DKK3 (Dickkopf proteins) or antiproliferative factor (APF) and regulates several downstream signaling cascades. The CKAP4 complex plays a crucial role in regulating the signaling pathways including PI3K/AKT and MAPK1/3. Recently, CKAP4 has been recognized as a potential target for cancer therapy. Due to its biomedical importance, we integrated a network map of CKAP4. The available literature on CKAP4 signaling was manually curated according to the NetPath annotation criteria. The consolidated pathway map comprises 41 activation/inhibition events, 21 catalysis events, 35 molecular associations, 134 gene regulation events, 83 types of protein expression, and six protein translocation events. CKAP4 signaling pathway map data is freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5322 ). Generation of CKAP4 signaling pathway map.
Collapse
Affiliation(s)
- G. P. Suchitha
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | | | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| |
Collapse
|
4
|
Hamad M, Ali A, Muhammad JS. BRD4 regulates the induction and maintenance of cancer stem cells in squamous cell carcinoma. Stem Cell Investig 2022; 9:6. [PMID: 36393920 PMCID: PMC9640355 DOI: 10.21037/sci-2022-033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/18/2022] [Indexed: 01/25/2023]
Affiliation(s)
- Mawieh Hamad
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates;,Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Amjad Ali
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates;,Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
5
|
Xie Q, Hua X, Huang C, Liao X, Tian Z, Xu J, Zhao Y, Jiang G, Huang H, Huang C. SOX2 Promotes Invasion in Human Bladder Cancers through MMP2 Upregulation and FOXO1 Downregulation. Int J Mol Sci 2022; 23:ijms232012532. [PMID: 36293387 PMCID: PMC9604292 DOI: 10.3390/ijms232012532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
SOX2, a member of the SRY-related HMG-box (SOX) family, is abnormally expressed in many tumors and associated with cancer stem cell-like properties. Previous reports have shown that SOX2 is a biomarker for cancer stem cells in human bladder cancer (BC), and our most recent study has indicated that the inhibition of SOX2 by anticancer compound ChlA-F attenuates human BC cell invasion. We now investigated the mechanisms through which SOX2 promotes the invasive ability of BC cells. Our studies revealed that SOX2 promoted SKP2 transcription and increased SKP2-accelerated Sp1 protein degradation. As Sp1 is a transcriptionally regulated gene, HUR transcription was thereby attenuated, and, in the absence of HUR, FOXO1 mRNA was degraded fast, which promoted BC cell invasion. In addition, SOX2 promoted BC invasion through the upregulation of nucleolin transcription, which resulted in increased MMP2 mRNA stability and expression. Collectively, our findings show that SOX2 promotes BC invasion through both SKP2-Sp1-HUR-FOXO1 and nucleolin-MMP2 dual axes.
Collapse
Affiliation(s)
- Qipeng Xie
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
- Department of Clinical Laboratory, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaohui Hua
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Chao Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (C.H.); (C.H.); Tel.: +86-135-2288-7554 (Chuanshu Huang)
| | - Xin Liao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiheng Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Yunping Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haishan Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
- Correspondence: (C.H.); (C.H.); Tel.: +86-135-2288-7554 (Chuanshu Huang)
| |
Collapse
|
6
|
Huang M, Hua X, Xu J, Tian Z, Wang J, Chen H, Wang X, Shu P, Ye H, Shu J, Huang C. Induction of p27 contributes to inhibitory effect of isorhapontigenin (ISO) on malignant transformation of human urothelial cells. Cell Cycle 2022:1-14. [PMID: 35532178 DOI: 10.1080/15384101.2022.2074623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/31/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022] Open
Abstract
Bladder cancer (BC) is the most expensive cancer to manage on a per-patient basis, costing about $4 billion in total healthcare expenditure per annum in America alone. Therefore, identifying a natural compound for prevention of BC is of tremendous importance for managing this disease. Previous studies have identified isorhapontigenin (ISO) as having an 85% preventive effect against invasive BC formation induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). The results showed here that ISO treatment inhibited EGF-induced cell transformation of human urothelial cells through induction of tumor suppressor p27 transcription secondary to activation of an E2F1-dependentpathway.ISOtreatmentrenderedcellsresistanttoEGF-induced anchorage-independent growth concurrent with p27 protein induction in both UROtsa and SV-HUC-1 cells. ISO inhibition of EGF-induced cell transformation could be completely reversed by knockdown of p27, indicating that this protein was essential for the noted ISO inhibitory action. Mechanistic studies revealed that ISO treatment resulted in increased expression of E2F1, which in turn bound to its binding site in p27 promoter and initiated p27 transcription. The E2F1 induction was due to the elevation of its translation caused by ISO-induced miR-205 downregulation. Consistently, miR-205 was found to be overexpressed in human BCs, and ectopic expression of miR-205 mitigated ISO inhibitory effects against EGF-induced outcomes. Collectively, the results here demonstrate that ISO exhibits its preventive effect on EGF-induced human urothelial cell transformation by induction of p27 through a miR-205/E2F1 axis. This is distinct from what has been described for the therapeutic effects of ISO on human BC cells.
Collapse
Affiliation(s)
- Maowen Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Xiaohui Hua
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiheng Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiajing Wang
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Hengchao Chen
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Xuyao Wang
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Peng Shu
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Hongyan Ye
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Jianfeng Shu
- HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Li LY, Yang Q, Jiang YY, Yang W, Jiang Y, Li X, Hazawa M, Zhou B, Huang GW, Xu XE, Gery S, Zhang Y, Ding LW, Ho AS, Zumsteg ZS, Wang MR, Fullwood MJ, Freedland SJ, Meltzer SJ, Xu LY, Li EM, Koeffler HP, Lin DC. Interplay and cooperation between SREBF1 and master transcription factors regulate lipid metabolism and tumor-promoting pathways in squamous cancer. Nat Commun 2021; 12:4362. [PMID: 34272396 PMCID: PMC8285542 DOI: 10.1038/s41467-021-24656-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/29/2021] [Indexed: 02/05/2023] Open
Abstract
Squamous cell carcinomas (SCCs) comprise one of the most common histologic types of human cancer. Transcriptional dysregulation of SCC cells is orchestrated by tumor protein p63 (TP63), a master transcription factor (TF) and a well-researched SCC-specific oncogene. In the present study, both Gene Set Enrichment Analysis (GSEA) of SCC patient samples and in vitro loss-of-function assays establish fatty-acid metabolism as a key pathway downstream of TP63. Further studies identify sterol regulatory element binding transcription factor 1 (SREBF1) as a central mediator linking TP63 with fatty-acid metabolism, which regulates the biosynthesis of fatty-acids, sphingolipids (SL), and glycerophospholipids (GPL), as revealed by liquid chromatography tandem mass spectrometry (LC-MS/MS)-based lipidomics. Moreover, a feedback co-regulatory loop consisting of SREBF1/TP63/Kruppel like factor 5 (KLF5) is identified, which promotes overexpression of all three TFs in SCCs. Downstream of SREBF1, a non-canonical, SCC-specific function is elucidated: SREBF1 cooperates with TP63/KLF5 to regulate hundreds of cis-regulatory elements across the SCC epigenome, which converge on activating cancer-promoting pathways. Indeed, SREBF1 is essential for SCC viability and migration, and its overexpression is associated with poor survival in SCC patients. Taken together, these data shed light on mechanisms of transcriptional dysregulation in cancer, identify specific epigenetic regulators of lipid metabolism, and uncover SREBF1 as a potential therapeutic target and prognostic marker in SCC.
Collapse
Affiliation(s)
- Li-Yan Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China.
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Qian Yang
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yan-Yi Jiang
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wei Yang
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yuan Jiang
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiang Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Bo Zhou
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Guo-Wei Huang
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Sigal Gery
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ying Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Allen S Ho
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zachary S Zumsteg
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Melissa J Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Stephen J Freedland
- Division of Urology, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, USA and the Durham VA Medical Center, Durham, NC, USA
| | - Stephen J Meltzer
- Departments of Medicine and Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China.
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China.
| | - H Phillip Koeffler
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - De-Chen Lin
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Loveless R, Teng Y. Targeting WASF3 Signaling in Metastatic Cancer. Int J Mol Sci 2021; 22:ijms22020836. [PMID: 33467681 PMCID: PMC7830529 DOI: 10.3390/ijms22020836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence indicates that cancer metastasis is regulated by specific genetic pathways independent of those controlling tumorigenesis and cancer growth. WASF3, a Wiskott–Aldrich syndrome protein family member, appears to play a major role not only in the regulation of actin cytoskeleton dynamics but also in cancer cell invasion/metastasis. Recent studies have highlighted that WASF3 is a master regulator and acts as a pivotal scaffolding protein, bringing the various components of metastatic signaling complexes together both spatially and temporally. Herein, targeting WASF3 at the levels of transcription, protein stability, and phosphorylation holds great promise for metastasis suppression, regardless of the diverse genetic backgrounds associated with tumor development. This review focuses on the critical and distinct contributions of WASF3 in the regulation of signal pathways promoting cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +17064465611; Fax: +17067219415
| |
Collapse
|
9
|
Xu J, Yang R, Hua X, Huang M, Tian Z, Li J, Lam HY, Jiang G, Cohen M, Huang C. lncRNA SNHG1 Promotes Basal Bladder Cancer Invasion via Interaction with PP2A Catalytic Subunit and Induction of Autophagy. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:354-366. [PMID: 32650234 PMCID: PMC7340968 DOI: 10.1016/j.omtn.2020.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/15/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
Although basal muscle-invasive bladder cancers (MIBCs) are predominant, are more aggressive, and have bad prognoses, molecular mechanisms underlying how basal MIBC formation/progression have been barely explored. In the present study, SNHG1, a long non-coding RNA, was shown to be expressed at higher levels in basal MIBC cells than in other types of bladder BC cells, and its presence could promote basal MIBC cell invasion. The results revealed that SNHG1 specifically induced MMP2 expression via increasing its transcription and mRNA stability. In one mechanism, SNHG1 directly bound with PP2A catalytic subunit (PP2A-c) to inhibit interactions of PP2A-c with c-Jun and then promoted c-Jun phosphorylation that, in turn, mediated MMP2 transcription. In another mechanism, SNHG1 markedly induced autophagy in the cells via induction of increases in the abundance of autophagy-related proteins. The latter initiated autophagy and further abolished miR-34a stability, which reduced overall miR-34a binding directly to the 3' UTR of MMP2 mRNA, thereby promoting MMP2 mRNA stabilization. These results provided novel insight into understanding the specific functions of SNHG1 in basal MIBC. Such findings may ultimately prove highly significant for the design/synthesis of new SNHG1-based compounds for the treatment of basal MIBC patients.
Collapse
Affiliation(s)
- Jiheng Xu
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, USA
| | - Rui Yang
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, USA
| | - Xiaohui Hua
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, USA
| | - Maowen Huang
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, USA
| | - Zhongxian Tian
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, USA
| | - Jingxia Li
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, USA
| | - Hoi Yun Lam
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, USA
| | - Guosong Jiang
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, USA
| | - Mitchell Cohen
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, USA
| | - Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, USA.
| |
Collapse
|
10
|
Kobayashi K, Matsushima-Nishiwaki R, Yamada N, Migita S, Hioki T, Mizutani D, Kozawa O. Heat shock protein 70 positively regulates transforming growth factor-α-induced hepatocellular carcinoma cell migration via the AKT signaling pathway. Heliyon 2020; 6:e05002. [PMID: 33005803 PMCID: PMC7519371 DOI: 10.1016/j.heliyon.2020.e05002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Heat shock proteins (HSPs) are induced in response to extracellular stress and manage the quality of proteins as molecular chaperones. HSP70, a highly conserved HSP, has been reported to correlate with the proliferation and migration of human cancer cells, such as oral, prostate, lung and liver cancer. Regarding hepatocellular carcinoma (HCC), the HSP70 levels in the tumor tissues from patients are significantly higher than those in the normal liver tissues. HSP70 reportedly upregulates the migration and invasion of HCC. The AKT, p38 mitogen-activated protein kinase (MAPK), c-jun N-terminal kinase (JNK) and Rho-kinase signaling pathways regulate the transforming growth factor (TGF)-α-induced migration of human HCC-derived HuH7 cells. However, the exact mechanism underlying the role of HSP70 in growth factor-induced HCC migration remains unclear. Therefore, in the present study, the mechanism underlying the involvement of HSP70 in TGF-α-induced HCC cell migration was investigated. Treatment with the HSP70 inhibitors VER155008 and YM-08 and the downregulation of HSP70 protein were confirmed to significantly suppress the TGF-α-induced cell migration of HuH7 cells. Both VER155008 and YM-08 reduced the TGF-α-induced phosphorylation of AKT without affecting the phosphorylation of p38 MAPK, JNK or Rho-kinase. These results strongly suggest that HSP70 positively regulates the TGF-α-induced migration of HCC cells via the AKT signaling pathway.
Collapse
Affiliation(s)
- Kaido Kobayashi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Noriko Yamada
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Saori Migita
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoyuki Hioki
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Dermatology, Kizawa Memorial Hospital, Minokamo, Gifu, Japan
| | - Daisuke Mizutani
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
11
|
Biber G, Ben-Shmuel A, Sabag B, Barda-Saad M. Actin regulators in cancer progression and metastases: From structure and function to cytoskeletal dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:131-196. [PMID: 33066873 DOI: 10.1016/bs.ircmb.2020.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cytoskeleton is a central factor contributing to various hallmarks of cancer. In recent years, there has been increasing evidence demonstrating the involvement of actin regulatory proteins in malignancy, and their dysregulation was shown to predict poor clinical prognosis. Although enhanced cytoskeletal activity is often associated with cancer progression, the expression of several inducers of actin polymerization is remarkably reduced in certain malignancies, and it is not completely clear how these changes promote tumorigenesis and metastases. The complexities involved in cytoskeletal induction of cancer progression therefore pose considerable difficulties for therapeutic intervention; it is not always clear which cytoskeletal regulator should be targeted in order to impede cancer progression, and whether this targeting may inadvertently enhance alternative invasive pathways which can aggravate tumor growth. The entire constellation of cytoskeletal machineries in eukaryotic cells are numerous and complex; the system is comprised of and regulated by hundreds of proteins, which could not be covered in a single review. Therefore, we will focus here on the actin cytoskeleton, which encompasses the biological machinery behind most of the key cellular functions altered in cancer, with specific emphasis on actin nucleating factors and nucleation-promoting factors. Finally, we discuss current therapeutic strategies for cancer which aim to target the cytoskeleton.
Collapse
Affiliation(s)
- G Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - A Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - B Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - M Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
12
|
Li X, Geng J, Ren Z, Xiong C, Li Y, Liu H. WAVE3 upregulation in esophageal squamous cell carcinoma and its effect on the migration of human esophageal cancer cell lines in vitro. Mol Med Rep 2020; 22:465-473. [PMID: 32377706 PMCID: PMC7248532 DOI: 10.3892/mmr.2020.11126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/31/2020] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to investigate the role of Wiskott-Aldrich syndrome verprolin-homologous protein 3 (WAVE3) in the progression of esophageal squamous cell carcinoma (ESCC), and to explore its effect on the migration of esophageal cancer cell lines in vitro. The expression level of WAVE3 in ESCC tissues was determined via immunohistochemistry, and the relative levels of WAVE3 mRNA and micro (mi)RNA200b were assessed in the serum of patients with ESCC using reverse transcription-quantitative PCR (RT-qPCR). Following cell transfection, the levels of miRNA200b and WAVE3 protein were determined via RT-qPCR and western blot analysis, and cell migration was examined using a Transwell assay. Subsequently, the clinical parameters were used to analyze whether the expression of WAVE3 in tissues and serum was associated with the occurrence and development of ESCC. The results demonstrated that the expression of WAVE3 was increased in ESCC tissues compared with normal tissues. The results also revealed increased expression levels of WAVE3 and decreased expression levels of miRNA200b in the serum of patients with ESCC, compared with healthy volunteers. High expression of WAVE3 was significantly associated with tumor TNM stage, invasion depth and lymphatic invasion of ESCC. In cells transfected with miRNA200b mimic, the miRNA200b was overexpressed, WAVE3 protein was downregulated and cell migration ability was decreased. The results of the present study suggest that WAVE3 may serve as an oncogene in ESCC, and its inhibition via miRNA200b decreased tumor cell migration. Therefore, WAVE3 may serve as a novel biological marker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Xuebing Li
- Department of Medical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jie Geng
- Department of Medical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhenzhen Ren
- Department of Medical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chao Xiong
- Department of Medical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yuqing Li
- Department of Medical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hongchun Liu
- Department of Medical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
13
|
Zhou X, Li J, Teng J, Liu Y, Zhang D, Liu L, Zhang W. Long noncoding RNA BSN-AS2 induced by E2F1 promotes spinal osteosarcoma progression by targeting miR-654-3p/SYTL2 axis. Cancer Cell Int 2020; 20:133. [PMID: 32351327 PMCID: PMC7183609 DOI: 10.1186/s12935-020-01205-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal osteosarcoma (OS) is a rare and aggressive malignancy. Long noncoding RNA (lncRNA) BSN-AS2 has been shown to be an oncogenic gene in several cancers. However, the role and function of BSN-AS2 in spinal OS were unfamiliar. Our study identified that BSN-AS2 expression was boosted in spinal OS tissues and cell lines. Transcription factor E2F1 induced the upregulation of BSN-AS2 expression in spinal OS cells. Afterwards, loss-of-function assays indicated that BSN-AS2 depletion reduced cell proliferation, migration and invasion as well as promoted cell apoptosis in spinal OS. Thereafter, RIP, RNA pull down and luciferase reporter assays manifested BSN-AS2 could sponge miR-654-3p in spinal OS. After that, the binding effect of between miR-654-3p and SYTL2 was proved. Finally, rescue experiments illustrated that miR-654-3p inhibition or SYTL2 overexpression could counteract the inhibitory effect caused by BSN-AS2 deficiency on spinal OS progression. In conclusion, the availability of miR-654-3p was antagonized by E2F1-induced BSN-AS2 for SYTL2-meidated spinal OS progression.
Collapse
Affiliation(s)
- Xianwei Zhou
- Spine Surgery, Luoyang Orthopedic Hospital of Henan Province, No. 100 Yongping Road, Zhengzhou, 450000 Henan China
| | - Jitian Li
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province, Zhengzhou, 450000 Henan China
| | - Junyan Teng
- Department of Osteoarthrosis & Health Management Center, Luoyang Orthopedic Hospital of Henan Province, Zhengzhou, 450000 Henan China
| | - Yufeng Liu
- Spine Surgery, Luoyang Orthopedic Hospital of Henan Province, No. 100 Yongping Road, Zhengzhou, 450000 Henan China
| | - Di Zhang
- Spine Surgery, Luoyang Orthopedic Hospital of Henan Province, No. 100 Yongping Road, Zhengzhou, 450000 Henan China
| | - Linyun Liu
- Department of Osteoarthrosis & Health Management Center, Luoyang Orthopedic Hospital of Henan Province, Zhengzhou, 450000 Henan China
| | - Wenming Zhang
- Spine Surgery, Luoyang Orthopedic Hospital of Henan Province, No. 100 Yongping Road, Zhengzhou, 450000 Henan China
| |
Collapse
|
14
|
Xu J, Hua X, Yang R, Jin H, Li J, Zhu J, Tian Z, Huang M, Jiang G, Huang H, Huang C. XIAP Interaction with E2F1 and Sp1 via its BIR2 and BIR3 domains specific activated MMP2 to promote bladder cancer invasion. Oncogenesis 2019; 8:71. [PMID: 31811115 PMCID: PMC6898186 DOI: 10.1038/s41389-019-0181-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 11/09/2022] Open
Abstract
XIAP has generally been thought to function in bladder cancer. However, the potential function of structure-based function of XIAP in human BC invasion has not been well explored before. We show here that ectopic expression of the BIR domains of XIAP specifically resulted in MMP2 activation and cell invasion in XIAP-deleted BC cells, while Src was further defined as an XIAP downstream negative regulator for MMP2 activation and BC cell invasion. The inhibition of Src expression by the BIR domains was caused by attenuation of Src protein translation upon miR-203 upregulation; which was resulted from direct interaction of BIR2 and BIR3 with E2F1 and Sp1, respectively. The interaction of BIR2/BIR3 with E2F1/Sp1 unexpectedly occurred, which could be blocked by serum-induced XIAP translocation. Taken together, our studies, for the first time revealed that: (1) BIR2 and BIR3 domains of XIAP play their role in cancer cell invasion without affecting cell migration by specific activation of MMP2 in human BC cells; (2) by BIR2 interacting with E2F1 and BIR3 interacting with Sp1, XIAP initiates E2F1/Sp1 positive feedback loop-dependent transcription of miR-203, which in turn inhibits Src protein translation, further leading to MMP2-cleaved activation; (3) XIAP interaction with E2F1 and Sp1 is observed in the nucleus. Our findings provide novel insights into understanding the specific function of BIR2 and BIR3 of XIAP in BC invasion, which will be highly significant for the design/synthesis of new BIR2/BIR3-based compounds for invasive BC treatment.
Collapse
Affiliation(s)
- Jiheng Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Xiaohui Hua
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Rui Yang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Zhongxian Tian
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Maowen Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China.
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA.
| |
Collapse
|
15
|
Elmallah MIY, Cordonnier M, Vautrot V, Chanteloup G, Garrido C, Gobbo J. Membrane-anchored heat-shock protein 70 (Hsp70) in cancer. Cancer Lett 2019; 469:134-141. [PMID: 31669516 DOI: 10.1016/j.canlet.2019.10.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022]
Abstract
Hsp70 is a highly conserved and inducible heat shock protein that belongs to the HSP70 family of molecular chaperones and plays a central role in protein homeostasis. The main function of Hsp70 is to protect cells from physiological, pathological and environmental insults, as it assists an ATP-dependent manner the process of protein folding. Since Hsp70 provides critical cell survival functions, cancer cells are assumed to rely on this chaperone. Strong evidence suggests that Hsp70 is upregulated in different type of cancers and is involved in tumor growth, invasion, migration and resistance to anti-cancer therapy. Interestingly, this Hsp70 upregulation induces Hsp70 re-location into plasma membrane. In this review, the role of Hsp70 in cancer will be discussed focusing particularly on the extracellular membrane-bound Hsp70. The mechanism by which Hsp70 is translocated to plasma membrane of tumor cells and the recent discoveries of drugs targeting this Hsp70 in cancer therapy will be also highlighted.
Collapse
Affiliation(s)
- Mohammed I Y Elmallah
- INSERM 1231, Label Ligue National contre le Cancer and Label d'excellence LipSTIC, 7 Bd Jeanne d'Arc, 21000, Dijon, France; Anti-cancer Center Georges-François Leclerc, Dijon, France; Chemistry Department, Faculty of Science, Helwan University, 11795, Ain Helwan, Cairo, Egypt.
| | - Marine Cordonnier
- INSERM 1231, Label Ligue National contre le Cancer and Label d'excellence LipSTIC, 7 Bd Jeanne d'Arc, 21000, Dijon, France; Faculty of Medicine. University of Burgundy-Franche-Comté, France
| | - Valentin Vautrot
- INSERM 1231, Label Ligue National contre le Cancer and Label d'excellence LipSTIC, 7 Bd Jeanne d'Arc, 21000, Dijon, France; Anti-cancer Center Georges-François Leclerc, Dijon, France; University of Bourgogne Franche-Comté, EA 3181, France
| | - Gaëtan Chanteloup
- INSERM 1231, Label Ligue National contre le Cancer and Label d'excellence LipSTIC, 7 Bd Jeanne d'Arc, 21000, Dijon, France; Faculty of Medicine. University of Burgundy-Franche-Comté, France
| | - Carmen Garrido
- INSERM 1231, Label Ligue National contre le Cancer and Label d'excellence LipSTIC, 7 Bd Jeanne d'Arc, 21000, Dijon, France; Anti-cancer Center Georges-François Leclerc, Dijon, France; Faculty of Medicine. University of Burgundy-Franche-Comté, France.
| | - Jessica Gobbo
- INSERM 1231, Label Ligue National contre le Cancer and Label d'excellence LipSTIC, 7 Bd Jeanne d'Arc, 21000, Dijon, France; Anti-cancer Center Georges-François Leclerc, Dijon, France
| |
Collapse
|
16
|
Zhang L, Gao X, Zhou X, Qin Z, Wang Y, Li R, Tang M, Wang W, Zhang W. Identification of key genes and microRNAs involved in kidney Wilms tumor by integrated bioinformatics analysis. Exp Ther Med 2019; 18:2554-2564. [PMID: 31555364 PMCID: PMC6755433 DOI: 10.3892/etm.2019.7870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/27/2019] [Indexed: 12/11/2022] Open
Abstract
Wilms tumor (WT) is one of the most common types of pediatric solid tumors; however, its molecular mechanisms remain unclear. The present study aimed to identify key genes and microRNAs (miRNAs), and to predict the underlying molecular mechanisms of WT using integrated bioinformatics analysis. Original gene expression profiles were downloaded from the Gene Expression Omnibus (GEO; accession, GSE66405) and The Cancer Genome Atlas (TCGA) databases. Similarly, miRNA expression patterns were downloaded from GEO (accession, GSE57370) and TCGA. R version 3.5.0 software was used to identify differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) using the limma and edgeR packages. Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology analyses were performed to examine the biological functions of the DEGs. Additionally, a protein-protein interaction (PPI) network was constructed to screen hub gene modules using Cytoscape software. By predicting target genes of the DEMs and integrating them with DEGs, the present study constructed a miRNA-mRNA regulatory network to predict the possible molecular mechanism of WT. Expression of hub genes was validated using the Oncomine database. A total of 613 genes and 29 miRNAs were identified to be differentially expressed in WT. By constructing a PPI network and screening hub gene modules, 5 upregulated genes, including BUB1 mitotic checkpoint serine/threonine kinase, BUB1B mitotic checkpoint serine/threonine kinase B, cell division cycle protein 45, cyclin B2 and pituitary tumor-transforming 1. These genes were identified to be associated with the cell cycle pathway, which suggested that these genes may serve important roles in WT. In addition, a miRNA-mRNA regulatory network was constructed and comprised 16 DEMs and 19 DEGs. In conclusion, key genes, miRNAs and the mRNA-miRNA regulatory network identified in the present study may improve understanding of the underlying molecular mechanisms in the occurrence and development of WT, and may aid the identification of potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xian Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhiqiang Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yi Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ran Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Min Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
17
|
Rocca MS, Di Nisio A, Sabovic I, Ghezzi M, Foresta C, Ferlin A. E2F1 copy number variations contribute to spermatogenic impairment and cryptorchidism by increasing susceptibility to heat stress. Andrology 2019; 7:251-256. [PMID: 30659775 DOI: 10.1111/andr.12583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Copy number variations (CNVs) play an important role in the onset of several diseases, and recently research focused on the relationship between these structural variants and diseases of the reproductive tract, including male infertility and cryptorchidism. OBJECTIVES To evaluate the contribution of copy number variations of E2F1 gene to idiopathic male infertility and the factors influencing expression of this gene. MATERIALS AND METHODS We performed a retrospective study on 540 subjects recruited from September 2014 to February 2015. TaqMan CNV assay was used to analyze E2F1 CNV. Real-time PCR was used to assess E2F1 and HSP70 expression level in heat stressed and transfected cells with three E2F1 copies. RESULTS We found a significant difference in the frequency of altered E2F1 copies in patients (12/343, 3.5%) compared with controls (0/197) (p = 0.005). Six patients with E2F1 CNV had history of cryptorchidism, but the prevalence between men with idiopathic infertility (6/243, 2.5%) and infertile men with history of cryptorchidism (6/100, 6.0%) was not statistically different (p = 0.1). E2F1 expression increased under heat stress conditions, especially in cells carrying more copies of gene and this was associated with increased expression of HSP70. DISCUSSION Our data suggest that an abnormal E2F1 expression caused by multiple copies of E2F1 gene predisposes to the onset of infertility and that the risk further increases if subjects with altered E2F1 copies have stressful conditions, such as heat stress or history of cryptorchidism. CONCLUSION This study shows a link between E2F1 CNV and male infertility, suggesting that the increased risk of spermatogenic impairment associated with higher E2F1 copies might be due to higher susceptibility to stressful conditions.
Collapse
Affiliation(s)
- M S Rocca
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - A Di Nisio
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - I Sabovic
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - M Ghezzi
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - C Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - A Ferlin
- Department of Clinical and Experimental Sciences, Unit of Endocrinology, University of Brescia, Brescia, Italy
| |
Collapse
|
18
|
Uno Y, Kanda M, Miwa T, Umeda S, Tanaka H, Tanaka C, Kobayashi D, Suenaga M, Hattori N, Hayashi M, Yamada S, Nakayama G, Fujiwara M, Kodera Y. Increased Expression of DNAJC12 is Associated with Aggressive Phenotype of Gastric Cancer. Ann Surg Oncol 2019; 26:836-844. [PMID: 30617870 DOI: 10.1245/s10434-018-07149-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Identification of gastric cancer-related molecules is necessary to elucidate the pathological mechanisms of this heterogeneous disease. The purpose of this study was to identify novel genes associated with aggressive phenotypes of gastric cancer. METHODS Global expression profiling was conducted using tissues from four patients with metastatic gastric cancer to identify genes overexpressed in gastric cancer. Fifteen gastric cell lines and 262 pairs of surgically resected gastric tissues were subjected to mRNA expression analysis. The contribution of the candidate gene on gastric cancer cell proliferation, invasion, adhesion, and migration were evaluated using small interfering RNA. RESULTS DnaJ heat shock protein family (Hsp40) member C12 (DNAJC12) was identified as a candidate gene by transcriptome analysis. In clinical samples, DNAJC12 mRNA levels were higher in gastric cancer tissues compared with normal adjacent tissues. Patients with high DNAJC12 expression showed significantly shorter overall survival in our cohort and in the extra-validation cohort analyzed by a published microarray dataset. High DNAJC12 expression in gastric cancer tissues was significantly associated with lymphatic involvement, infiltrative growth type, lymph node metastasis, and advanced stage and was identified as an independent prognostic factor for overall survival in multivariable analysis. Increased expression of DNAJC12 was found in 12 of 14 examined gastric cancer cell lines. Knockdown of DNAJC12 expression significantly decreased the proliferation and invasion abilities of gastric cancer cells. CONCLUSIONS Our findings support DNAJC12 as a candidate gene associated with aggressive phenotypes of gastric cancer.
Collapse
Affiliation(s)
- Yasuo Uno
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Takashi Miwa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Umeda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruyoshi Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaya Suenaga
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norifumi Hattori
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
19
|
Yan H, Li J, Ying Y, Xie H, Chen H, Xu X, Zheng X. MIR-300 in the imprinted DLK1-DIO3 domain suppresses the migration of bladder cancer by regulating the SP1/MMP9 pathway. Cell Cycle 2018; 17:2790-2801. [PMID: 30526300 DOI: 10.1080/15384101.2018.1557490] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Emerging research has suggested that miRNAs play a significant role in oncogenesis and tumor progression by regulating multiple molecular pathways. Here, we investigated miR-300, which inhibited bladder cancer (BCa) migration by regulating the SP1/MMP9 pathway. miR-300, belonging to the DLK1-DIO3 miRNA cluster, is frequently expressed at lower levels in BCa tissue than in adjacent normal tissue due to DNA methylation. Reinforced expression of miR-300 significantly suppressed the migration of BCa cells. We carried out a search of online databases to predict potential targets of miR-300. Further studies determined that miR-300 directly targeted SP1 and suppressed its expression by specifically binding to its 3'-untranslated region. Meanwhile, downregulated MMP9 may be the final effector of BCa cell mobility. Small interference RNAs silencing SP1 phenocopied the effects of miR-300 overexpression, while restoration of SP1 expression partially rescued the inhibition of metastasis induced by miR-300 overexpression in BCa cells. In conclusion, we unveiled a miR-300/SP1/MMP9 pathway in BCa. These findings demonstrate that miR-300 is a promising tumor suppressor in BCa.
Collapse
Affiliation(s)
- Huaqing Yan
- a Department of Urology, First Affiliated Hospital , Zhejiang University , Hangzhou , Zhejiang Province , China
| | - Jiangfeng Li
- a Department of Urology, First Affiliated Hospital , Zhejiang University , Hangzhou , Zhejiang Province , China
| | - Yufan Ying
- a Department of Urology, First Affiliated Hospital , Zhejiang University , Hangzhou , Zhejiang Province , China
| | - Haiyun Xie
- a Department of Urology, First Affiliated Hospital , Zhejiang University , Hangzhou , Zhejiang Province , China
| | - Hong Chen
- a Department of Urology, First Affiliated Hospital , Zhejiang University , Hangzhou , Zhejiang Province , China
| | - Xin Xu
- a Department of Urology, First Affiliated Hospital , Zhejiang University , Hangzhou , Zhejiang Province , China
| | - Xiangyi Zheng
- a Department of Urology, First Affiliated Hospital , Zhejiang University , Hangzhou , Zhejiang Province , China
| |
Collapse
|
20
|
Li X, Tian Z, Jin H, Xu J, Hua X, Yan H, Liufu H, Wang J, Li J, Zhu J, Huang H, Huang C. Decreased c-Myc mRNA Stability via the MicroRNA 141-3p/AUF1 Axis Is Crucial for p63α Inhibition of Cyclin D1 Gene Transcription and Bladder Cancer Cell Tumorigenicity. Mol Cell Biol 2018; 38:e00273-18. [PMID: 30104251 PMCID: PMC6189456 DOI: 10.1128/mcb.00273-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/15/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022] Open
Abstract
Bladder cancer (BC) ranks as the sixth most common cancer in the United States and is the leading cause of death in patients with urinary malignancies. p63 is a member of the p53 family and is believed to function as a tumor suppressor in human BCs. Our most recent studies revealed a previously unknown function of the RING of XIAP in promoting microRNA 4295 (miR-4295) transcription, thereby reducing p63α protein translation and enhancing normal urothelial transformation, whereas p63α upregulates hsp70 transcription, subsequently activating the HSP70/Wasf3/Wave3/matrix metalloproteinase 9 (MMP-9) axis and promoting BC cell invasion via initiating the transcription factor E2F1. In this study, we found that p63α inhibited cyclin D1 protein expression, subsequently decreasing the ability of BC cell anchorage-independent growth in vitro and tumorigenicity in vivo Mechanistic studies demonstrated that p63α expression is able to downregulate cyclin D1 gene transcription through attenuation of c-Myc mRNA stability. We further show that the reduction of miR-141-3p expression by p63α directly releases its inhibition of 3' untranslated region (UTR) activity of AU-rich element RNA-binding factor 1 (AUF1) mRNA, thereby increasing AUF1 protein translation and further resulting in degradation of c-Myc mRNA, which, in turn, reduces cyclin D1 gene transcription and BC cell anchorage-independent growth. Collectively, our results demonstrate that p63α is a negative regulator of BC cell tumorigenic growth, a distinctly different function than its promotion of BC invasion, thus providing further new insight into the "two faces" of p63α in regulation of BC cell tumorigenic growth and progression/invasion.
Collapse
Affiliation(s)
- Xin Li
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Zhongxian Tian
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiheng Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Xiaohui Hua
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Huiying Yan
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huating Liufu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Junlan Zhu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| |
Collapse
|
21
|
Molecular pathogenesis of interstitial cystitis based on microRNA expression signature: miR-320 family-regulated molecular pathways and targets. J Hum Genet 2018. [PMID: 29531336 DOI: 10.1038/s10038-018-0419-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Interstitial cystitis (IC), also known as bladder pain syndrome, is a chronic inflammatory disease that affects the bladder. The symptoms of IC vary, including feeling an urgent need for immediate urination and of needing to urinate often, as well as bladder or pelvic pain. Despite its high incidence, no molecular diagnostic methods are available for IC, and the molecular pathogenesis is unknown. microRNAs (miRNA) can regulate expression of RNA transcripts in cells and aberrant expression of miRNAs is associated with several human diseases. Here, we investigated the molecular pathogenesis of IC based on miRNA expression signatures. RNA sequencing of miRNA levels in IC tissues and comparison with levels in normal bladder tissue and bladder cancer revealed dysregulated expression of 366 miRNAs (203 and 163 down- and upregulated miRNAs, respectively). In particular, miR-320 family miRNAs(miR-320a, miR-320b, miR-320c, miR-320d and miR-320e) had downregulated expression in IC tissues. Genome-wide gene expression analyses and in silico database analyses showed that three transcription factors, E2F-1, E2F-2 and TUB, are regulated by miR-320 family miRNAs. Immunostaining of IC tissues confirmed that these transcription factors are overexpressed in IC tissues. Novel approaches that identify aberrantly expressed miRNA regulatory networks in IC could provide new prognostic markers and therapeutic targets for this disease.
Collapse
|
22
|
Önay Uçar E, Şengelen A, Mertoğlu E, Pekmez M, Arda N. Suppression of HSP70 Expression by Quercetin and Its Therapeutic Potential Against Cancer. HSP70 IN HUMAN DISEASES AND DISORDERS 2018. [DOI: 10.1007/978-3-319-89551-2_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Nguyen PH, Greene E, Kong BW, Bottje W, Anthony N, Dridi S. Acute Heat Stress Alters the Expression of Orexin System in Quail Muscle. Front Physiol 2017; 8:1079. [PMID: 29311994 PMCID: PMC5742252 DOI: 10.3389/fphys.2017.01079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/07/2017] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidences indicate that the hypothalamic neuropeptide orexins or hypocretins are involved in stress-induced responses in mammals. Recently, we found that orexin is expressed and secreted from avian muscle cells, however its regulation is still unknown. In this study, we investigated the effect of heat and oxidative stress, the most challenging stressors in poultry production, on the expression of orexin system in quail muscle tissues and myoblast cell lines. Four week-old genetically selected susceptible and resistant Japanese quail (Coturnix coturnix Japonica) lines were exposed to acute heat stress (HS, 37°C for 1.5 h) or maintained at thermoneutral conditions (24°C). Quail myoblast (QM7) cell line was exposed to heat stress (45°C) for 0.5, 1, 2, or 4 h. The control cells were maintained at 37°C. The cells were also treated with several doses of hydrogen peroxide (H2O2, 10-200 μM) or 4-Hydroxynonenal (4-HNE, 10-30 μM) as oxidative stress. Untreated cells were used as controls. Acute HS significantly induced the expression of HSP70 and down-regulated orexin system in both quail muscle tissue and QM7 cells. Similarly, H2O2 but not 4-HNE treatment significantly increased HSP70 protein levels and dysregulated the expression of orexin and its related receptors in a dose-dependent manner in QM7 cells. Transient overexpression of HSP70 down-regulated the expression of orexin system in QM7 cells. Taken together, these data indicate that orexin may be a key player in stress response in avian muscle by demonstrating that heat and oxidative stress alter the expression of orexin system in quail muscle. This effect might be mediated through HSP70. Unraveling the upstream regulators and downstream effectors of orexin in avian muscle merits further in depth investigations.
Collapse
Affiliation(s)
- Phuong H Nguyen
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Elisabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Byung-Whi Kong
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Walter Bottje
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Nicholas Anthony
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
24
|
Wen Z, Liang C, Pan Q, Wang Y. Eya2 overexpression promotes the invasion of human astrocytoma through the regulation of ERK/MMP9 signaling. Int J Mol Med 2017; 40:1315-1322. [PMID: 28901379 PMCID: PMC5627874 DOI: 10.3892/ijmm.2017.3132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 08/14/2017] [Indexed: 01/09/2023] Open
Abstract
The overexpression of eyes absent (Eya) 2 has been found in several human cancers. However, its biological roles and clinical significance in human astrocytoma have not yet been explored. This study investigated the clinical significance and biological roles of Eya2 in human astrocytoma tissues and cell lines. Using immunohistochemistry, we found Eya2 overexpression in 33 out of 90 (36.7%) astrocytoma specimens. The rate of Eya2 overexpression was higher in grade III-IV (48.1%) than in grade Ⅰ+Ⅱ astrocytomas (21.1%). Transfection with an Eya2 expression plasmid was performed in A172 cells with a low endogenous expression of Eya2 and the knockdown of Eya2 was carried out in U251 cells with a high endogenous expression using siRNA. Eya2 overexpression induced A172 cell proliferation and invasion, while the knockdown of Eya2 using siRNA decreased the proliferation and invasion of U251 cells. In addition, we found that transfection with the Eya2 expression plasmid facilitated cell cycle progression, and that the knockdown of Eya2 inhibited cell cycle progression, accompanied by a change in the expression of cell cycle-related proteins, including cyclin D1 and cyclin E. Eya2 also positively regulated extracellular signal-regulated kinase (ERK) activity and matrix metalloproteinase (MMP)9 expression. The blockade of ERK signaling using an inhibitor abolished the effects of Eya2 on A172 cell invasion and MMP9 production. In addition, we found that there was a positive correlation between Eya2 and Six1 in the astrocytoma cell lines. Immunoprecipitation revealed that Eya2 interacted with Six1 protein in the U251 cell line, which exhibited a high expression of both proteins. Eya2 failed to upregulate MMP expression in the A172 cells in which Six1 was silenced. On the whole, our data indicate that Eya2 may serve as a potential oncoprotein in human astrocytoma. Eya2 regulates astrocytoma cell proliferation and invasion, possibly through the regulation of ERK signaling.
Collapse
Affiliation(s)
- Zhifeng Wen
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chuansheng Liang
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qichen Pan
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yunjie Wang
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|