1
|
Ran H, He Q, Han Y, Wang J, Wang H, Yue B, Zhang M, Chai Z, Cai X, Zhong J, Wang H. Functional study and epigenetic targets analyses of SIRT1 in intramuscular preadipocytes via ChIP-seq and mRNA-seq. Epigenetics 2023; 18:2135194. [PMID: 36264146 PMCID: PMC9980681 DOI: 10.1080/15592294.2022.2135194] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The SIRT1 epigenetic regulator is involved in hepatic lipid homoeostasis. However, the role of SIRT1 in regulating intramuscular fat deposition as well as the pathways and potential epigenetic targets involved remain unknown. Herein, we investigate SIRT1 function, its genome-wide epigenetic target profile, and transcriptomic changes under SIRT1 overexpression during yak intramuscular preadipocytes differentiation. To this end, we analysed the relationship between SIRT1 and intramuscular fat content as well as lipid metabolism-related genes in longissimus dorsi tissue. We found that SIRT1 expression negatively correlates with intramuscular fat content as well as with the expression of genes related to lipid synthesis, while positively correlating with that of fatty acid oxidation-involved genes. SIRT1 overexpression in intramuscular preadipocytes significantly reduced adipose differentiation marker expression, intracellular triacylglycerol content, and lipid deposition. Chromatin immunoprecipitation coupled with high-throughput sequencing of H3K4ac (a known direct target of SIRT1) and high-throughput mRNA sequencing results revealed that SIRT1 may regulate intramuscular fat deposition via three potential new transcription factors (NRF1, NKX3.1, and EGR1) and four genes (MAPK1, RXRA, AGPAT1, and HADH) implicated in protein processing within the endoplasmic reticulum pathway and the MAPK signalling pathway in yaks. Our study provides novel insights into the role of SIRT1 in regulating yak intramuscular fat deposition and may help clarify the mechanistic determinants of yak meat characteristics.
Collapse
Affiliation(s)
- Hongbiao Ran
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Qiuya He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Yuting Han
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Ming Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Yasir M, Park J, Chun W. EWS/FLI1 Characterization, Activation, Repression, Target Genes and Therapeutic Opportunities in Ewing Sarcoma. Int J Mol Sci 2023; 24:15173. [PMID: 37894854 PMCID: PMC10607184 DOI: 10.3390/ijms242015173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Despite their clonal origins, tumors eventually develop into complex communities made up of phenotypically different cell subpopulations, according to mounting evidence. Tumor cell-intrinsic programming and signals from geographically and temporally changing microenvironments both contribute to this variability. Furthermore, the mutational load is typically lacking in childhood malignancies of adult cancers, and they still exhibit high cellular heterogeneity levels largely mediated by epigenetic mechanisms. Ewing sarcomas represent highly aggressive malignancies affecting both bone and soft tissue, primarily afflicting adolescents. Unfortunately, the outlook for patients facing relapsed or metastatic disease is grim. These tumors are primarily fueled by a distinctive fusion event involving an FET protein and an ETS family transcription factor, with the most prevalent fusion being EWS/FLI1. Despite originating from a common driver mutation, Ewing sarcoma cells display significant variations in transcriptional activity, both within and among tumors. Recent research has pinpointed distinct fusion protein activities as a principal source of this heterogeneity, resulting in markedly diverse cellular phenotypes. In this review, we aim to characterize the role of the EWS/FLI fusion protein in Ewing sarcoma by exploring its general mechanism of activation and elucidating its implications for tumor heterogeneity. Additionally, we delve into potential therapeutic opportunities to target this aberrant fusion protein in the context of Ewing sarcoma treatment.
Collapse
Affiliation(s)
| | | | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| |
Collapse
|
3
|
Luo A, Liu H, Huang C. KLF5-induced miR-487a augments the progression of osteosarcoma cells by targeting NKX3-1 in vitro. Oncol Lett 2022; 24:258. [PMID: 35765275 PMCID: PMC9219018 DOI: 10.3892/ol.2022.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are involved in the development and progression of numerous types of cancer however their role in osteosarcoma has not been fully clarified. The present study aimed to use high-throughput bioinformatics analysis as well as in vitro experiments to investigate the potential role of transcription factors, miRNAs and their targets in the progression of osteosarcoma. miRNA data and clinical information of osteosarcoma were obtained from Gene Expression Omnibus database to investigate differentially expressed miRNAs. The expression of miRNAs/mRNAs in osteosarcoma cell lines was detected via reverse transcription-quantitative (RT-qPCR). MTT and colony formation assay were used to determine cell proliferation ability and transwell assay was used to observe cell invasion and migration ability. A total of four prediction algorithms for miRNA-mRNA interactions were used to determine potential target genes of miR-487a. Predicted target genes were used to intersect with overlapped differentially expressed genes (DEGs) from GSE12865 and The Cancer Genome Atlas osteosarcoma datasets. Expression of NK3 homeobox 1 (NKX3-1) was analyzed by western blotting and RT-qPCR assay. Dual luciferase assay was conducted to verify whether NKX3-1 was a direct target of miR-487a. The regulatory association between Kruppel-like factor 5 (KLF5) and miR-487a was detected using chromatin immunoprecipitation assay. miR-487a was upregulated in osteosarcoma tissue (GSE65071 and GSE28423) and cell lines (HOS and MG63). miR-487a mimic promoted proliferation, migration and invasion of osteosarcoma cells. NKX3-1 was a direct target of miR-487a and transfection of NKX3-1 plasmid reversed the effect of miR-487a on proliferation, migration and invasion of osteosarcoma cells. KLF5 enhanced miR-487a expression by directly binding to its promoter region and miR-487a inhibitor reversed the effect of KLF5 on proliferation, migration and invasion of osteosarcoma cells. The present results indicated that KLF5/miR-487a signaling promoted invasion and metastasis of osteosarcoma cells via targeting NKX3-1.
Collapse
Affiliation(s)
- Anyu Luo
- Department of Orthopedics, Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430051, P.R. China
| | - Hanlin Liu
- Department of Orthopedics, Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430051, P.R. China
| | - Chen Huang
- Department of Orthopedics, Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430051, P.R. China
| |
Collapse
|
4
|
Waszczykowska K, Prażanowska K, Kałuzińska Ż, Kołat D, Płuciennik E. Discovering biomarkers for hormone-dependent tumors: in silico study on signaling pathways implicated in cell cycle and cytoskeleton regulation. Mol Genet Genomics 2022; 297:947-963. [PMID: 35532795 DOI: 10.1007/s00438-022-01900-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/16/2022] [Indexed: 02/07/2023]
Abstract
Malignancies dependent on hormone homeostasis include breast, ovary, cervical, prostate, testis and uterine tumors. Hormones are involved in signal transduction which orchestrate processes, such as apoptosis, proliferation, cell cycle or cytoskeleton organization. Currently, there is a need for novel biomarkers which would help to diagnose cancers efficiently. In this study, the genes implicated in signaling that is important in hormone-sensitive carcinogenesis were investigated regarding their prognostic significance. Data of seven cancer cohorts were collected from FireBrowse. 54 gene sets implicated in specific pathways were browsed through MSig database. Profiling was assessed via Monocle3, while gene ontology through PANTHER. For confirmation, correlation analysis was performed using WGCNA. Protein-protein networks were visualized via Cytoscape and impact of genes on survival, as well as cell cycle or cytoskeleton-related prognostic signatures, was tested. Several differences in expression profile were identified, some of them allowed to distinguish histology. Functional annotation revealed that various regulation of cell cycle, adhesion, migration, apoptosis and angiogenesis underlie these differences. Clinical traits, such as histological type or cancer staging, were found during evaluation of module-trait relationships. Of modules, the TopHubs (COL6A3, TNR, GTF2A1, NKX3-1) interacted directly with, e.g., PDGFB, ITGA10, SP1 or AKT3. Among TopHubs and interacting proteins, many showed an impact on hazard ratio and affected the cell cycle or cytoskeleton-related prognostic signatures, e.g., COL1A1 or PDGFB. In conclusion, this study laid the foundation for further hormone-sensitive carcinogenesis research through identification of genes which prove that crosstalk between cell cycle and cytoskeleton exists, opening avenues for future therapeutic strategies.
Collapse
Affiliation(s)
| | - Karolina Prażanowska
- Faculty of Biomedical Sciences, Medical University of Lodz, 90-752, Lodz, Poland
| | - Żaneta Kałuzińska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland.
| | - Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| |
Collapse
|
5
|
Liu F, Zhu XT, Li Y, Wang CJ, Fu JL, Hui J, Xiao Y, Liu L, Yan R, Li XF, Liu Y. Magnesium demethylcantharidate inhibits hepatocellular carcinoma cell invasion and metastasis via activation transcription factor FOXO1. Eur J Pharmacol 2021; 911:174558. [PMID: 34634308 DOI: 10.1016/j.ejphar.2021.174558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world, develops rapidly and has a high mortality rate. Relapsed metastasis is the most important factor affecting prognosis and is also the main cause of death for patients with HCC. Cantharidin is a kind of folk medicine for malignant tumors in China. Because of its cytotoxicity, the application of cantharidin is very limited. Magnesium demethylcantharidate (MDC) is a derivative of cantharidin independently developed by our laboratory. Our results show that MDC has anticancer activity and exhibited lower toxicity than cantharidin. However, whether MDC affects the invasion and metastasis of HCC cells and the underlying molecular mechanisms remain obscure. Transwell and Matrigel assays showed that MDC could effectively inhibit the invasion and metastasis of the HCC cell lines SMMC-7721 and SK-Hep1 in a dose-dependent manner. Moreover, MDC significantly inhibited the expression of invasion and metastasis related proteins MMP-2 and MMP-9. In addition, our study found that MDC inhibited the invasion and metastasis of HCC cell lines SMMC-7721 and SK-Hep1 by activating transcription factor FOXO1. Interestingly, the combination of MDC and sorafenib significantly inhibited the invasion and metastasis of HCC cell lines SMMC-7721 and SK-Hep1 compared with the single drug treatment via the activated transcription factor FOXO1. Our work revealed that MDC obviously inhibited the invasion and metastasis of HCC cells, and suggested that MDC could be a potential candidate molecule against the invasion and metastasis of HCC.
Collapse
Affiliation(s)
- Fang Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Xin-Ting Zhu
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China; Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China
| | - Yi Li
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Chen-Jing Wang
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jia-Li Fu
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jing Hui
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China; Life Sciences Institute, Zunyi Medical University, Zunyi, 563000, China
| | - Yi Xiao
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China; Life Sciences Institute, Zunyi Medical University, Zunyi, 563000, China
| | - Liu Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Rong Yan
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Xiao-Fei Li
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yun Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China; Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China; Life Sciences Institute, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
6
|
Zhang L, Huo Q, Ge C, Zhao F, Zhou Q, Chen X, Tian H, Chen T, Xie H, Cui Y, Yao M, Li H, Li J. ZNF143-Mediated H3K9 Trimethylation Upregulates CDC6 by Activating MDIG in Hepatocellular Carcinoma. Cancer Res 2020; 80:2599-2611. [PMID: 32312832 DOI: 10.1158/0008-5472.can-19-3226] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/14/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022]
Abstract
Zinc finger protein 143 (ZNF143) belongs to the zinc finger protein family and possesses transcription factor activity by binding sequence-specific DNA. The exact biological role of ZNF143 in hepatocellular carcinoma (HCC) has not been investigated. Here we report that ZNF143 is overexpressed in HCC tissues and its overexpression correlates with poor prognosis. Gain- and loss-of-function experiments showed that ZNF143 promoted HCC cell proliferation, colony formation, and tumor growth in vitro and in vivo. ZNF143 accelerated HCC cell-cycle progression by activating cell division cycle 6 (CDC6). Mechanistically, ZNF143 promoted expression of CDC6 by directly activating transcription of histone demethylase mineral dust-induced gene (MDIG), which in turn reduced H3K9me3 enrichment in the CDC6 promoter region. Consistently, ZNF143 expression correlated significantly with MDIG and CDC6 expression in HCC. Collectively, we propose a model for a ZNF143-MDIG-CDC6 oncoprotein axis that provides novel insight into ZNF143, which may serve as a therapeutic target in HCC. SIGNIFICANCE: These findings describe the mechanism by which ZNF143 promotes HCC proliferation and provide important clues for exploring new targets and strategies for clinical treatment of human liver cancer.
Collapse
Affiliation(s)
- Lili Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Huo
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qingqing Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoxia Chen
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Haiyang Xie
- Department of General Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Cui
- Cancer Institute of Guangxi, Nanning, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Singh D, Bharti A, Biswas D, Tewari M, Ansari MA, Singh S, Narayan G. Altered expression of NKX3.1 has significant prognostic value in gallbladder cancer. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Jiang Y, Han QJ, Zhang J. Hepatocellular carcinoma: Mechanisms of progression and immunotherapy. World J Gastroenterol 2019; 25:3151-3167. [PMID: 31333308 PMCID: PMC6626719 DOI: 10.3748/wjg.v25.i25.3151] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/28/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the most common malignancies, and various pathogenic factors can lead to its occurrence and development. Among all primary liver cancers, hepatocellular carcinoma (HCC) is the most common. With extensive studies, an increasing number of molecular mechanisms that promote HCC are being discovered. Surgical resection is still the most effective treatment for patients with early HCC. However, early detection and treatment are difficult for most HCC patients, and the postoperative recurrence rate is high, resulting in poor clinical prognosis of HCC. Although immunotherapy takes longer than conventional chemotherapy to produce therapeutic effects, it persists for longer. In recent years, the emergence of many new immunotherapies, such as immune checkpoint blockade and chimeric antigen receptor T cell therapies, has given new hope for the treatment of HCC.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Antineoplastic Agents, Immunological/therapeutic use
- Cancer Vaccines/therapeutic use
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Clinical Trials as Topic
- Disease Progression
- Humans
- Immunotherapy, Adoptive/methods
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/prevention & control
- Receptors, Chimeric Antigen/immunology
- Treatment Outcome
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Qiu-Ju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
9
|
Song Z, Liu T, Chen J, Ge C, Zhao F, Zhu M, Chen T, Cui Y, Tian H, Yao M, Li J, Li H. HIF-1α-induced RIT1 promotes liver cancer growth and metastasis and its deficiency increases sensitivity to sorafenib. Cancer Lett 2019; 460:96-107. [PMID: 31247273 DOI: 10.1016/j.canlet.2019.06.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Ras-like-without-CAAX-1 (RIT1) belongs to the RAS superfamily of small GTPases, which plays critical roles in tumor progression. However, little is known about the roles of RIT1 in hepatocellular carcinoma (HCC). Here we found that RIT1 expression was positively associated with the presence of intrahepatic metastasis and the histological grade of HCC and higher RIT1 expression indicated shorter overall survival in HCC patients. In vitro and in vivo studies revealed that RIT1 functioned as an oncogene, as overexpression of RIT1 enhanced HCC cell proliferation and aggressive behavior, whereas silencing RIT1 expression repressed the malignant behaviors. Furthermore, RIT1 deficiency increased drug sensitivity to sorafenib treatment. We further demonstrated that hypoxia-inducible factor 1α (HIF-1α) directly transcriptionally upregulated RIT1, and its stableness was positively correlated with RIT1 expression in HCC tissues. Knockdown of RIT1 attenuated the invasion and migration induced by hypoxia. Collectively, our data highlight the significance of HIF-1α/RIT1 axis in driving HCC progression and sorafenib resistance.
Collapse
Affiliation(s)
- Zhen Song
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Tengfei Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Jing Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Miaoxin Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Taoyang Chen
- Qidong Liver Cancer Institute, Qidong, Jiangsu, 226200, China
| | - Ying Cui
- Cancer Institute of Guangxi, Nanning, Guangxi, 530021, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China.
| |
Collapse
|
10
|
Homeobox Genes and Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11050621. [PMID: 31058850 PMCID: PMC6562709 DOI: 10.3390/cancers11050621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common type of cancer, and is the third leading cause of cancer-related deaths each year. It involves a multi-step progression and is strongly associated with chronic inflammation induced by the intake of environmental toxins and/or viral infections (i.e., hepatitis B and C viruses). Although several genetic dysregulations are considered to be involved in disease progression, the detailed regulatory mechanisms are not well defined. Homeobox genes that encode transcription factors with homeodomains control cell growth, differentiation, and morphogenesis in embryonic development. Recently, more aberrant expressions of Homeobox genes were found in a wide variety of human cancer, including HCC. In this review, we summarize the currently available evidence related to the role of Homeobox genes in the development of HCC. The objective is to determine the roles of this conserved transcription factor family and its potential use as a therapeutic target in future investigations.
Collapse
|
11
|
Li L, Chen J, Ge C, Zhao F, Chen T, Tian H, Li J, Li H. CD24 isoform a promotes cell proliferation, migration and invasion and is downregulated by EGR1 in hepatocellular carcinoma. Onco Targets Ther 2019; 12:1705-1716. [PMID: 30881025 PMCID: PMC6400134 DOI: 10.2147/ott.s196506] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction CD24 is known as a heavily glycosylated cell surface molecule that is highly expressed in a wide variety of human malignancies. Previous studies have shown that CD24 plays an important role in self-renewal, proliferation, migration, invasion and drug resistance of hepatocellular carcinoma (HCC). However, little is known about the expression and function of CD24 isoform a (CD24A) and CD24 isoform b (CD24B) in HCC. Materials and methods Quantitative real-time polymerase chain reaction (qPCR) and Western blotting were performed to detect CD24 and EGR1 expression in HCC cells and tissue. The function of CD24 in cell proliferation was verified with MTT assays, colony formation assays and tumor xenograft models. Wound healing assays and invasion assays were performed to clarify the function of CD24 in the regulation of cell migration and invasion in HCC. A dual luciferase reporter assay and chromatin immunoprecipitation assay were used to analyze the regulation mechanism of CD24A. Results CD24A but not CD24B, which was barely detected by qPCR and Western blotting, is significantly upregulated in HCC tissue. Both CD24A and CD24B contribute to HCC cell proliferation, migration and invasion, but CD24A is more effective than CD24B. EGR1 downregulates CD24A and exerts transcription-promoting activity on the CD24A promoter. Furthermore, EGR1 represses HCC cell proliferation via downregulation of CD24A. Conclusion CD24A is the predominant CD24 isoform in HCC and plays a major role in cell proliferation, migration, and invasion. EGR1 can exert its antitumor effect through transcriptional downregulation of CD24A in HCC.
Collapse
Affiliation(s)
- Liangyu Li
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Jing Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China,
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China,
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China,
| | - Taoyang Chen
- Qi Dong Liver Cancer Institute, Qi Dong, Jiangsu Province, People's Republic of China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China,
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China,
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China,
| |
Collapse
|
12
|
Patel MS, Bowen DK, Tassone NM, Gould AD, Kochan KS, Firmiss PR, Kukulka NA, Devine MY, Li B, Gong EM, Dettman RW. The Homeodomain Transcription Factor NKX3.1 Modulates Bladder Outlet Obstruction Induced Fibrosis in Mice. Front Pediatr 2019; 7:446. [PMID: 31781523 PMCID: PMC6861332 DOI: 10.3389/fped.2019.00446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/15/2019] [Indexed: 12/29/2022] Open
Abstract
Fibrosis is an irreversible remodeling process characterized by the deposition of collagen in the extracellular matrix of various organs through a variety of pathologies in children, leading to the stiffening of healthy tissues and organ dysfunction. Despite the prevalence of fibrotic disease in children, large gaps exist in our understanding of the mechanisms that lead to fibrosis, and there are currently no therapies to treat or reverse it. We previously observed that castration significantly reduces fibrosis in the bladders of male mice that have been partially obstructed. Here, we investigated if the expression of androgen response genes were altered in mouse bladders after partial bladder outlet obstruction (PO). Using a QPCR microarray and QRTPCR we found that PO was sufficient to increase expression of the androgen response gene Nkx3.1. Consistent with this was an increase in the expression of NKX3.1 protein. Immunofluorescent antibody localization demonstrated nuclear NKX3.1 in most bladder cells after PO. We tested if genetic deletion of Nkx3.1 alters remodeling of the bladder wall after PO. After PO, Nkx3.1 KO/KO bladders underwent remodeling, demonstrating smaller bladder area, thickness, and bladder: body weight ratios than obstructed, wild type controls. Remarkably, Nkx3.1 KO/KO specifically affected histological parameters of fibrosis, including reduced collagen to muscle ratio. Loss of Nkx3.1 altered collagen and smooth muscle cytoskeletal gene expression following PO which supported our histologic findings. Together these findings indicated that after PO, Nkx3.1 expression is induced in the bladder and that it mediates important pathways that lead to tissue fibrosis. As Nkx3.1 is an androgen response gene, our data suggest a possible mechanism by which fibrosis is mediated in male mice and opens the possibility of a molecular pathway mediated by NKX3.1 that could explain sexual dimorphism in bladder fibrosis.
Collapse
Affiliation(s)
- Mehul S Patel
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Diana K Bowen
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Gong Laboratory, Division of Pediatric Urology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Nicholas M Tassone
- Gong Laboratory, Division of Pediatric Urology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Andrew D Gould
- Gong Laboratory, Division of Pediatric Urology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Kirsten S Kochan
- Gong Laboratory, Division of Pediatric Urology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Paula R Firmiss
- Gong Laboratory, Division of Pediatric Urology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Natalie A Kukulka
- Gong Laboratory, Division of Pediatric Urology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Megan Y Devine
- Gong Laboratory, Division of Pediatric Urology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Belinda Li
- Department of Urology, Loyola University Medical Center, Maywood, IL, United States
| | - Edward M Gong
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Gong Laboratory, Division of Pediatric Urology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Robert W Dettman
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
13
|
Shergalis A, Bankhead A, Luesakul U, Muangsin N, Neamati N. Current Challenges and Opportunities in Treating Glioblastoma. Pharmacol Rev 2018; 70:412-445. [PMID: 29669750 PMCID: PMC5907910 DOI: 10.1124/pr.117.014944] [Citation(s) in RCA: 504] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common and aggressive primary brain tumor, has a high mortality rate despite extensive efforts to develop new treatments. GBM exhibits both intra- and intertumor heterogeneity, lending to resistance and eventual tumor recurrence. Large-scale genomic and proteomic analysis of GBM tumors has uncovered potential drug targets. Effective and “druggable” targets must be validated to embark on a robust medicinal chemistry campaign culminating in the discovery of clinical candidates. Here, we review recent developments in GBM drug discovery and delivery. To identify GBM drug targets, we performed extensive bioinformatics analysis using data from The Cancer Genome Atlas project. We discovered 20 genes, BOC, CLEC4GP1, ELOVL6, EREG, ESR2, FDCSP, FURIN, FUT8-AS1, GZMB, IRX3, LITAF, NDEL1, NKX3-1, PODNL1, PTPRN, QSOX1, SEMA4F, TH, VEGFC, and C20orf166AS1 that are overexpressed in a subpopulation of GBM patients and correlate with poor survival outcomes. Importantly, nine of these genes exhibit higher expression in GBM versus low-grade glioma and may be involved in disease progression. In this review, we discuss these proteins in the context of GBM disease progression. We also conducted computational multi-parameter optimization to assess the blood-brain barrier (BBB) permeability of small molecules in clinical trials for GBM treatment. Drug delivery in the context of GBM is particularly challenging because the BBB hinders small molecule transport. Therefore, we discuss novel drug delivery methods, including nanoparticles and prodrugs. Given the aggressive nature of GBM and the complexity of targeting the central nervous system, effective treatment options are a major unmet medical need. Identification and validation of biomarkers and drug targets associated with GBM disease progression present an exciting opportunity to improve treatment of this devastating disease.
Collapse
Affiliation(s)
- Andrea Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Armand Bankhead
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Urarika Luesakul
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Nongnuj Muangsin
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| |
Collapse
|
14
|
Liu H, Hu J, Wei R, Zhou L, Pan H, Zhu H, Huang M, Luo J, Xu W. SPAG5 promotes hepatocellular carcinoma progression by downregulating SCARA5 through modifying β-catenin degradation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:229. [PMID: 30249289 PMCID: PMC6154423 DOI: 10.1186/s13046-018-0891-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The sperm-associated antigen 5 (SPAG5) plays a key role in controlling various cellular phenomena, including cell cycle progression and proliferation. However, the role of SPAG5 in hepatocellular carcinoma (HCC) remains unknown. METHODS This study investigated the function and clinical significance of SPAG5 protein expression in hepatocellular carcinoma. We analyzed SPAG5 expression in surgical specimens from 136 HCC patients. The correlation between the clinical characteristics and prognosis was also determined. Furthermore, the SPAG5 was overexpressed in HCC cell and silenced with shRNA in HCC cells. Moreover, cell proliferation and apoptosis were measured using Edu assay and flow cytometry and a molecular mechanism of SPAG5 promotes HCC progression was explored. RESULTS Herein, our study showed that upregulation of SPAG5 was detected frequently in primary HCC tissues, and was associated with significantly worse survival among the HCC patients. Multivariate analyses revealed that high SPAG5 expression was an independent predictive marker for the poor prognosis of HCC. SPAG5 silence effectively abolished the proliferation abilities of SPAG5 in vivo and in vitro, while induced apoptosis in HCC cells. Furthermore, our results indicate that SPAG5 promoted cell progression by decreasing SCARA5 expression, which has been reported to control the progression of HCC, and our data demonstrated that SCARA5 is crucial for SPAG5-mediated HCC cell progression in vitro and in vivo. Moreover, we found that the expression of SPAG5 and SCARA5 are inversely correlated in HCC tissues. In addition, we demonstrated that SPAG5 promoted progression in HCC via downregulating SCARA5 depended on the β-catenin/TCF4 signaling pathway. Interestingly, the underlying mechanism is which SPAG5 regulates SCARA5 expression by modulating β-catenin degradation. CONCLUSIONS Taken together, our data provide a novel evidence for the biological and clinical significance of SPAG5 as a potential biomarker, and we demonstrate that SPAG5-β-catenin-SCARA5 might be a novel pathway involved in HCC progression.
Collapse
Affiliation(s)
- Hongliang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China
| | - Junwen Hu
- Department of Hepatobiliary Surgery, Tumor Hospital of Guanxi Medical University, Nanning, China.,Department of General Surgery, Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ran Wei
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Longfei Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China
| | - Hua Pan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China
| | - Hongchao Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China
| | - Mingwen Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China.
| | - Wei Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|